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Rigid body dynamics

Synonyms

Euler’s equations.

Short definition

Rigid body dynamics is the study of the motion in space of one or several bodies in

which deformation is neglected.

Description

It was a surprising discovery of Euler (1758) that the motion of a rigid body B in

R3 with an arbitrary shape and an arbitrary mass distribution is characterized by a

differential equation involving only three constants, the moments of inertia, that we

shall denote I1, I2, I3– also called the Euler constants of the rigid body – and related to

the principal axis of inertia of the body. Still, the description of the motion of a general

non-symmetric rigid body is non trivial and possesses several geometric features. It

arises in many fields such as solid mechanics or molecular dynamics. It is thus a target

of choice for the design of efficient structure preserving numerical integrators. We refer
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to the monographs by Leimkuhler and Reich (2004, Chap. 8) and by Hairer et al (2006,

Sect. VII.5) for a detailed survey of rigid body integrators in the context of geometric

numerical integration (see also references therein) and to Marsden and Ratiu (1999)

for a more abstract presentation of rigid body dynamics using the Lie-Poisson theory.

Equations of motion of a free rigid body

For the description of the rotation of a rigid body B, we consider two frames: a fixed

frame attached to the laboratory and a body frame attached to the rigid body itself

and moving along time. We consider in Figure 1 the classical rigid body example of

a hardbound book (see the body frame in the left picture). We represent the rotation

axis in the body frame by a vector ω = (ω1, ω2, ω3)
T with components the speeds of

rotation around each body axis. Its direction corresponds to the rotation axis and its

length is the speed of rotation. The velocity of a point x in the body frame with respect

to the origin of the body frame is given by the exterior product v = ω×x. Assume that

the rigid body B has mass distribution dm. Then, the kinetic T energy is obtained by

integrating over the body the energy of the mass point dm(x),

T =
1

2

∫

B

‖ω × x‖2dm(x) =
1

2
ωTΘω,

where the symmetric matrix Θ, called the inertia tensor, is given by Θii =
∫
B
(x2

j +

x2
k)dm(x) and Θij = −

∫
B
xixjdm(x) for all distinct indices i, j, k. The kinetic energy T

is a quadratic form in ω, thus it can be reduced into a diagonal form in an orthonormal

basis of the body. Precisely, if the body frame has its axes parallel to the eigenvectors

of Θ – the principal axes of the rigid body, see the left picture of Figure 1 – then the

kinetic energy takes the form

T =
1

2

(
I1ω

2

1 + I2ω
2

2 + I3ω
2

3

)
, (1)
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ω1

ω2

ω3

Fig. 1. Example of a a rigid body: the issue 39 of the Journal de Crelle where the article by Jacobi

(1850) was published. Left picture: the rigid body and its three principal axis of inertia at the gravity

center (coloured arrows). Right picture: free rigid body trajectories of the principal axis relative to

the fixed frame (columns of Q with the corresponding colors). Computation with the preprocessed

dmv algorithm of order 10 (see Alg. 4) with timestep h = 0.01, 0 ≤ t ≤ 40, and initial condition

y(0) = (0, 0.6,−0.8)T , Q(0) = I. Moments of Inertia: I1 = 0.376, I2 = 0.627, I3 = 1.0.

where the eigenvalues I1, I2, I3 of the inertia tensor are called the moments of inertia

of the rigid body. They are given by

I1 = d2 + d3, I2 = d3 + d1, I3 = d1 + d2, dk =

∫

B

x2

kdm(x), (2)

Remark 1. Notice that for a rigid body that have interior points, we have dk > 0 for

all k. If one coefficient dk is zero, then the body is flat, and if two coefficients dk are

zero, then the body is linear. For instance, the example in Fig.1 can be considered as

a nearly flat body (d3 ≪ d1, d2).

Orientation matrix

The orientation at time t of a rigid body can be described by an orthogonal matrix Q(t),

which maps the coordinates X ∈ R3 of a vector in the body frame to the corresponding

coordinates x ∈ R3 in the stationary frame via the relation x = Q(t)X. In particular,
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taking X = ek, we obtain that the kth column of Q seen in the fixed frame corresponds

to the unit vector ek in the body frame, with velocity ω × ek in the body frame, and

velocity Q(ω × ek) in the fixed frame. Equivalently, Q̇ek = Qω̂ek for all k = 1, 2, 3 and

we deduce the equation for the orientation matrix Q(t),

Q̇ = Qω̂. (3)

Here, we shall use often the standard hatmap notation, satisfying ω̂x = ω × x (for all

x), for the correspondence between skew-symmetric matrices and vectors in R3,

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




, ω =




ω1

ω2

ω3




.

Since the matrix QT Q̇ = ω̂ is skew-symmetric, we observe that the orthogonality

QTQ = I of the orientation matrix Q(t) is conserved along time. As an illustration,

we plot in right picture of Figure 1 the trajectories of the columns of Q, corresponding

to orientation of the principal axis of the rigid body relative to fixed frame of the

laboratory. It can be seen that even in the absence of an external potential, the solution

for Q(t) is non trivial (even though the solution y(t) of the Euler equations alone is

periodic).

Angular momentum

The angular momentum y ∈ R3 of the rigid body is obtained by integrating the quantity

x × v over the body, y =
∫
B
x × v dm(x), and using v = x × ω, a calculation yields

the Poinsot relation y = Θω. Based on Newton’s first law, it can be shown that in the

absence of external forces the angular momentum is constant in the fixed body frame,

i.e. the quantity Q(t)y(t) is constant along time. Differentiating, we obtain Qẏ = −Q̇y,

which yields ẏ = −ω×y. Considering the body frame with principal axis, the equations
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of motion of a rigid body in the absence of an external potential can now be written

in terms of the angular momentum y = (y1, y2, y3)
T , yj = Ijωj, as follows:

d

dt
y = ŷ J−1y,

d

dt
Q = Q Ĵ−1y, (4)

where J = diag(I1, I2, I3) is a diagonal matrix.

We notice that the flow of (4) has several first integrals. As mention earlier, Qy

is conserved along time, and since Q is orthogonal, the Casimir

C(y) =
1

2

(
y21 + y22 + y23

)
(5)

is also conserved. It also preserves the Hamiltonian energy

H(y) =
1

2

(y21
I1

+
y22
I2

+
y23
I3

)
, (6)

which is not surprising because the rigid body equations can be reformulated as a

constrained Hamiltonian system as explained in the next section.

Remark 2. The left equation in (4) is called the Euler equations of the free rigid body.

Notice that it can be written in the more abstract form of a Lie-Poisson system

ẏ = B(y)∇H(y)

where H(y) is the Hamiltonian (6) and the skew-symmetric matrix B(y) = ŷ is the

structure matrix of the Poisson system.1 Notice that it cannot be cast as a canonical

Hamiltonian system in R3 because B(y) is not invertible.

Formulation as a constrained Hamiltonian system

The dynamics is determined by a Hamiltonian system constrained to the Lie group

SO(3), and evolving on the cotangent bundle T ∗SO(3). Consider the diagonal matrix

D = diag(d1, d2, d3) with coefficients defined in (2) which we assume to be nonzero for

1 Indeed, the associated Lie-Poisson bracket is given by {F,G}(y) = ∇F (y)TB(y)∇G(y) for two

functions F (y), G(y). It can be checked that it is anti-symmetric and it satisfies the Jacobi identity.
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simplicity (see Remark 1). We observe that the kinetic energy T in (1) can be written

as

T =
1

2
trace(ŵDŵT ) = trace(Q̇DQ̇T )

where we use (3) and QTQ = I. Introducing the conjugate momenta

P =
∂T

∂Q̇
= Q̇D,

we obtain the following Hamiltonian where both P and Q are 3× 3 matrices

H(P,Q) =
1

2
trace(PD−1P T ) + U(Q)

and where we suppose to have, in addition to T , an external potential U(Q). Then, the

constrained Hamiltonian system for the motion of a rigid body writes

Q̇ = ∇PH(P,Q) = PD−1

Ṗ = −∇QH(P,Q)−QΛ = −∇U(Q)−QΛ (Λ symmetric)

0 = QTQ− I (7)

where we use the notations ∇U = (∂U/∂Qij), ∇QH = (∂H/∂Qij), and similarly for

∇PH. Here, the coefficients of the symmetric matrix Λ correspond to the six Lagrange

multipliers associated to the constraint QTQ − I = 0. Differentiating this constraint,

we obtain QT Q̇ + Q̇TQ = 0, which yields QTPD−1 +D−1P TQ = 0. This implies that

the equations (7) constitute a Hamiltonian system constraint on the manifold

P = {(P,Q) ∈ R3×3 × R3×3 ; QTQ = I,QTPD−1 +D−1P TQ = 0}.

Notice that this is not the usual cotangent bundle associated to the manifold SO(3),

which can be written as

T ∗SO(3) = {(P ,Q) ∈ R3×3 × R3×3 ; QTQ = I,QTP + P
T
Q = 0},
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but if we consider the symplectic change of variable (P,Q) 7→ (P ,Q) with P = P −QΛ

and the symmetric matrix Λ = (QTP +P TQ)/2, then we obtain that the equations (7)

define a Hamiltonian system on the cotangent bundle T ∗SO(3) in the variables P ,Q.

Lie-Poisson reduction

We observe from the identity

T =
1

2
trace(PD−1P T ) =

1

2
trace(QTPD−1(QTP )T )

that the Hamiltonian T of the free rigid body depends on P,Q only via the quantity

Y = QTP . We say that such Hamiltonian is left-invariant. It is a general result, see

Marsden and Ratiu (1999) or Hairer et al (2006, Sect. VII.5.5), that such a left-invariant

quadratic Hamiltonian on a Lie group can be reduced to a Lie-Poisson system (see

Remark 2) in terms of Y (t) = Q(t)TP (t). Indeed, using the notation skew(A) = 1

2
(A−

AT ), a calculation yields

skew(Ẏ ) = skew(Q̇TP +QT Ṗ ) = skew(D−1Y TY )− skew(QT∇U(Q))

Observing 2 skew(Y ) = ŷ, we deduce the reduced equations of motion of a rigid body

in the presence of an external potential U(Q),

ẏ = ŷJ−1y − rot(QT∇U(Q)), Q̇ = QĴ−1y, (8)

where for all square matrices M , we define r̂otM = M − MT . In the absence of an

external potential (U = 0), notice that we recover the equations of motion of a free

rigid body (4). We highlight that the reduced equations (8) are equivalent to (7) using

the transformation ŷ = QTP − P TQ. Written out explicitly, notice that the left part

of (8) yields
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ẏ1 =
( 1

I3
− 1

I2

)
y2y3 +

3∑

k=1

(
Qk2

∂U(Q)

∂Qk3

−Qk3
∂U(Q)

∂Qk2

)
,

ẏ2 =
( 1

I1
− 1

I3

)
y3y1 +

3∑

k=1

(
Qk3

∂U(Q)

∂Qk1

−Qk1
∂U(Q)

∂Qk3

)
,

ẏ3 =
( 1

I2
− 1

I1

)
y1y2 +

3∑

k=1

(
Qk1

∂U(Q)

∂Qk2

−Qk2
∂U(Q)

∂Qk1

)
.

The Hamiltonian associated to (8) can be written as

H(y,Q) =
1

2

(y21
I1

+
y22
I2

+
y23
I3

)
+ U(Q).

Recall that the Hamiltonian represents the mechanical energy of the system and that

it is conserved along time.

Rigid body integrators

We first focus on numerical integrators for the free rigid body motion (4). We shall see

further that such integrators can serve as basic brick to solve the rigid body equations

(8) in the presence of external forces.

Quaternion implementation

For an efficient implementation, it is a standard approach to use quaternions to repre-

sent2 the rotation matrices in R3, so that the multiplication of two rotations is equiva-

lent to the product of the corresponding quaternions. Notice that the geometric prop-

erties of a rotation can be read directly on the corresponding quaternion. Precisely,

any orthogonal matrix Q with detQ = 1 can be represented by a quaternion q of norm

‖q‖ = 1 with ‖q‖2 = q20 + q21 + q22 + q23 by the relation

Q = ‖q‖2I + 2q0ê+ 2ê2, q = q0 + iq1 + iq2 + kq3,

2 Other representations of rotations can be considered, in particular one can use the Euler angles

(which may suffer from discontinuities) or one can also use simply 3×3 orthogonal matrices (usually

more costly and subject to roundoff errors).
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where the vector e = (q1, q2, q3)
T gives the axis of rotation in R3 and the rotation angle

θ satisfies tan(θ/2) =
√
q21 + q22 + q23/q0. If Q is the orientation matrix of the rigid body,

then the coefficients q0, q1, q2, q3 are called the Euler parameters of the rigid body.

Jacobi’s analytic solution

Fig. 2. Facsimile of the free rigid body solution using Jacobi elliptic functions in the historical article

of Jacobi (1850, p. 308). The constants A,B,C denote the moments of inertia.

Jacobi (1850) derived the analytic solution for the motion of a free rigid body

and defined to this aim the so-called ‘Jacobi analytic functions’ as

sn(u, k) = sin(ϕ), cn(u, k) = cos(ϕ), dn(u, k) =
√

1− k2 sin2(ϕ), (9)

where the Jacobi amplitude ϕ = am(u, k) with modulus 0 < k ≤ 1 is defined implicitly

by an elliptic integral of the first kind, see Jacobi’s formulas in Figure 2. This approach

can be used to design a numerical algorithm for the exact solution of the free rigid body

motion. We refer to the article by Celledoni et al (2008) (see details on the implemen-

tation and references therein), and we mention that the Jacobi elliptic functions (9)

can be evaluated numerically using the so-called arithmetic-geometric mean algorithm.

Algorithm 1 (Resolution of the Euler equations) Assume I1 ≤ I2 ≤ I3 (similar for-

mulas hold for other orderings). Consider the constants

c1 =
I1(I3 − I2)

I2(I3 − I1)
, c2 = 1− c1, (10)
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and the quantities

k1 =
√

y21 + c1y22, k2 =
√
y21/c1 + y22, k3 =

√
c2y22 + y23.

For c2k
2
1 ≤ c1k

2
3, the solution of the Euler equations at time t = t0 + h is3

y1(t) = k1 cn(u, k), y2(t) = k2 sn(u, k), y3(t) = δk3 dn(u, k) = δ
√
k2
3 − c2y2(t)2,

where we use the Jacobi elliptic functions (9) with

k2 =
c2k

2
1

c1k2
3

, u = δhλk3 + ν, λ =

√
(I3 − I2)(I3 − I1)

I1I2I23
,

δ = sign(y3) = ±1, and ν is a constant of integration determined from the initial

condition y(t0). We have similar formulas for c2k
2
1 ≥ c1k

2
3.

The solution for the rotation matrixQ(t) can next be obtained as follows. The angle θ(t)

of rotation can be obtained by an elliptic integral of the third kind, the conservation of

the angular momentum in the body frame yields Q(t)y(t) = Q(t0)y(t0), which permits

to recover the axis of the rotation Q(t), see (Celledoni et al, 2008).

Splitting methods

Splitting methods are a convenient way to derive symplectic geometric integrators for

the motion of a rigid body. This standard approach, proposed by McLachlan, Reich,

and Touma and Wisdom in the 90’, yields easy to implement explicit integrators. A

systematic comparison of the accuracy of rigid body integrators based on splitting

methods is presented by Fassò (2003). The main idea is to split the Hamiltonian H(y)

into several parts in such way that the equations can be easily solved exactly, using ex-

plicit analytic formulas (in most cases, the Euler equations shall reduce to the harmonic

oscillator equations).

3 Notice that k1, k2, k3 are related to the square root terms in Fig. 2 and depend on y only via the

conserved quantities C(y), H(y). Here, we present a formulation different to Jacobi to avoid an

unexpected roundoff error accumulation in the numerical implementation, see Vilmart (2008).
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Three rotation splitting

One can consider the splitting

H(y) = R1(y) +R2(y) +R3(y), where Rj(y) = y2j/(2Ij).

which yields the numerical method

ϕR3

h/2 ◦ ϕ
R2

h/2 ◦ ϕ
R1

h ◦ ϕR2

h/2 ◦ ϕ
R1

h/2

where ϕ
Rj

h is the exact flow of (4) where in the matrix J−1 = diag(I−1

1 , I−1

2 , I−1

3 ), the

values I−1

k with k 6= j are replaced by zero.

Symmetric+rotation splitting

It is often more efficient to consider the splitting given by the decomposition

H(y) = R(y) + S(y), where R(y) =
( 1

I1
− 1

I2

)y21
2
, S(y) =

1

2

(y21 + y22
I2

+
y23
I3

)

and defined by

ϕR
h/2 ◦ ϕS

h ◦ ϕR
h/2.

Remark 3. Notice that this splitting method is exact if the rigid body is symmetric, i.e.

for I1 = I2, but also for I1 = I3 or I2 = I3, and it is particularly advantageous in the

case of a nearly symmetric body.

Consider for all scalar θ and vector ω = (ω1, ω2, ω3)
T the orthogonal matrices

U(θ) =




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




, V (θ) =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




, exp(ω̂),

which can be respectively represented by the quaternions

u(θ) = cos(θ/2)− i sin(θ/2), v(θ) = cos(θ/2)− k sin(θ/2),

a(ω) = cos(α/2) + α−1 sin(α/2)(iω1 + jω2 + kω3), α =
√
ω2
1 + ω2

2 + ω2
3,
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where the formula for a(ω) is related to the Rodriguez formula for the exponential of

a skew-symmetric matrix. Then, we have the following algorithm.

Algorithm 2 (Symmetric+Rotation splitting for the free rigid body motion)

1. Apply the flow ϕR
t with t = h/2 given by

y(t) = U(αt)y(0), Q(t) = Q(0)U(−αt), α = y1(0)/I1.

2. Apply the flow ϕS
t with t = h given by

y(t) = V (βt)y(0), Q(t) = Q(0) exp(I−1

2 tŷ(0))V (−βt), β = I−1

3 − I−1

2 .

3. Apply again the flow ϕR
t with t = h/2.

RATTLE and the Discrete Moser-Veselov Algorithm

The rattle integrator is a famous symplectic numerical method for general con-

strained Hamiltonian systems. Applied to the rigid body problem (7), as proposed by

McLachlan and Scovel, and Reich in the 90’, it can be written as

P1/2 = P0 −
h

2
∇U(Q0)−

h

2
Q0Λ0

Q1 = Q0 + hP1/2D
−1, QT

1Q1 = I

P1 = P1/2 −
h

2
∇U(Q1)−

h

2
Q1Λ1, QT

1 P1D
−1 +D−1P T

1 Q1 = 0, (11)

where Λ0 and Λ1 are symmetric matrices which can be eliminated using the constraints.

Several approaches for the resolution of this system are discussed by McLachlan and

Zanna (2005), (see also (14) below). The angular momentum y can be recovered from

the matrices P,Q using ŷ = QTP − P TQ. It can be checked that in the absence of an

external potential (U = 0) this algorithm exactly conserves all quadratic invariants: the

angular momentum in the body frame Qy, the Casimir C(y), the Hamiltonian H(y).

An integrable discretization of the free rigid body motion is the Discrete Moser–

Veselov (dmv) algorithm Moser and Veselov (1991) with update for the orientation
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matrix proposed by Lewis and Simo (1996). It turns out that this discretisation is

equivalent to the rattle algorithm applied to the free rigid body equations (see (11)

with U = 0), as shown by McLachlan and Zanna (2005). The dmv algorithm can be

formulated as

ŷn+1 = Ωn ŷn Ω
T
n , Qn+1 = Qn Ω

T
n , (12)

where the orthogonal matrix Ωn is computed from ΩT
nD−DΩn = h ŷnand ΩT

nΩn = I.

Some algebraic calculations yield the following quaternion implementation which is

obtained by observing that the orthogonal matrix ΩT
n in (12) can expressed thought

the Caylay transform ΩT
n = (I+ên)(I+ên)

−1 where en ∈ R3 and ΩT
n can be represented

by a quaternion of norm 1,

ρn =
1 + ien,1 + jen,2 + ken,3√

1 + e2n,1 + e2n,2 + e2n,3

. (13)

Algorithm 3 (Standard dmv algorithm for the free rigid body motion) Given the an-

gular momentum yn and the quaternion qn corresponding to the orientation matrix Qn

at time t0, we first compute compute the vector Yn from the quadratic equation

Yn = αnyn +
h

2
ŶnJ

−1Yn, (14)

where αn = 1 + e2n,1 + e2n,2 + e2n,3 with en,j = hYn,j/(2Ij). This nonlinear system can be

solved by using a few fixed-point iterations. The solution at time t = t0+h is obtain by

yn+1 = yn + α−1

n h ŶnJ
−1Yn, qn+1 = qn · ρn, (15)

where the configuration update is given by a simple multiplication by the quaternion ρn

given in (13) with en,j = hYn,j/(2Ij).

Remark 4. Suppressing the factor αn in (14) and (15) yields the implicit midpoint rule

for problem (4), which exactly conserves all first integrals of the system (in particular

the orthogonality of Q) because these invariants are quadratic. Notice however that the
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Table 1. Scalar functions for the preprocessed dmv algorithm (Alg. 4)

δ = I1I2I3, σa = Ia
1
+ Ia

2
+ Ia

3
, τb,c =

Ib
2
+ Ib

3

Ic
1

+
Ib
3
+ Ib

1

Ic
2

+
Ib
1
+ Ib

2

Ic
3

,

s3(y)=−
σ
−1

3
H(y) +

σ1

6δ
C(y), t3(y) =

σ1

6δ
H(y)− 1

3δ
C(y),

s5(y)=
3σ1 + 2δσ

−2

60δ
H(y)2 +

1− τ1,1

30δ
C(y)H(y) +

σ2 − δσ
−1

30δ2
C(y)2,

t5(y)=−
9 + τ1,1

60δ
H(y)2 +

6δσ
−1 − σ2

60δ2
C(y)H(y)− σ1

60δ2
C(y)2,

s7(y)=
15− δσ

−3 − 2τ1,1
630δ

H(y)3 +
6δτ1,2 − 100δσ

−1 + 53σ2

2520δ2
C(y)H(y)2

+
9σ1 + 10δσ

−2 − 6τ2,1
420δ2

C(y)2H(y) +
4δ + 17σ3 − 15δτ1,1

2520δ3
C(y)3,

t7(y)=
9δσ

−1 + δτ1,2 − 11σ2

1260δ2
H(y)3 +

47σ1 + 13τ2,1 − 38δσ
−2

2520δ2
C(y)H(y)2

+
σ3 + 2δτ1,1 − 85δ

1260δ3
C(y)2H(y) +

34δσ
−1 − 19σ2

2520δ3
C(y)3.

implicit midpoint rule is not a symplectic integrator for the constrained Hamiltonian

system (7) formulated in the variables P,Q.

The rattle/dmv algorithm has only order two of accuracy. It is shown by Hairer and

Vilmart (2006) that a suitable perturbation of the constant moments of inertia I1, I2, I3

permits to improve the accuracy up to an arbitrarily high order of convergence, while

sharing most of the geometric properties of the original dmv algorithm (see Table 2).

Algorithm 4 (Preprocessed dmv algorithm of high order 2p for the free rigid body)

1. Compute the modified moments of inertia Ĩj, j = 1, 2, 3 defined by

Ĩ−1

j = I−1

j

(
1 + h2s3(yn) + . . .+ h2s2p−1(yn)

)
+ h2t3(yn) + . . .+ h2t2p−1(yn)

where the first scalar functions sk, tk are given in Table 1 and depend on yn only

via the quadratic invariants C(yn), H(yn) in (5),(6).

2. Apply the standard dmv algorithm (see Alg. 3) with the modified moments of inertia

Ĩj, j = 1, 2, 3 instead of the original ones.
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Rigid body integrators in the presence of an external potential

We now consider the case where the rigid body is subject to external forces. Consider

the equations of motion of the rigid body (8) with an external potential U(Q).

Example 1. (Heavy top) For instance, in the case of an asymmetric rigid body subject

to gravity (heavy top), assuming that the third coordinate of the fixed frame is vertical

and that the center of gravity of the rigid body has coordinates (0, 0, 1)T in the body

frame, the potential energy due to gravity is given by U(Q) = Q33.

Splitting method

A standard approach for the numerical treatment of an external force applied to the

rigid body is to consider the usual Strang splitting method

ϕU
h2

◦ ΦT
h ◦ ϕU

h/2, (16)

or higher order splitting generalizations, or high-order compositions methods based on

(16), where ϕU
t represents the exact flow of

Q̇ = 0, ẏ = − rot(QT∇U(Q))

which can be expressed simply as Q(t) = Q(0), y(t) = y(0)− t rot(Q(0)T∇U(Q(0))).

Here, ΦT
h is a suitable numerical method for the free rigid body problem (4) in the

absence of an external potential, as presented previously.

High-order Nyström splitting methods

One can also consider standard high order splitting methods based on the flows ΦT
h

and ΦU
h . It can be observed that the Poisson bracket {T, {T, U}} vanishes, while the

bracket V = {U, {U, T}} is independent of y and depends only on the orientation

matrix Q. This implies that classical Nyström splitting methods originally designed

for solving order two differential equations can successfully be applied in our context.
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These methods involve not only the flows associated to the Hamiltonian T (y) and the

potential U(Q), but also the potential V (Q). For instance, one can use the splitting

method

ϕU
h/6 ◦ ϕT

h/2 ◦ ϕU
2h/3 ◦ ϕV

−h3/72 ◦ ϕT
h/2 ◦ ϕU

h/6

which is a symmetric scheme of order 4, or other higher order generalizations as studied

by Blanes et al (2001). Notice that in the case of the heavy top (Example 1) where

U(Q) = Q33, the flows ϕU
h , ϕ

V
h are the exact solutions of Q̇ = 0, ẏ = (Q32,−Q31, 0)

T ,

and Q̇ = 0, ẏ = (Q32Q33/I1,−Q31Q33/I2, 0)
T , respectively.

Comparison of the geometric properties of the free rigid body integrators

Table 2. Geometric properties of free rigid body integrators

order of exact preservation of

integrator accuracy quadratic invariants Poisson symplectic

Qy C(y) H(y)

Jacobi’s analytic solution (see Alg. 1) exact
√ √ √ √ √

Symmetric+Rotation splitting (Alg. 2) 2
√ √

no
√ √

rattle/dmv algorithm (Alg. 3) 2
√ √ √ √ √

Implicit midpoint rule (Rem. 4) 2
√ √ √

no no

Preprocessed dmv algorithm (Alg. 4) 2p
√ √ √ √

no

We compare in Table 2 the geometric properties of the free rigid body integra-

tors presented in this entry. Column “symplectic” indicates whether the method is a

symplectic integrator. In the context of backward error analysis this means that the

numerical solution yn, Qn formally coincides with the exact solution at time tn = nh

of the modified differential equation, which is of the form

ẏ = ŷ∇H̃h(y), Q̇ = Q
̂∇H̃h(y),

where H̃h = H + hK2 + . . . is a formal series in powers of h. If it has this form only for

the y component, the method is still a Poisson integrator (column “Poisson”).
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