
HAL Id: hal-00911535
https://hal.inria.fr/hal-00911535

Submitted on 2 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Organizations in Arigatoni
Michel Cosnard, Luigi Liquori, Raphael Chand

To cite this version:
Michel Cosnard, Luigi Liquori, Raphael Chand. Virtual Organizations in Arigatoni. Proceedings
of the Second International Workshop on Developments in Computational Models (DCM 2006), Jul
2006, Venice, Italy. pp.55-75, �10.1016/j.entcs.2006.11.035�. �hal-00911535�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49708464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00911535
https://hal.archives-ouvertes.fr

DCM 2006

Virtual Organizations inArigatoni

M ichelCosnarda Luigi L iquori a RaphaelChanda

a INRIA, France

Abstract

Arigatoni is a lightweight communication model that deploys theGlobal Computing Para-
digm over the Internet. Communications over the behavioral units of the model are per-
formed by a simpleGlobal Internet Protocol(GIP) on top ofTCP or UDP protocol. Basic
Global Computers Units (GCU) can communicate by first registering to a brokering service
and then by mutually asking and offering services.

Colonies and Communities are the main entities in the model.A Colony is a simple
virtual organization composed by exactly one leader and some set (possibly empty) of
individuals. A Community is a raw set of colonies and global computers (think it as asoup
of colonies and global computer without a leader).

We present an operational semantics via a labeled transition system, that describes the
main operations necessary in theArigatoni model to perform leader negotiation, join-
ing/leaving a colony, linking two colonies and moving oneGCU from one colony to an-
other. Our formalization results to be adequate w.r.t. the algorithm performing peer log-
ging/delogging and colony aggregation.

1 Introduction

Effective use of computational grids viaP2P systems requiresup-to-dateinfor-
mation about widely-distributed resources. This is a challenging problem for very
large distributed systems particularly when taking into account the continuously
changing state of resources. Discovering dynamic resourcesmust be scalable in
number of resources and users and hence, as much as possible,fully decentral-
ized. It should tolerate intermittent participation and dynamically changing sta-
tus/availability.
The Arigatoni Model is suitable to deploy, via theInternet the Global Comput-
ing Communication Paradigm, i.e. computation via a seamless, geographically dis-
tributed, open-ended network of bounded resources by agents acting with partial
knowledge and no central coordination. The model can be deployed firstly in an
intranet and further from intranet to intranet by overlapping anOverlay Network
on the top of theactual network. An Overlay Networkis an abstraction on top of
a global network to yield another global network. Overlay examples areresource

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

discoveryservices (notion of resource sharing in distributed networks), search en-
gines (abstraction of information repository) or systems of trusted mobile agents
(notion of autonomic, exploratory behavior) [5].

The Arigatoni model provides the necessary basic infrastructure necessary for
a real deployment of the overlay network itself. Moreover, our work abstracts on
which kind of resourcethe overlay network is playing with; pragmatically speaking,
this work could be useful forGrid, or for distributed file/band sharing, or for more
evolved scenarios like mobile and distributed object-oriented computation.

TheArigatoni communication model is organized incolonygoverned by a clear
leader. Global Computers belong to only one colony, and requests for resources
located in the same or in another colony traverse a broker-2-broker negotiation
whose security is guaranteed viaPKI mechanisms.

The model is suitable to fit with various global scenarios fromclassicalP2P
applications, like file or band sharing, to more sophisticatedGrid applications, like
remote and distributed big (and small) computations, untilpossible, futuristicmi-
gration computations, i.e. transfer of a non completed local run in anotherGCU,
the latter scenario being useful in case of catastrophic scenarios, like fire, terrorist
attack, earthquake etc., in the vein of Global Programming Languagesà la Obliq or
Telescript.
The Units in the Arigatoni model are one protocol, theGlobal Internet Protocol,
GIP, and three main units:

• A Global Computer Unit,GCU, i.e. the basic peer of the Global Computer para-
digm; it is typically a small device, like aPDA, a laptop or aPC, connected via
IP, unrelated to the media used, wired or wireless, etc.

• A Global Broker Unit,GBU, is the basic unit devoted to register and unregister
GCUs, to receive service queries from clientGCUs, to contact potential servants
GCUs, to negotiate with the latter the given services, to trust clients and servers
and to send all the information necessary to allow the clientGCU and the ser-
vantsGCUs to communicate. EveryGCU can register to only oneGBU, so that
everyGBU controls acolony (denoted byCOL) of collaborating Global Com-
puters. Hence, communication intra-colony is initiated viaonly oneGBU, while
communication inter-colonies is initiated through a chainof GBU-2-GBU mes-
sage exchanges. In both cases, when a clientGCU receives an acknowledgment
for a request service (with related trust certificate) from the properGBU, then
the client will enjoy the service directly from the servant(s) GCU, i.e. without a
further mediation of theGBU itself.

• A Global Router Unit,GRU is a simple basic unit that is devoted to send and
receive packets using a proper Global Internet Protocol and to forward the pay-
load to the units which are connected with this router. EveryGCU and every
GBU has one personalGRU, with which it communicates via a suitableAPI. The
connection between router and peer is ensured via a suitableAPI.

Colonies and Individualsare the main entities in the model. A Colony is a sim-
ple virtual organization composed by exactly one leader andsome set (possibly

2

{GBU} is a (small) colony

{GBU1, GCU1 . . . GCUm} is a colony

{GBU1, GCU1 . . . GCUm,

subcolony
︷ ︸︸ ︷

{GBU2, GCUm+1 . . . GCUm+n}}

is a colony (it contains a subcolony)

{GBU1, GCU1 . . . GCUm, GBU2, GCUm+1 . . . GCUm+n}

is not a colony (twoGBUs)

{GBU3,

subcolony
︷ ︸︸ ︷

{GBU1, GCU1 . . . GCUm},

subcolony
︷ ︸︸ ︷

{GBU2, GCUm+1 . . . GCUm+n} }

is a colony (with two subcolonies)

{

subcolony
︷ ︸︸ ︷

{GBU1, GCU1 . . . GCUm},

subcolony
︷ ︸︸ ︷

{GBU2, GCUm+1 . . . GCUm+n}}

is not a colony (no leader in the toplevel colony) but it is a community

Figure 1. Some Colony’s Examples

empty) of individuals. Individuals are Global Computers (think it as anAmoeba),
or (sub)colonies (think it as aProtozoa). A formal definition of a colony is given
using this simpleBNF syntax:

COL ::= {GBU} | COL ∪ {GCU} | COL ∪ {COL }

The two main characteristics of a colony are:

(i) a colony hasexactlyone leaderGBU and at least one individual (theGBU
itself);

(ii) a colony contains individuals (someGCU’s, or other colonies).

Some examples of colonies are shown in Figure1.
A Community (denoted byCOM) is a raw set of colonies and global computers
(think it as asoupof colonies andGCU without a leader). A formal definition of
community is given using theBNF syntax:

COM ::= ∅ | COM ∪ {GCU} | COM ∪ {COL }

A simple example of a community is shown in Figure1. As one can see from the
abstract syntax, a colony is a community but the reverse is not true.
Resource Discoveryis one of the key issues in building overlay computer net-
works. Individuals (global computers) can register and unregister to a colony. The
same holds true for the subcolonies that, in turn, can (un)register to another colony.
The main difficulty in (un)registering is dealing withAdministrative Domains; as
well stated in the seminal Cardelli and Gordon paper on Mobile Ambients [2]:

“In the early days of theInternet one could rely on a flat name space given byIP
addresses; knowing theIP address of a computer would very likely allow now to
talk to that computer in some way. This is no longer the case: firewalls partition

3

theInternet into administrative domains that are isolated from each otherexcept
for rigidly controlled pathways. System administrators enforce policies about
what can move through firewalls and how [...]”

(Un)Registering Modalities. There are essentially two ways of registering to a
GBU leader of a colony, the latter being not enforced by theArigatoni model:

• registration of an individual (GCU or colony) to aGBU leader of a colony be-
longing to the samecurrent administrative domain;

• registration viaremote tunnellingof an individual (GCU or colony) to another
GBU leader of a colony belonging to adifferent administrative domain. In this
case, we say that the individualsde factoare working in local modein the current
administrative domainand in global modein another administrative domain.

In addition to this remote registration, the same individual can still register to
the GBU leader of the colony belonging to the same administrative domain in
which it resides. As such, in its global mode, it will belong to the colony of the
current administrative domain, and, in its local mode (via remote tunnelling), it
will belong to another colony in another administrative domain.

Counterwise, an individual can unregister according to the following simple rules
d’étiquette:

• unregistration is possible only when there are no pending services demanded or
requested to the leaderGBU of the colony it belongs: it must wait for an answer
of the leaderGBU or for a direct connection of theGCU requesting the already
offered service, or wait for a timeout. The colony accepts the unregistration only
if the colony itself will not becorrupted;

• (as a corollary of the above) aGBU cannot unregister from its own colony,i.e.
it cannot discharge itself. However, for fault tolerance purposes, aGBU can be
faulty. In that case, theGCUs will unregister one after the other and the colony
will “disappear”;

• once aGCU (e.g. a laptop) has been disconnected from a colony belonging to
any administrative domain, it can migrate in another colonybelonging to any
other administrative domain;

Summarizing, the original contributions of the paper are:

• a formalization of the Registration and of the Resource Discovery Mechanism in
theArigatoni model in terms of a labeled transition system;

• a complete domain independenceof the model w.r.t. other models in the litera-
ture. In other wordsArigatoni completely abstracts of its use,i.e. Grid, file/band
sharing, web services, etc.

• some simulation results of the intermittent participationfor a given network
topology.

4

N
et

w
or

k

IN
T

E
R

N
E

T

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
B

U
/G

R
U

G
B

U
/G

R
U

G
B

U
/G

R
U

G
B

U
/G

R
U

N
et

w
or

k

N
et

w
or

k

N
et

w
or

kIP
 R

ou
te

r

IP
 R

ou
te

r

IP
 R

ou
te

r
IP

 R
ou

te
r

G
B

U
/G

R
U

Figure 2.ArigatoNet

2 Units in a Nutshell

A complete description of all the functional units of theArigatoni model is given
in [1]; this section is an overview.

2.1 Global Computer Unit

In theArigatoni model, aGlobal Computer Unit (GCU) is a cheap computer device.
The computer should be able to work inStandalone Local Modefor all the tasks
that it can do locally or inGlobal Mode, by first registering itself in theArigatoni
architecture, and then by making a global request to the Overlay Network induced
by the architecture (that we call,ArigatoNet). Figure2 shows theArigatoni model.
TheGCU must be able to perform the following tasks:

• Discover, upon the physical arrival of theGCU in a new colony, the address of a
GBU, representing theleaderof the colony;

• Register/Unregister on theGBU which manages the colony;
• Request some services to itsGBU, and respond to some requests from theGBU;
• Upon reception from aGBU of a positive response to a request, be able to connect

directly with the servant(s)GCU in a P2P fashion, and offer/receive the service.

2.2 Global Broker Unit

TheGlobal Broker Unit (GBU) performs the following tasks:

• Discover the address of anothersuperGBU, representing thesuperleaderof the
supercolony, where theGBU’s colony is embedded. We assume that everyGBU
comes with its properPKI certificate.

5

• Register/Unregister the proper colony to theleader GBU which manages the
supercolony;

• Register/Unregister clients and servantsGCU in its local base of Global Com-
puters. By definition everyGCU can register toat mostoneGBU;

• Acknowledge the request of service of the clientGCU;
• Discover the resource(s) that satisfies theGCU’s request in its local base (local

colony) ofGCU;
• Delegate the request to anotherGBU governing another colony;
• Perform a combination of the above two actions;
• Deal with allPKI intra- and inter-colony policies;
• Notify the clientGCU (or the delegatingGBU) that some servant(s)GCUs have

accepted to serve the request, or just notify afailure of the request.

Every GCU in the colony sends its request to theGBU which is the leader of the
colony. There are different scenarios concerning the demanded resource for service
discovery, namely:

(i) The broker finds all the resource(s) needed to satisfy therequested services
of the GCU client locally in the intranet. Then it will send all the informa-
tion necessary to make theGCU client able to communicate with theGCU
servants. This notification will be encoded using theGIP protocol. Then, the
GCU client will directly talk with GCU servant(s), and the latter will manage
the request, as in classicalP2P systems;

(ii) The broker did not find all the resource(s) in its local intranet. In this case it
will forward and delegate the request to another broker. For that purpose, it
must first register the whole colony to another supercolony;

(iii) A combination of steps 1 + 2 could be envisaged depending on the capability
of the GBU to combine resources that it manages and resources that come
from a delegateGBU;

(iv) After a fixed timeout period, or when all delegateGBUs have failed to satisfy
the delegated request, the broker will notify theGCU client of therefusal of
service.

2.3 Global Router Unit

The last unit in theArigatoni model is theGlobal Router Unit (GRU). TheGRU
implements all the low-level network routines, those which really have access to
the IP network. It is the only unit which effectively runs theGIP protocol. The
GRU can be implemented as a small daemon which runs on the same device as a
GCU or aGBU, or as a shared library dynamically linked with aGCU or aGBU.
TheGRU is devoted to the following tasks:

• Upon the initial startup of aGCU it helps to register the unit to aGBU;
• It checks the well-formedness and forwardsGIP packets across theArigatoNet

6

toward their destinations.GIP packets encode the requests of aGCU or aGBU
in theArigatoni network;

• Upon the initial startup of aGBU it helps the unit with several otherGBUs that it
knows or discovers.

2.4 Unit Semantics

The formal semantics of the three formal units was first presented in [1]: Figures3
and4 show the pseudo code embedded inside aGCU and aGBU. We write inblue
the code not essential to the semantics of peer discovery andthe virtual (un)growth
of colonies, and we highlight inredthe code which is essential.

inparallel
while true do // Registration loop
GBU = Discover(MyCard)
case (GlobalMode,RegMode) is
(true,false):
ServiceReg(MyCard,GBU,LOGIN)

(false,true):
ServiceReg(MyCard,GBU,LOGOUT)

otherwise: // Do nothing
endcase
endwhile
with
while true do // Shell loop
Data = ListenLocal()
Response = LocalServe(Data)
case (Response,GlobalMode,RegMode) is
(login,_,_): // Open global mode
GlobalMode = true

(logout,_,_): // Close global mode
GlobalMode = false

(true,true): // Ask to the GBU
MetaData = PackScenario(Data)
ServiceRequest(MyCard,GBU,MetaData)

otherwise: LocalReply(Response)
endcase

endwhile
with
while RegMode do // Global GBU listening
MetaData = ListenGBU()
case MetaData.CMD.SERVICE is
SREG:// GBU responds if it accepts my registration
if CanJoin(MetaData)
then RegMode = true
endif

if CanLeave(MetaData)
then RegMode = false
endif

SREQ: // GBU is asking for some resources
if CanHelp(MetaData)
then ServiceResponse(MyCard,GBU,ACC)
else ServiceResponse(MyCard,GBU,REJ)
endif

SRESP: // GBU responds if it found some resources
if CanServe(MetaData)
then Peers = GetPeers(MetaData)

Response = GlobalServe(MyCard,
Peers,MetaData)

ServiceResponse(MyCard,GBU,DONE)
LocalReply(Response)

else LocalReply(fail)
endif

endcase
endwhile
with
while RegMode do // Global GCU listening
MetaData = ListenGCU()
if Verify(MetaData)
then Data = UnPackScenario(MetaData)

Response = LocalServe(Data)
if Response == fail
then ServiceResponse(MyCard,GBU,ERR)
else ServiceResponse(MyCard,GBU,DONE)

SendResult(MyCard,GCU,Response)
endif

else ServiceResponse(MyCard,GBU,SPOOF)
endif

endwhile
endinparallel

Figure 3.GCU pseudocode

3 Formal Semantics of the Virtual Organization

Let {. . .} denotes a colony and not necessarily an administrative domain (like in
Cardelli-Gordon ambients), and let every individual come with its ownIP address
and security certificate. Let{GBU, . . .} denotes a colony with its leader,e.g.

{GBU, COL1, COL2, GCU1, GCU2, . . .}

7

inparallel
while true do // Registration loop
GBU = Discover(MyCard)
case (GlobalMode,RegMode) is
(true,false):
ServiceReg(MyCard,GBU,LOGIN)

(false,true):
ServiceReg(MyCard,GBU,LOGOUT)

otherwise: // Do nothing
endcase
endwhile
with
while true do // Shell loop
Data = ListenLocal()
Response = LocalServe(Data)
case (Response,GlobalMode,RegMode) is
(login,_,_): // Open global mode
GlobalMode = true

(logout,_,_): // Close global mode
GlobalMode = false

(fail,true,true): // You ask for you
MetaData = PackScenario(Data)
ServiceRequest(MyCard,MyCard,MetaData)

otherwise: LocalReply(Response)
endcase

endwhile
with
while true do // Intra-colony listening
MetaData = ListenPeer()
PushHistory(MetaData)
case MetaData.CMD.SERVICE is
SREG: // A Peer is asking for (un)registration
Update(Colony,MetaData)

SREQ: // A Peer is asking for some request
SubColony = SelectPeers(Colony,MetaData)
if SubColony == {} // Broadcast inter
then

ServiceRequest(MyCard,GBU,MetaData)
endif

foreach Peer in SubColony do
// Broadcast intra

ServiceRequest(MyCard,Peer,MetaData)
endforeach

SRESP: // A GCU responds to a request
Sort&PushPeers4Id(MetaData)

endcase
endwhile

with
while true do // Spooling Peers4Id
foreach (Id,Peers) in Peers4Id do
if Timeout(Id)
then ServiceResponse(MyCard,{},NOTIME)
else if Satisfy(Peers,History(Id))

then
ServiceResponse(MyCard,

GetBestPeers4Id(Id),
DONE)

endif
endif
PopPeers4Id(Id)

endforeach
endwhile

with
while RegMode do // Inter-colony listening
MetaData = ListenGBU()
PushHistory(MetaData)
case MetaData.OPE is
SREG: // Registration inter GBU

... as forSREQintra-colony
SREQ:

... as forSREQintra-colony
SRESP: // A leader GBU responds to a request
Sort&PushPeers4Id(MetaData)
endcase

endcase
endwhile

endinparallel

Figure 4.GBU pseudocode

is a colony with two subcolonies and twoGCUs highlighted. A colony is virtually
addressed by theIP of its GBU leader. Let a community be denoted by{. . .}, e.g.

{COL1, COL2, GCU1, GCU2}

is a community with two subcolonies and twoGCU’s.
We present an operational semantics via a reduction relation “→”, between

communities, that describes the main operations necessaryin theArigatoni model to
perform leader discovery and colony’s service registration, namely joining/leaving
a colony, linking two colonies and moving oneGCU from one colony to another.

As usual in process algebras, the reduction is quotiented by aset theoretical
equivalence between communities. As remarked by Michele Bugliesi during the
workshop, we omit in the reduction rules all the imperative aspects related to the
changing ofstateof Individuals; we focus only on the functional rules of the proto-
col describing the intermittent participation of Individuals. The reduction rules are
listed below with a concise explication.

8

(i) A GCU joins a Colonyin the same Administrative Domain

discover(GCU) = GBU

samedom(GBU, GCU) = true gmode(GCU) = true

accept(GBU, GCU) = true regmode(GCU) = false

{{GBU, . . .}, GCU} → {{GBU, GCU, . . .}}
(JoinGCU)

• discover(GCU) = GBU discovers the leader-GBU unit, upon physical/logical
insertion of theGCU in theArigatoNet network;

• samedom(GBU, GCU) = true: both the broker and the global computer
reside in the same administrative domain;

• accept(GBU, GCU) = true: the broker accepts the global computer in its
colony;

• gmode(GCU) = true& regmode(GCU) = false: the global computer is in
global mode but not yet registered. The side effect of this rule is to set the
registration mode totrue.

(ii) A GCU leaves a Colonyin the same Administrative Domain

pendingip(GCU) = false

samedom(GBU, GCU) = true gmode(GCU) = false

accept(GBU, GCU) = false regmode(GCU) = true

{{GBU, GCU, . . .}} → {{GBU, . . .}, GCU}
(LeaveGCU)

• pendingip(GCU) = false: the global computer has no pending service to
give to its leader;

• samedom(GBU, GCU) = true: both the broker and the global computer
reside in the same administrative domain;

• accept(GBU, GCU) = false: the broker accepts to delog the global com-
puter in its colony;

• gmode(GCU) = false& regmode(GCU) = true: the global computer is
in local mode but still registered. The side effect of this rule is to set its
registration mode tofalse.

(iii) A SubColony joins a Colonyin the same Administrative Domain

discover(GBU2) = GBU1

samedom(GBU1, GBU2) = true gmode(GBU2) = true

accept(GBU1, GBU2) = true regmode(GBU2) = false

{{GBU1, . . .}, {GBU2, . . .}} → {{GBU1, {GBU2, . . .}, . . .}}
(JoinCol)

• discover(GBU2) = GBU1: the brokerGBU2 discovers the brokerGBU1,
upon physical/logical insertion in theArigatoNet network;

• samedom(GBU1, GBU2) = true: both reside in the same administrative
domain;

9

• accept(GBU1, GBU2) = true: the brokerGBU1 accepts the subcolony in its
colony;

• gmode(GBU2) = true & regmode(GBU2) = false: the brokerGBU2 is in
global mode but not yet registered. The side effect of this rule is to set its
registration mode totrue.

(iv) A SubColony leaves a Colonyin the same Administrative Domain

pendingip(GBU2) = false

samedom(GBU1, GBU2) = true gmode(GBU2) = false

accept(GBU1, GBU2) = false regmode(GBU2) = true

{{GBU1, {GBU2, . . .}, . . .}} → {{GBU1, . . .}, {GBU2, . . .}}
(LeaveCol)

• pendingip(GBU2) = false: the brokerGBU2 has no pending service to give
to its leaderGBU1;

• samedom(GBU1, GBU2) = true: both reside in the same administrative
domain;

• accept(GBU1, GBU2) = false: the brokerGBU1 does not accept the sub-
colony in its colony;

• gmode(GBU2) = false& regmode(GBU2) = true: the brokerGBU2 is
in local mode but still registered. The side effect of this rule is to set its
registration mode tofalse.

(v) Linking two Coloniesin different Administrative Domains

gmode(GBU1) = true

newgbu(GBU1, GBU2) = GBU3 gmode(GBU2) = true

samedom(GBU1, GBU2) = false regmode(GBU1) = false

agree(GBU1, GBU2) = true regmode(GBU2) = false

{{GBU1, . . .}, {GBU2, . . .}} → {{GBU3, {GBU1, . . .}, {GBU2, . . .}}}
(LinkCol)

• newgbu(GBU1, GBU2) = GBU3: a new broker is created on behalf onGBU1

andGBU2;
• samedom(GBU1, GBU2) = false: both reside in the same administrative

domain;
• agree(GBU1, GBU2) = true: an agreement between the two brokers is

signed;
• gmode(GBU1) = true & gmode(GBU2) = true & regmode(GBU1) =

false& regmode(GBU2) = false: the brokers are in global mode but still
not ,registered. The side effect of this rule is to set the registration mode of
both brokers totrue.

10

(vi) Unlinking two Coloniesin different Administrative Domains

pendingip(GBU1) = false pendingip(GBU2) = false

pendingip(GBU3) = false gmode(GBU1) = false

newgbu(GBU1, GBU2) = GBU3 gmode(GBU2) = false

samedom(GBU1, GBU2) = false regmode(GBU1) = true

agree(GBU1, GBU2) = false regmode(GBU2) = true

{{GBU3, {GBU1, . . .}, {GBU2, . . .}}} → {{GBU1, . . .}, {GBU2, . . .}}
(UnLinkCol)

• newgbu(GBU1, GBU2) = GBU3: a new broker is created on behalf ofGBU1

andGBU2;
• samedom(GBU1, GBU2) = true: both reside in the same administrative

domain;
• agree(GBU1, GBU2) = false: an agreement between the two brokers is

withdrawn;
• pendingip(GBU1) = false& pendingip(GBU2) = false&

pendingip(GBU3) = false: the brokersGBU1,2,3 has no pending service;
• gmode(GBU1) = false& gmode(GBU2) = false& regmode(GBU1) =

true & regmode(GBU2) = true: the brokers are in local mode but still
registered. The side effect of this rule is to set their registration mode to
false.

(vii) Contextual Rules and Congruence
As usual in process algebras, we add the following congruence rules for set

union and set minus, and Morris-style equivalence rules, where COM denotes
communities,COL denotes colonies and= denotes the set theoretical equality.
All symbols can be indexed.

COM1 → COM2

COM1 ∪ COM3 → COM2 ∪ COM3

(CommCup)

COM1 = COM3 ∪ COM4 COM3 ∩ COM4 = ∅ COM3 → COM2

COM3 → COM2 \ COM4

(CommMinus)

COM1 = COM3 COM3 → COM4 COM4 = COM2

COM1 → COM2

(MorrisEq)

Rule(CommCup) is the usual Contextual closure of the reduction rules, while
rule(CommMinus) states that a reduction can drop in its right-hand side some
individuals that are not essential to the firing of the reduction itself. As usual
let→∗ be the reflexive and transitive closure of→.

4 Join/Leave a Colony in a Different Administrative Domain
The acute reader has observed that the above labeled transition systemforbidsan
individual to join/leave another colony whose leader resides in a different Admin-

11

istrative Domain. This is sound in order to guarantee the integrity and the security
of the virtual organization induced by theArigatoni model. Crossing safely admin-
istrative domains is an important security problem that themodel must take into
account. However, the situation where one individual does not receive enough help
from the local colony or, worst, where it is even rejected as anindividual, could be
very common. In this case, it is highly desirable that the model permits a mecha-
nism to cross boundaries of the administrative domain in order to make a service
request to another colony which resides in another administrative domain. This can
be done in two ways:

(i) the individual resident in an administrative domainIP1 knows some “friends”
inhabitant of the colony resident in another administrative domainIP2 (think
of the individual as a laptop connected in a hot spot of an airport, and think
of the “friend” as the desktop in its own office). Then, via an explicit ssh
the laptop can log into the desktop and send a global request to the “mother
colony”. As such, the laptop works in itslocal modewhile the desktop works
in global mode. The final result will be send, viassh-tunneling to the
laptop.

This mechanism of tunneling is well-known in common practice of no-
madic behaviors and it does not require anyad hoc rewriting rules in the
Arigatoni virtual organization since the connection individual-friend is done
explicitly and privately;

(ii) the individual resident in an administrative domainIP1 knows no inhabitant
of the colony resident in another administrative domainIP2, but it knows the
IP address of the leader of the colony. If the leader agrees, it can arrange
anssh-tunnel by creating from scratch avirtual cloneof the remote in-
dividual and by registering it in the colony on behalf of the leader of the
colony. As in the previous case, the laptop can log into the desktop and send
a global request to the “mother colony”. As such, the laptop works in local
modewhile the clone works inglobal mode. The final result will be sent, via
ssh-tunneling to the laptop.

This mechanism is well-known in common practice of nomadic behaviors
and is reminiscent of theVirtual Private Networktechnology (VPN) [6]. To
implement thisVPN-like behavior, we must add fourad hocrewriting rules in
the labeled transition system showed in Figure5. For obvious lack of space
those rules are not commented but left as an easy exercise to the interested
reader.

5 Firing Free Riders

Again, the acute reader has observed that the original labeled transition system
allowsfree ridersto become members of one colony.

“In economics and political science, free riders are actors who consume more
than their fair share of a resource, or shoulder less than a fair share of the costs

12

discover(GCU1) = GBU agree(GBU, GCU1) = true

samedom(GBU, GCU1) = false gmode(GCU1) = true

newgcu(GBU, GCU1) = GCU2 regmode(GCU1) = true

samedom(GBU, GCU2) = true gmode(GCU2) = false

accept(GBU, GCU2) = true regmode(GCU2) = false

{{GBU, . . .}, GCU1} → {{GBU, GCU2, . . .}, GCU1}
(JoinTunnelGCU)

agree(GBU, GCU1) = false

samedom(GBU, GCU1) = false pendingip(GCU2) = false

newgcu(GBU, GCU1) = GCU2 gmode(GCU1, GCU2) = false

samedom(GBU, GCU2) = true regmode(GCU1) = false

accept(GBU, GCU2) = false regmode(GCU2) = true

{{GBU, GCU2, . . .}, GCU1} → {{GBU, . . .}, GCU1}
(LeaveTunnelGCU)

discover(GBU2) = GBU1 agree(GBU1, GBU2) = true

samedom(GBU1, GBU2) = false gmode(GBU3) = true

newgbu(GBU1, GBU2) = GBU3 regmode(GBU3) = true

samedom(GBU1, GBU3) = true gmode(GBU2) = false

accept(GBU1, GBU3) = true regmode(GBU2) = false

{{GBU1, . . .}, {GBU2, . . .}} → {{GBU1, {GBU3}, . . .}, {GBU2, . . .}}
(JoinTunnelCol)

agree(GBU1, GBU2) = false

samedom(GBU, GBU2) = false pendingip(GBU3) = false

newgbu(GBU1, GBU2) = GBU3 gmode(GBU2, GBU3) = false

samedom(GBU1, GBU3) = true regmode(GBU2) = true

accept(GBU1, GBU3) = false regmode(GBU3) = false

{{GBU1, {GBU3}, . . .}, {GBU2, . . .}} → {{GBU1, . . .}, {GBU2, . . .}}
(LeaveTunnelCol)

Figure 5. Extra Reduction Rules for Service Request via Tunnelling à la VPN

of its production. The free rider problem is the question of how to prevent free
riding from taking place, or at least limit its negative effects. Because the notion
of “fairness” is a subject of controversy, free riding is usually only considered
to be an economic “problem” when it leads to the non-productionor under-
production of a public good, and thus to Pareto inefficiency,or when it leads to
the excessive use of a common property resource”[From Wikipedia].

13

pendingip(GCU) = false gmode(GCU) = true

samedom(GBU, GCU) = true regmode(GCU) = true

fairness(GBU, GCU) ≤ ǫ notifiring(GBU, GCU)

{{GBU, GCU, . . .}} → {{GBU, . . .}, GCU}
(FireGCU)

pendingip(GBU2) = false gmode(GBU2) = true

samedom(GBU1, GBU2) = true regmode(GBU2) = true

fairness(GBU1, GBU2) ≤ ǫ notifiring(GBU1, GBU2)

{{GBU1, {GBU2, . . .}, . . .}} → {{GBU1, . . .}, {GBU2, . . .}}
(FireCol)

Figure 6. Extra Reduction Rules for FiringFree Riders

The selfish nodes inP2P networks, called free riders, only utilize other peers
resources without providing any contribution in return, have greatly jeopardized the
fairness attribute ofP2P networks. Figure 6 presents the two rules that take into ac-
count the ratio between the number of services offered and thenumber of services
demanded by an individual. If the leader of a colony finds thatan individual ratio
of fairness is too small (≤ ǫ for a givenǫ), it can arbitrarily decide to fire that indi-
vidual without notice. Here, the functionpendingipalso checks that the individual
has no pending services to offer, or that the timeout of some promised services has
expired, the latter case means that the free rider promised some services but finally
did not provide any service at all (not trustful). The function notifiring sends a
message to the free rider, notifying it that it was definitively fired from the colony.

6 Examples

In [1], a Grid scenario for Seismic Monitoring was presented. In this section we
briefly recall the scenario and we present, by means of labeledtransition system
reductions, the evolution of the given virtual organization.

6.1 (Re)Setting the Scenario (from [1])

John, chief engineer of the SeismicDataCorp Company, Taiwan, on board of the
seismic data collector ship, has to decide on the next data collect campaign. For
this he would like to process the 100 TeraBytes of seismic data that have been
recorded on the mass data recorder located in the offshore data repository of the
company, to be processed and then analyzed.

He has written the processing program for modeling and visualizing the seismic
cube using someparallel library like e.g.MPI/PVM: his program can be distributed
over different machines that will compute a chunk of the whole calculus;

However, the amount of computation is so big that a supercomputer (GCUSCU)
and a cluster of PC (GCUCLU) has to berentedby the SeismicDataCorp company.

14

John will also ask forbandwidthvia anISP located in Taiwan (GCUISPTW) in order
to get rid of any bottleneck related to the big amount of data to be transferred.

Aftermath, the processed data should be analyzed using aVirtual Reality Center,
VRC (GCUVCRCPU) based in Houston, U.S.A. by a specialist team and the resulting
recommendations for the next data (GCUVRCSPEC) collect campaign have to be sent
to John. Hence one would like the following scenario to happen:

• John logs with its laptop (GCUJohn) to theArigatoni overlay network in a given
colony in Taiwan, and sends a quite complicated service request in order for the
data to be processed using his own code. Usually theGBU leader of the colony
will receive and process the request;

• If the resource discovery performed by theGBU succeeds,i.e. a supercomputer,
a cluster and anISP are found, then the data are transferred at a very high speed
and processed;

• John will order to theGCUSDTW containing the seismic data to dispatch suitable
chunks of data to the supercomputer and the cluster designated by theGBU to
perform some pieces of computation;

• John will assign to the supercomputer unit the task of collecting all intermediate
results in order to compute the final result (i.e. it will play the role ofMaestro di
Orchestra);

• The processed data are then sent from the supercomputer, viathe high speedISP
to the Houston center for being visualized and analyzed;

• Finally, the specialist team’s recommendations have to be sent to John’s laptop.

This scenario is pictorially presented in Figure7.

6.2 Formalizing the Scenario

The initial community (the primitiveSoup) will be composed of the following ele-
ments:

COMSoup
△

= {{GBUSDTW}, GCUSDTW, {GBUISPTW}, GCUISPTW, {GBUCPU},

GCUSCU, GCUCLU, {GBUVRC}, GCUVRCPU, GCUVRCSPEC}

By applying five times the reduction rule(JoinGCU) we obtain the new commu-
nity:

COM1
△

= {{GBUSDTW, GCUSDTW}, {GBUISPTW, GCUISPTW}, {GBUCPU,

GCUSCU, GCUCLU}, {GBUVRC, GCUVRCPU, GCUVRCSPEC}}

andCOMSoup →5 COM1. Then by applying the reduction rule(CommCup) we see
John’s laptop appear in the new community,COM2

△

= COM1 ∪ {GCUJohn}:

COM2
△

= {GCUJohn, {GBUSDTW, GCUSDTW}, {GBUISPTW, GCUISPTW},

{GBUCPU, GCUSCU, GCUCLU}, {GBUVRC, GCUVRCPU, GCUVRCSPEC}}

15

S
ei

sm
ic

D
at

a

G
B

U
 T

ai
w

an

G
B

U
/G

R
U

G
B

U
/G

R
U

S
up

er
 c

om
pu

te
r

V
R

C
 H

ou
st

on

N
et

w
or

k
N

et
w

or
k

N
et

w
or

k
N

et
w

or
k

N
et

w
or

k
N

et
w

or
k

G
C

U
/G

R
U

Jo
hn

 T
ai

w
an

G
B

U
 IS

P

IS
P

IN
T

E
R

N
E

T
IN

T
E

R
N

E
T

N
et

w
or

k
N

et
w

or
k

P
C

lu
st

er

G
IP

 R
E

Q
U

E
S

T
/R

E
S

P
O

N
S

E

V
E

R
Y

 H
IG

H
 S

P
E

E
D

 IS
P

Figure 7. AGrid Scenario for Seismic Monitoring

By applying again(JoinGCU) we obtain the new community:

COM3
△

= {{GBUSDTW, GCUSDTW, GCUJohn}, {GBUISPTW, GCUISPTW},

{GBUCPU, GCUSCU, GCUCLU}, {GBUVRC, GCUVRCPU, GCUVRCSPEC}}

Now, if the community whose leader isGBUSDTW agrees to join the colony whose
leader isGBUISPTW (both are supposed to live in the same administrative domain),
by applying rule(JoinCol), we obtain the new community:

COM4
△

= {{GBUISPTW, GCUISPTW, {GBUSDTW, GCUSDTW, GCUJohn}},

{GBUCPU, GCUSCU, GCUCLU}, {GBUVRC, GCUVRCPU, GCUVRCSPEC}}

The colony in Taiwan and the colony whose leader isGBUCPU (they are supposed
to live in different administrative domain) sign an “agreement”, by applying rule
(LinkCol), so giving the new community:

COM5
△

=

{ {GBUISP&CPU, {GBUISPTW, GCUISPTW, {GBUSDTW, GCUSDTW, GCUJohn}},

{GBUCPU, GCUSCU, GCUCLU} },

{GBUVRC, GCUVRCPU, GCUVRCSPEC}}

16

Finally, the colony containing John’s laptop is ready to receiveJohn’s huge Service
Request, and, hopefully for John, the request will be accepted and performed . . . It
is now time for John to come back home and the communityCOM5 could then
(but this is not mandatory) disintegrate. By applying the “dual” reduction rules
(LeaveGCU), (LeaveCol), and(UnLinkCol) plus the congruence rules(CommCup)
and(CommMinus), we come back to the initial soup,i.e. COL5 →

∗ COMSoup.

7 Properties

In this section we prove that our process algebra is able to model the virtual orga-
nization induced by anArigatoni overlay network. Morris-style contextual equiv-
alence [4] is the standard way of saying that two communities havethe same be-
havior (are equivalent) if and only if whenever they are merged inside an arbitrary
community, they admit the same elementary observations. Inour setting and as
usual in process algebras, contextual equivalence is formulated in terms of observ-
ing the presence of top-level colonies, as in the next definition.

Definition 7.1 [Colony Exhibition and Contextual Equivalence]

(i) a communityCOM must exhibit a colonyCOL, writeCOM ↓must COL, if COL
is a community containing a top-level colonyCOL, i.e.

COM ↓must COL
△

= COM = {. . . , COL, . . .}

(ii) a communityCOM may exhibit a colonyCOL, write COM ↓may COL, if after
a number of reductions,COL is a community containing a top-level colony
COL, i.e.

COM ↓may COL
△

= COM →∗ COM′ andCOM′ = {. . . , COL, . . .}

(iii) let the contextC[·] be a community containing zero or more holes, and for any
communityCOM let C[COM] be the community obtained by filling each hole
in C[·] with a copy ofCOM. The contextual equivalence between community,
write COM ≃ COM′, is defined as

COM ≃ COM′ △

= for all COL andC[·] we have

C[COM] ↓may COL ⇔ C[COM′] ↓may COL

(iv) let COM →∗≃ COM′ if there existsCOM′′ such thatCOM →∗ COM′′ and
COM′′ ≃ COM′.

Let COM be the set of communities generated by the BNF syntax.

Theorem 7.2 (Closure Under Reduction)

(i) If COM ∈ COM, andCOM →∗ COM′, thenCOM ∈ COM;

(ii) If COM ≃ COM′, thenCOM, COM′ ∈ COM;

17

(iii) If COM →∗≃ COM′, thenCOM, COM′ ∈ COM

Proof

1) By observing the reduction rules of the labeled transition system, one can
verify that if the left-hand side belongs toCOM, then it is also the case for the
right-hand side. The final result can be obtained by induction on the number
of reduction.

2,3) By point 1) using Definition7.1.
✷

Theorem 7.3 (Inversion)

(i) If COM →(JoinGCU/COL) COM′ on the individual (GCU or COL), and
COM′ →(LeaveGCU/COL) COM′′ on the same individual, thenCOM = COM′′;

(ii) If COM →(LinkCol) COM′ on two colonies, andCOM′ →(UnLinkCOL) COM′′ on
the same colonies, thenCOM = COM′′.

Proof By observing the reduction rules, one can observe that the right-hand side of
the reduction rules(JoinGCU), (JoinCOL), and(LinkCOL) corresponds to the left-
hand side of the dual reduction rules(LeaveGCU), (LeaveCOL), and(UnLinkCol),
and conversely the left-hand side of the reduction rules(JoinGCU), (JoinCOL),
and (LinkCOL) corresponds to the right-hand side of the dual reduction rules
(LeaveGCU), (LeaveCOL), and (UnLinkCol). Applying one rule after the other
clearly corresponds to an identity operation. ✷

Conjecture 7.4 (Adequacy of the labeled transition system w.r.t. the pseudocode)
The labeled reduction system is adequate with the pseudocode of theGBU and of
theGCU shown in Figure3 and4.

Proof (Sketch) Observe that thered parts of the pseudocode of theGCU concern-
ing the set and unset of the variablesglobalmode/regmode leads to the firing of the
two rules(JoinGCU) and(LeaveGCU). Moreover, thered parts of the pseudocode
of theGBU concerning the set and unset of the variablesglobalmode/regmode
leads to to the firing of the two rules(JoinGCU) and (LeaveGCU). The last two
rules of the transition systems, namely(LinkCol) and (UnLinkCol) are encapsu-
lated (hence hidden) in the function callsUpdate(Colony,Metadata). ✷

8 Experimental Evaluation

In this section, we provide results from experimental evaluation. We have con-
ducted simulations using large numbers of units and servicerequests. In this paper,
we specifically focus on the effect of individuals disconnections on the average
service acceptation ratio.

More precisely, we have implemented reduction rules(JoinGCU), (LeaveGCU),
(JoinCol), and(LeaveCol), that represent the "core" rewriting set to simulate the

18

dynamic behavior in theArigatoni overlay network. We expect to implement the
full set of rewriting rules defining the operational semantics soon.

8.1 Simulation Setup

We have generated a network topology using the transit-stubmodel of the Georgia
Tech Internetwork Topology Models package [7], on top of which we added the
Arigatoni Overlay Network. The resulting network topology, shown in Figure 8,
contains103 GBUs. GBU2 (highlighted with a square in Figure8) was chosen
as the root of the topology. We considered a finite set of resourcesR1 · · ·Rr of

34

33
32

31

30
29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

20

19
2

91

18

1

89

90

17

0

88

16

87

15

86

1485 13

84

12

83

11

82

1081

79

80
78

77

7675

103

74

102

73

101

72

100

71

69

70

68

67
66

65

64

63
62

61

59

60

58

57

56

55

54 53

52

51

49

50
48

47

46

45
44

43

42

4140

39

38

37

36

35

Figure 8. Simulated network topology with 103GBUs

variable sizer, and represented a service by a direct mapping to a resource.In other
words, a service expresses the conditional presence of a single resource. We have
a set ofr services{S1 · · ·Sr}, where serviceSi expresses the conditional presence
of resourceRi. A GCU declaring serviceSi means that it can provide resource
Ri. This model, while quite simple, is still generic enough, andis sufficient for
the main purpose of our experiments, which is to study the impact of individuals
disconnections on the average service acceptation ratio. Results are illustrated in
Figure9.

To simulateGCU load, we attached50 GCUs to eachGBU; we then randomly
added each serviceSi with probability ρ at eachGCU and had it registered via
the registration service ofArigatoni. The routing tables of theGBUs were updated
starting at the initialGBU and ending at the root of the topology,GBU2.

We then issuedn service requests atGCUs chosen uniformly at random. Each
request contained one service also chosen uniformly at random. Each service re-
quest was then handled by the Resource Discovery mechanism ofArigatoni (de-
scribed in [3]). We used a service acceptation probability ofα = 75%, which
corresponds to the probability that aGCU that receives a service requestand that

19

declared itself as a potential Individual for that service (i.e. that registered it), ac-
cepts to serve it.

Upon completion of then requests, we computed the average service accepta-
tion ratio as follows. For eachGCU, we computed the local acceptation ratio as the
number of service requests that yielded a positive response(i.e. the system found at
least one Individual), over the number of service requests issued at thatGCU. We
then computed the average acceptation ratio as the average value over the number
of GCUs (that issued at least one service request).

To study the impact ofGBUs disconnections (i.e., rewriting rules(JoinCol) and
(LeaveCol)), we used a disconnection probability variableδ that indicates a fraction
of disconnected individuals (δ = 0% means all individuals are connected, while
δ = 100% means all individuals are disconnected). We then repeated the same
experiment whenδ of theGBUs population, chosen uniformly at random, have been
disconnected from their leader. When a subcolony has been disconnected from its
GBU leader, it continues to operatein standalonemode, i.e. with its local GBU
leader as the current broker. Therefore, the services offered by the other colonies
are unavailable inside, while services offered by the colonyitself are not available
outside. For each value ofδ ∈ [0 · · ·100]%, we repeated the same experiment
10 times, and measured the average value of the acceptation ratio. In each of the
10 runs, the disconnectedGBUs were chosen uniformly at random,independently
of the previous runs (i.e., with a different random seed). We then computed the
standard deviation of the average service acceptation ratio (over the10 values).

Starting from the fully connected topologyCOM1 of Figure8, the rationale of
the simulation corresponds to applying a number of(JoinCol) rewriting rules to
have some subcolonies join the Colony, and then applying a number of(LeaveCol)
rewriting rules to have some other subcolonies leave the Colony, and then perform-
ing the experiment 10 times.

COMi →
∗

(JoinCol) COM′

i+1 →
∗

(LeaveCol) COMi+1 i = 1 . . . 10

We also studied the effect ofGCUs disconnections (rewriting rules(JoinGCU) and
(LeaveGCU)), by repeating the same experiment whenδ of the GCUs population
have been disconnected from their leader. Also in this case, adisconnectedGCU
continues to work in standalone mode using only their own resources.

As for theGBU case, we have

COMi →
∗

(JoinGCU) COM′

i+1 →
∗

(LeaveGCU) COMi+1 i = 1 . . . 10

The Resource Discovery algorithm was implemented in C++ and compiled using
GNU C++ version 2.95.3. Experiments were conducted on a 3.0 GhzIntel Pen-
tium machine with 2GB of main memory runningLinux 2.4.28. The different
experimental parameters are summarized in Table1. The service availability ratio,
ρ, was fixed to a value of0.12%, which yields an average service acceptation ra-
tio of almost100% with no subcolonies disconnections. Figure9(a) shows that
the average service acceptation ratio decreases exponentially with the number of

20

Parameter Description Value

K Number of GBUs 103

r Size of services pool 128

ρ Service availability 0.12%

α Service acceptation probability 75%

n Number of service requests issued 50000

δ Fraction of disconnected individuals [0 · · · 100]%

Table 1
Parameters of the experiments

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
cc

ep
ta

tio
n

R
at

io
 (

%
)

Disconnected population (%)

Avg. acceptation ratio (GCU disconnections)
Avg. acceptation ratio (GBU disconnections)

(b)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

A
cc

ep
ta

tio
n

R
at

io
 (

%
)

Run

Average service acceptation ratio (δ=10%)

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

S
td

 d
ev

ia
tio

n
(%

)

Fraction of disconnected population (%)

Std deviation of acceptation ratio

Figure 9. (a) Average service acceptation ratio w.r.t. fraction of disconnected population.
(b) Average service acceptation ratio for the different runs of the valueδ = 10%. (c) Stan-
dard deviation of the service acceptation ratio w.r.t. fraction of disconnected population.

subcolonies (i.e., GBUs) disconnections. This is not surprising, since when a sub-
colony has been disconnected, all the services offered by the other colonies are
unavailable. Conversely, all the services offered by the subcolony are unavailable
for the other colonies. Note that when all subcolonies have been disconnected
(δ = 100%), then the average service acceptation ratio is not null. Indeed, the local
colony of aGBU (i.e., theGCUs directly connected to theGBU) remains opera-
tional, i.e., the services offered by aGCU are available for the otherGCUs of the
same colony.

We observe thatGCU disconnections have more impact on the average service
acceptation ratio thanGBU disconnections. This is due to the fact that when a
GCU is disconnected, all the services that it provided are unavailable for the entire
system and, conversely, all the services provided by the system are unavailable for
it. As expected, for a value ofδ = 100%, the average acceptation ratio is0, as no

21

service at all is unavailable.
Figure9(a) shows the different values of the average service acceptation ratio

obtained for a value ofδ = 10% of the fraction of disconnected population. As
previously explained, for each run, we have chosen10 GBUs (∼ 10% of 103)
uniformly at random, andindependentlyof the previous runs,i.e., with a different
random seed. In other words, the disconnected subcolonies are different in each
run. Figure9(b) shows that subcolonies disconnections can have a very different
impact on the acceptation ratio. In fact, “low-level” subcolonies disconnections
have a dramatic impact whereas “high-level” subcolonies disconnections have a
very limited, local impact. Figure9(c) shows that, unsurprisingly, the level of the
disconnected subcolony has less impact on the service acceptation ratio for higher
values ofδ.

Acknowledgment

The authors ackAeolus FP6-2004-IST-FET Proactive, and the French grant ACI
Modulogic.

References

[1] D. Benza, M. Cosnard, L. Liquori, and M. Vesin.Arigatoni: A Simple Programmable
Overlay Network. InProc. of John Vincent Atanasoff International Symposium on
Modern Computing. IEEE, 2006. To appear. Also as INRIA RR 5805.

[2] L. Cardelli and A. D. Gordon. Mobile Ambients.Theoretical Computer Science,
240(1):177–213, 2000.

[3] R. Chand, M. Cosnard, and L. Liquori. Resource Discoveryin the Arigatoni Overlay
Network. InI2CS: International Workshop on Innovative Internet Community Systems,
volume LNCS. Springer, 2006. To appear. Also available as RRINRIA 5928.

[4] J. H. Morris. Lambda-calculus models of programming languages. PhD thesis, MIT,
1968.

[5] V. Sassone. Global Computing II: A New FET Program for FP6. Talk, Bruxelles,
4/6/04.

[6] Virtual Private Network Consortium. Virtual Private Network Home Page.
http://www.vpnc.org/.

[7] E.W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork. In
Proc. of INFOCOM, 1996.

22

http://www.vpnc.org/

	Introduction
	Units in a Nutshell
	Global Computer Unit
	Global Broker Unit
	Global Router Unit
	Unit Semantics

	Formal Semantics of the Virtual Organization
	Join/Leave a Colony in a Different Administrative Domain
	Firing Free Riders
	Examples
	(Re)Setting the Scenario (from BenzaCLV06)
	Formalizing the Scenario

	Properties
	Experimental Evaluation
	Simulation Setup

	References

