
HAL Id: hal-00912613
https://hal.inria.fr/hal-00912613

Submitted on 30 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unit Testing of Energy Consumption of Software
Libraries

Adel Noureddine, Romain Rouvoy, Lionel Seinturier

To cite this version:
Adel Noureddine, Romain Rouvoy, Lionel Seinturier. Unit Testing of Energy Consumption of Software
Libraries. Symposium On Applied Computing, Mar 2014, Gyeongju, South Korea. pp.1200-1205,
�10.1145/2554850.2554932�. �hal-00912613�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49707679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00912613
https://hal.archives-ouvertes.fr

Unit Testing of Energy Consumption of Software Libraries

Adel Noureddine1,2, Romain Rouvoy1,2 and Lionel Seinturier1,2,3
1 Inria Lille – Nord Europe

2 University Lille 1 - LIFL CNRS UMR 8022, France
3 Institut Universitaire de France
firstname.lastname@inria.fr

ABSTRACT

The development of energy-efficient software has become a
key requirement for a large number of devices, from smart-
phones to data centers. However, measuring accurately this
consumption is a major challenge that state-of-the-art ap-
proaches have tried to tackle with a limited success. While
monitoring applications’ consumption offers a clear insight
on where the energy is being spent, it does not help in un-
derstanding how the energy is consumed. In this paper,
we therefore introduce JalenUnit, a software framework
that infers the energy consumption model of software li-
braries from execution traces. This model can then be used
to diagnose application code for detecting energy bugs, un-
derstanding energy distribution, establishing energy profiles
and classifications, and comparing software libraries against
their energy consumption.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms

Energy, Modeling, Benchmarks

Keywords

Energy measurement, Power modeling, Software metrics,
Empirical benchmarking

1. INTRODUCTION
While the global rise of energy costs and its predicted

growth for the next 20 years [10] present motivations for en-
ergy efficiency and optimizations, technological advances—
in particular in the domain of Information and Communica-
tions Technology (ICT)—hold important keys for achieving
energy efficiency. Although ICT helps to reduce the energy
consumption of other sectors [15], its power consumption is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

predicted to rise from 7% of the global power consumption
to more than 14.5% in 2020 [14]. Therefore, optimizing the
energy consumption of ICT, or Green IT, is an economical
necessity and a technological challenge. This means that
not only the hardware, but also software also needs to be-
come greener in a near future. Measuring the energy con-
sumption of software, at runtime or by using profilers, allows
users and developers to acknowledge the energy cost of their
applications. However, these approaches are specific to the
execution context used to monitor the energy consumption.
They do not provide insights into the energy consumption
variations, therefore limiting these approaches to debugging,
software profiling or understanding the execution trace of
software. We argue that having an energy evolution model
of software code, based on their input parameters, offers
new metrics and models for modeling energy consumption
and assisting developers to use software libraries based on
their predicted input parameters.

In this paper, we propose an approach and a toolkit to
automatically infer the energy models of software libraries
based on their input parameters. We present our energy
unit-testing framework, named JalenUnit, for inferring au-
tomatically the energy consumption model of software li-
braries according to input parameters. The framework takes
a Java library and cycles through all its packages, classes and
methods, and runs energy variation benchmarks on each of
its accessible methods.

The remainder of this paper is organized as follows. In
Section 2, we describe our motivations and outline the limi-
tations of the state-of-the-art approaches. We present Jale-
nUnit in Section 3, our framework for inferring automati-
cally the energy consumption model of software libraries.
In Section 4, we validate our framework with experimental
benchmarks on a RSA algorithm, Google Guava and the
Violin String libraries, and we discuss our results and our
approach in Section 5. Finally, we conclude in Section 6 and
outline future work.

2. MOTIVATIONS & RELATED WORKS
State-of-the-art approaches in this area offer to measure

or estimate the energy consumption of computers and ap-
plications using various techniques. Techniques varies from
using hardware circuits, such as dedicated ASICs [6] (Ap-
plication Specific Integrated Circuit) or sensors and smart
meters as in [13] or as in data centers [4]; hardware power-
meters or multimeters such as with PowerScope [3] or Intel’s
Energy Checker; or coarse-grained software only estimation
of energy consumption as in [11, 12, 5, 2]. Some hardware-

based approaches, such as a powermeter, limit their usability
to either a research prototype, or coarse-grained hardware
monitoring (as in data centers).

In previous works, we developed power models in order
to estimate the energy consumption of software [8, 7]. Two
components compose our approach: PowerAPI for moni-
toring software, and Jalen for detecting energy hotspots in
software code using byte code instrumentation of Java ap-
plications. We compared the energy consumption of several
programming languages, and of different algorithm imple-
mentations [8]. We then proposed our approach to detect
energy hotspots in software at code level—i.e., methods and
classes [7]. However, our approach is limited into measur-
ing the energy consumption of software code, and does not
provide variation models. Measuring the energy consump-
tion of software is not but one step into producing energy
efficient code. The energy information reported is static,
e.g., values are related to an execution of software in one
specific configuration. Changing a parameter in a method
or modifying an input parameter therefore requires a new
execution of the application in order to get the new energy
consumption and the impact of this change. Thus, what
if developers had tools to empirically measure the energy
consumption of their software code, and get empirical data
about the energy variation trends in their code? And also
get the impact of changing input data and parameters on the
energy consumption of methods? These data can be used to
diagnose the code to further understand the energy distribu-
tion across the application, or establish an energy variation
profile or classification of software based on their input pa-
rameters. One additional motivation of automating these
measurements relates to software libraries. The latter are
used by other software and therefore improvement in their
energy efficiency would benefit a large pool of applications.
Benchmarking libraries for their energy consumption and
proposing empirical models of the variation of their energy
consumption are win-win situations for software developers.

In this paper, we propose JalenUnit, an energy frame-
work for modeling the energy variation of software code
based on their input parameters. JalenUnit uses both
PowerAPI and Jalen as underlying energy measurement
tools, and generates then run energy benchmarks for all the
methods available in an application or a library. Finally,
it analyzes the results and constructs an energy variation
model of software code.

3. JALEN UNIT FRAMEWORK
JalenUnit is an energy framework that generates energy

models for software code from empirical benchmarks. Next,
we describe our approach, and the implementation of Jale-
nUnit.

3.1 Approach
Our approach models the energy variation trend of a soft-

ware method by running benchmarks on a method while
changing its parameters. Concretely, we provide the en-
ergy variation model of a method based on the variation
of its parameters. This provides a relational table between
methods and their energy model, therefore allowing devel-
opers to choose the most energy efficient method for their
software. In details, we vary the value of the input parame-
ters of methods and measure their energy consumption using
each of these values. In the end, we collect the energy con-

sumption of the method for each value of its parameters,
therefore allowing us to have an energy variation profile of
the method.

3.1.1 Jalen: Measuring Energy Consumption

In order to measure the energy consumption of each method
while varying its parameters, we use a new version of our
code-level measurement tool, Jalen. This new version uses
statistical sampling in order to estimate the energy con-
sumption of software code, rendering the tool usable in pro-
duction (in comparison to a high overhead to the previous
byte code instrumentation version). Jalen is also capable
of isolating selected classes or packages along measurements.
Therefore, this allows measuring the energy consumption
of software libraries without disturboing the Java Virtual
Machine’s (JVM) or the application’s classes and methods.
Jalen, is a Java agent that hooks during the JVM launch,
and starts monitoring and collecting energy-related informa-
tion of the software. Technically, Jalen uses PowerAPI to
get the energy consumption of the software [7, 8]. Then,
using this information, it monitors the software and corre-
late energy information to portions of code—i.e., methods in
our case. Information related to threads and CPU time are
collected from the JVM, while disk accesses are estimated
per-method using statistical sampling (by filtering methods
associated to the java.io and java.nio packages).

Java JVM

Jalen Sampling Agent

Correlation & Computation

Legacy Method 1

Collected data: statistics

on methods time, I/O

API usage, etc.

Energy

Consumption Data

Legacy Method n...

Small monitoring cycles
Big monitoring cycle

Figure 1: Jalen approach for measuring energy consump-
tion of software code.

Our measurement methodology follows a two-cycle ap-
proach and is reported in Figure 1. First, a big monitoring
cycle where power consumption of software is gathered from
software monitoring using PowerAPI; and then a small
monitoring cycle where statistical information is collected on
each running method. For each big monitoring cycle, Jalen
calls PowerAPI in order to get the energy consumption of
the application as a whole. During the small monitoring cy-
cle, we collect the number of times a method appears in our
statistical sampling (measured at a higher frequency). For
example, two method AT and BT are executing for 10 sec-
onds. The big cycle is at 1 second and the small cycle is at
10 milliseconds. The method AT is captured 7 times during
the small cycle while BT is captured 3 times. Each of these
methods have different execution times and CPU utilization,
therefore both methods are scheduled and executed accord-
ingly (for example, method BT waits for a network answer,

thus the JVM executes AT during the wait). We then corre-
late theses statistics with the CPU time of threads (gathered
from the JVM), in order to estimate the energy consumption
of methods.

3.1.2 Jalen Unit: Benchmarking Energy Variations

JalenUnit is our energy framework that generates en-
ergy models for software code based on empirical bench-
marks. It provides benchmarks for modeling the energy
consumption of software methods through automatic bench-
marking.For instance, it generates individual benchmarks
for each method in a software library, and for each of its
parameters. These benchmarks stress the method based on
a set of input values for its parameters. These values are de-
termined through different injectors, and multi-parameters
methods are managed through different strategies. Next,
all generated benchmarks are executed. For each, we mea-
sure its energy consumption, then the results are aggregated
and analyzed to produce the method’s energy profile and
variation model. Concretely, JalenUnit cycles through ev-
ery package, class, and method in a Java library. For each
method and each of its parameters, an energy benchmark is
created following a variation strategy for the benchmarked
parameter. The benchmark is then executed and Jalen is
used to measure its energy consumption. Finally, energy
data for the benchmark and the variation of parameters is
reported in an output file that is later plotted as a graph.

JalenUnit is built as a Java application that loops over
all methods in a Java software library and generates energy
benchmarks. The latter are then executed and their en-
ergy consumption is measured using Jalen automatically.
In details, JalenUnit generates and runs a benchmark for
each method while varying its parameters. This variation of
parameters is done through injectors implemented for Java
primitive and object types. The framework can, therefore,
be extended with application-specific injectors describing al-
ternative variation strategies. Java objects can be bench-
marked automatically if their injector model is implemented
in the framework.

The initial implementaiton of JalenUnit provides injec-
tors for primitive types: Integer, Double, Long, Float,
Boolean, and Character, in addition to the String class.
We prefer to implement our own injector instead of using
existing injectors, such as YETI [1] which performs ran-
dom testing, because we want to provide different strate-
gies for benchmarking and testing methods. This provides
a good strategy for detecting abnormal behavior in software
code, such as exceptions or huge CPU load for certain val-
ues. However, it does not offer a comprehensive strategy
for evaluating the energy variation of methods by input pa-
rameters. For example, we develop an injector for integers
where the integer values evolve with an increment, from a
start value to a final value (e.g., integer values from 10 to
100 with a hop of 10 leads to 10 benchmarks with values of
10, 20, . . . to 100). Another injector for integers evolves the
integer randomly using the Math.random method in Java.
Although integers are all of the same size, changing their
value impacts the execution of methods, therefore their en-
ergy consumption. For example, an integer parameter that
is used as a final value to a for-loop may have a high impact
because increasing its value implies that tasks are being exe-
cuted for longer period of time and consuming more energy.

Injectors for other types also implement different variation

strategies, such as varying the length of a string parameter
randomly, or from a start value to a final value, or choosing
the characters of the string from a subset of the alphabet.
The variation strategies are endless, and offer the advan-
tage of better flexibility and extendibility of the framework.
This flexibility is also useful for domain specific applications,
where random testing is not representative of the real world
workload. By providing an extensible framework and pro-
viding freedom of choice in method variation model strate-
gies, we propose a solution that can be customized for spe-
cific needs. Therefore, better representative energy variation
models can be empirically achieved. Concretely, an injector
is a Java class implementing the Iterator and EnergyModel

interfaces. The latter adds additional methods to the itera-
tor next and hasNext methods, such as a getDefaultValue

method that returns an object of a default value of the in-
jector. The following listing provides an excerpt of code of
the default integer injector (syntax modified and shortened
for space concerns):

public IntegerModel (int s ta r t , int end , int i nc) ;
public boolean hasNext ()

return this . cu r r ent <= this . end ;
public Object next () {

int r e s u l t = this . cur r ent ;
this . cu r r ent += this . i nc ;
return r e s u l t ;

}
public Object getDefau l tValue ()

return this . s t a r t ;

Multi-parameters methods are managed by varying one
parameter at a time, while the others use a default value.
Others strategies are possible, such as varying multiple pa-
rameters while fixing the values of some, or modifying all
parameters randomly. We are aware that more comprehen-
sive strategies are required for a refined energy variation
model, therefore our multi-parameters strategy is just an
initial implementation for handling the complexity of multi-
ple parameters. Benchmarks are then run and their energy
consumption is measured using Jalen. Finally, the gener-
ated energy results are aggregated and the energy variation
model of method is inferred.

4. EXPERIMENTATIONS
We illustrate and validate our approach by modeling the

energy variation of an RSA algorithm, and of the Joiner.join
method taken from the Google Guava’s library 1.We then
run our JalenUnit framework on the Violin Strings Java li-
brary 2. This library is a collection of 138 methods designed
for manipulating strings. It extends the functionalities of
Java’s String class by offering methods usually found in
other programming languages, such as C++. The methods
of the library use different input parameters: strings, char-
acters, integers, or booleans. We use our default injectors for
these types. In particular, the strings injector model injects
strings with different sizes, ranging from a length of 100 up
to 1,000 characters with a hop of 200. The integer, float,
double and long injectors’ models inject numbers ranging
from 100 to 1000 with a hop of 200. The character injector
model injects a random character of the 26 characters of the
English alphabet. Finally, the boolean injector model injects
both true or false values. Experimentations are done on a

1https://code.google.com/p/guava-libraries/
2http://www.schmeling-consulting.de/violinstrings.html

Dell OptiPlex 745 with an Intel Core 2 Duo 6600 processor
at 2.40 GHz and running Lubuntu Linux 13.04, version 1.6
of PowerAPI, the statistical version of Jalen, and Java 7.
Energy data are computed each 500 ms and the sampling
interval is set to 10 ms.

4.1 RSA Encryption/Decryption
We take an RSA asymmetric encryption/decryption algo-

rithm [9] and measure its energy consumption while vary-
ing the length of the RSA public and private keys. RSA
algorithm is an example of an algorithm whose input pa-
rameters (the RSA key) impact the functionality of the said
algorithm, e.g., in term of security, robustness of encryption,
and speed of encryption/decryption process. The algorithm
generates an RSA key, then encrypts and decrypts 10 times
a random BigInteger with a bit length of 10,000. The re-
sults, in Figure 2a, show an exponential rise in the energy
consumption of the RSA algorithm when increasing the RSA
key length. However, we want to understand which por-
tion of the code is responsible for the exponential increase
in the energy consumption. Results at the code level, in
Figure 2b, show that two methods, in the java.math pack-
age, are responsible for the majority of the energy consump-
tion: BigInteger.oddModPow, and BigInteger.montReduce.
From these methods, oddModPow have a clear exponential in-
crease, while montReduce follows a logarithmic growth. The
exponential energy variation in Figure 2a is explained and
identified in Figure 2b when benchmarking at the code level.
It allows us to assess that oddModPow method is the culprit
of the exponential evolution as it is the only method having
an exponential variation and consuming around 80% of the
total energy. RSA encryption/decryption algorithm is an
exponential one as described in [9]. Therefore, our experi-
ment results provide additional validation to our measure-
ment approach. In particular, the method responsible for
the exponential growth in energy consumption in our im-
plementation of RSA algorithm is the method that does the
exponential calculation, oddModPow.

4.2 Joiner.join method
We infer the energy variation model of Google Guava’s

Joiner.join method. When joining 2 strings, the method
join calls 18 times other methods and constructors of the
Google Guava library, in particular the method appendTo.
We use version 14.0.1 of the library, and stress the method
join of the class com.google.common.base.Joiner by vary-
ing the number of strings to join (from 2 to 50 strings) while
fixing the string size (i.e., 100 characters). We generate a
random string that we use during the join call. We run
the join stress one million times with the generated string,
and repeat the stress 10 times with different strings of the
same size. Finally, we record the energy consumption of the
overall execution. The energy consumption results (cf. Fig-
ure 2c) show that the method Joiner.appendTo consumes
most of the energy (going from 97.14% to 99.36% of the
overall energy consumption). The energy variation alter-
nates phases of constant energy consumption with others of
direct increase. These numbers are explained by the imple-
mentation of the method appendTo. It cycles through the
strings to join (given in parameter as an iterable collection)
and appends it to an appendable object also given in pa-
rameter. Appendable.append finally preforms the append
of the two or more strings. When varying the number of

strings, the JVM is required to allocate memory for these
strings. The strings in the string builder object are stored
as an array of characters, and the JVM doubles the size of
the array (until the new characters fits in the array) when
appending new characters exceeding the initial size of the
array 3. By default, the buffer size is 8192 characters in the
JVM. Our experiment is run 10 times therefore reaching the
limits of the buffer when joining 8 strings of 100 characters
each (totaling more than 8000 characters). When the limit
is reached, the JVM doubles the buffer allocation allowing
more memory for joining the strings. This explains the burst
of energy consumption when joining 9 strings in Figure 2c.
The joining of the strings has stable energy consumption
and bursts of energy occur when the JVM needs to increase
its buffer. This allocation occurs at a doubling interval, thus
after joining 8, 16, 32, 64, etc. strings.

4.3 Violin String Library
Violin String is a Java library for manipulating strings

that extends the functionalities of Java’s String class. Next,
we report the results over two representative methods of the
library (in terms of parameters number and variation). The
benchmark runs each method a different amount of times
in order to get enough execution traces for estimating the
energy consumption.

4.3.1 Two-parameter method: Copies

The copies method takes an input string and an input
number, nCopies, and generates a string consisting of nCopies
of the input string. The benchmark runs the copies method
100,000 times. This is due to the limitation of the under-
lying PowerAPI monitoring cycle, where a minimum cycle
of 500 milliseconds is required for accurate measurements.
Results depicted in Figure 3 show a clear linear variation of
the energy consumption when varying the size of the string
(while fixing the number of copies to 100), and when vary-
ing the number of copies (while fixing the size of the string
to 100 characters). In details, the method first creates a
string buffer of a size equal to nCopies × size of the string.
Then, it appends the string nCopies times in a for-loop
using Java’s append method. The latter calls the method
String.getChars, which in turn invokes System.arraycopy
(that finally performs the copy). The code of the method
copies explains the energy consumption while evolving the
size of the string to copy. In particular, a larger string re-
quires more energy to append it to the StringBuffer object
(thus a bigger loop over the characters array to copy). And
a higher number of copies means the same repetitive task
is executed multiple times, therefore the energy evolves lin-
early.

4.3.2 Three-parameter method: Translate

The method translate converts all of the string’s char-
acters which are contained in the input set of characters to
the corresponding character in the output set of characters.
The benchmark runs the method 1,000 times. The results in
Figure 4 report the energy progression when varying the first
three parameters of the method. We notice that the model
is linear when varying the length of the input string (first pa-
rameter), and the length of the input set of characters (sec-
ond parameter, setin). The model is constant when varying

3http://www.javamex.com/tutorials/memory/
string buffer memory usage.shtml

40961024 1500 2000 2500 3000 3500

1800

0

200

400

600

800

1000

1200

1400

1600

RSA key length

E
n

er
g

y
 (

jo
u

le
)

Energy of RSA asymmetric encryption/decryption

(a) Energy variation model of RSA algo-
rithm.

40961024 1500 2000 2500 3000 3500

1060

0

100

200

300

400

500

600

700

800

900

1000

RSA key length

E
n

er
g

y
 (

jo
u

le
)

Energy of top 20 most consumption methods for RSA

java.math.BigInteger.oddModPow

java.math.BigInteger.montReduce

(b) Energy variation model of RSA meth-
ods.

502 4 6 8 10 14 18 20 22 26 30 34 38 40 42 46

3650

0

500

1000

1500

2000

2500

3000

Number of strings

E
n

er
g

y
 (

jo
u

le
)

com.google.common.base.Joiner$2.appendTo

(c) Energy variation model of the join

method.

Figure 2: Evolution of the energy consumption of RSA asymmetric encryption/decryption according to key length, and
Guava’s join method according to the number of strings.

900100 200 300 400 500 600 700 800

140

0

20

40

60

80

100

120

String size (number of character) / Integer value

E
n

er
g

y
 (

jo
u

le
) int parameter

String parameter

Evolution of the copies method by its parameters

Figure 3: Energy variation of copies by its parameters.

the length of the output set of characters (third parameter,
setout). In particular, the third parameter, setout, is used
only twice in the method: once to get its length, and another
time to get a character at a given position in an if/else con-
dition. Both usages are relatively simple to execute, there-
fore consuming little energy, thus explaining the low impact
of varying this parameter and the flat variation of the en-
ergy consumption. On the other hand, varying the string
to convert (first parameter) or the input set of characters
(second parameter) has a linear impact on the energy con-
sumption. The method ViolinString.indexOfAnyOf is in-
voked upon the first and second parameters, and the method
String.getChars is called upon the first one too in the im-
plementation of the translate method. indexOfAnyOf im-
plementation also calls String.getChars on the setin pa-
rameter. The latter method uses System.arraycopy in order
to copy an array of objects (e.g., here an array of charac-
ters), and is responsible for linear energy variation as we
reported in Section 4.3.1 with the copies method.

5. DISCUSSIONS
Our work on modeling the energy consumption variation

of software code based on input parameters provides us an
additional layer of understanding of the energy consump-
tion and distribution in software. But also, it assists us
with methodologies and tools to assess the impact of input
parameters on the energy consumption. Our results show
higher complexity in the distribution of energy in software
code, the importance of taking into account the implemen-
tation of Java’s JVM, and the side effects that may happen.

900100 200 300 400 500 600 700 800

450

0

50

100

150

200

250

300

350

400

String size (number of characters)

E
n

er
g

y
 (

jo
u

le
)

Energy evolution of translate method by its String parameters

1st String parameter

2nd String parameter

3rd String parameter

Figure 4: Energy variation of translate by its 3 parameters.

The learnings we got from our work are summarized in the
next paragraphs.

5.1 Model energy variation through empirical
benchmarking

The first conclusion of our work is that we can model the
energy consumption variation of software code through em-
pirical benchmarking. In our approach, we show the validity
of empirical benchmarking when studying the variation of
the RSA asymmetric encryption/decryption algorithm (see
Section 4.1). The energy consumption variation is exponen-
tial and is on par with the exponential complexity of the
algorithm. In addition, monitoring the variation at soft-
ware code allows detecting the methods responsible for the
said variation, and the implementation source code of these
methods validates our approach.

5.2 Impact of Java’s JVM and system calls
Our experiments show the impact of the JVM characteris-

tics, core methods and implementation, and those of system
calls. In the Joiner.join experiment in Section 4.2, the
variation in energy consumption is explained by the need for
the JVM to allocate more momory for appending strings.
In addition, our results on the Violin Strings library (cf.
Section 4) show how the variation of string manipulation
methods is impacted by the JVM’s methods it calls. The
library’s copies method uses Java’s append method, which
in turn calls String.getChars. The latter finally uses Sys-
tem.arraycopy to perform characters’ copies. Therefore,
a larger string to copy requires more loops over the string
characters in System.arraycopy, leading to linear energy

variation based on the string size. Translate method is an-
other example where both the method’s own implementation
and JVM’s methods have an impact on the energy variation
modeling. One of its parameters, the string setout, has little
impact on the energy variation. This is because it is used in
a context where the variation of its size has negligible im-
pact on the performance and complexity, thus energy con-
sumption, of the method. However, two other parameters,
strings s and setin, have linear impact because the execution
of the method ultimately calls System.arraycopy on these
parameters. Our results show the importance of the under-
lying Java JVM implementation and performances in order
to better understand the energy consumption, distribution
and variation in software. Providing energy efficient soft-
ware is therefore depending on this knowledge and on the
lessons we learnt from our approach and experimentations.

5.3 Limitations and Future Directions
JalenUnit framework allows modeling energy consump-

tion variation of software code. Our results are promising
into understanding energy interaction in software, however
some limitations are to be noted and tackled in future works.
Our framework benchmarks methods individually; therefore
interactions between methods and their side effects are not
studied here. The impact of varying the parameters on other
methods is an interesting topic we will be addressing as a
future direction. In addition, our model is inferred through
empirical benchmarking but its mathematical analysis and
notation is still manual. Automatic analysis of the empirical
data and the inferring of the mathematical O notation, and
specific variation formulas are the next direction in our work.
Ideally, a mathematical formula would provide the energy
consumption of a method based on the values of its param-
eters. Finally, our framework infers energy variation models
based on CPU energy. However, more hardware components
are involved in the execution of software, in particular the
disk, memory and network. We are currently expanding our
framework into expanding the variation model into these
components. Our previous work in measuring energy con-
sumption shows that network energy is negligible compared
to the CPU energy [7]. We also acknowledge in our prelim-
inary experiments that disk and memory energy accounts
for a considerable part of energy consumption in our con-
figuration machines. Therefore, our main future direction is
studying the effects of these hardware components on the
energy variation model of methods while varying their pa-
rameters.

6. CONCLUSION AND FUTURE WORK
In this paper, we present the JalenUnit framework. It

allows gathering energy consumption data of software code
while varying the input parameters of the latter code. The
framework builds on automatic benchmarking of software
methods, and on detecting the energy variation trends based
on parameters variation. Therefore, it allows better under-
standing of software energy consumption and provides in-
sights on the variation of energy consumption of software
code. This prediction model is useful for software developers
to detect energy bugs, understand energy distribution, es-
tablish energy profiles or classifications, or compare software
libraries against their energy consumption. We demonstrate
the usability of our approach using empirical experimenta-
tion on various Java software libraries.

As a matter of future work, we plan to: i) improve the
usability of our JalenUnit framework with more injectors,
better support for class dependencies, and more strategies
for multi-parameters methods; ii) extend our framework and
prediction models for different programming languages, in
particular for other virtual machine based languages; iii)
integrate inferred energy models in development environ-
ments, therefore allowing our framework to be used also
during development.

7. REFERENCES
[1] York Extensible Testing Infrastructure.

https://code.google.com/p/yeti-test/.

[2] T. Do, S. Rawshdeh, and W. Shi. pTop: A Process-level
Power Profiling Tool. In HotPower’09: 2nd Workshop on
Power Aware Computing and Systems, Big Sky, MT, USA,
october 2009.

[3] J. Flinn and M. Satyanarayanan. PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications. In 2nd
workshop on Mobile Computer Systems and Applications,
1999.

[4] C. Germain-Renaud, F. Furst, M. Jouvin, G. Kassel,
J. Nauroy, and G. Philippon. The green computing
observatory: A data curation approach for green it. In 9th
International Conference on Dependable, Autonomic and
Secure Computing (DASC), pages 798–799, 2011.

[5] A. Kansal and F. Zhao. Fine-grained energy profiling for
power-aware application design. SIGMETRICS Perform.
Eval. Rev., 36(2):26–31, 2008.

[6] D. McIntire, T. Stathopoulos, and W. Kaiser. ETOP:
sensor network application energy profiling on the LEAP2
platform. In 6th international conference on Information
processing in sensor networks, pages 576–577. ACM, 2007.

[7] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier.
Runtime monitoring of software energy hotspots. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 160–169, New York, NY, USA, 2012. ACM.

[8] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier.
A preliminary study of the impact of software engineering
on greenit. In 1st International workshop on Green and
Sustainable Software (GREENS), pages 21–27, June.

[9] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120–126, Feb. 1978.

[10] C. Ruhl, P. Appleby, J. Fennema, A. Naumov, and
M. Schaffer. Economic development and the demand for
energy: A historical perspective on the next 20 years.
Energy Policy, 50(0):109 – 116, 2012.

[11] C. Seo, S. Malek, and N. Medvidovic. An energy
consumption framework for distributed java-based systems.
In 22nd international conference on Automated software
engineering, pages 421–424. ACM, 2007.

[12] C. Seo, S. Malek, and N. Medvidovic. Estimating the
energy consumption in pervasive java-based systems. In 6th
International Conference on Pervasive Computing and
Communications, pages 243–247. IEEE, 2008.

[13] A. E. Trefethen and J. Thiyagalingam. Energy-aware
software: Challenges, opportunities and strategies. Journal
of Computational Science, (0), 2013.

[14] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet,
and P. Demeester. Overall ict footprint and green
communication technologies. In 4th International
Symposium on Communications, Control and Signal
Processing, pages 1 –6, 2010.

[15] M. Webb. SMART 2020: enabling the low carbon economy
in the information age, a report by The Climate Group on
behalf of the Global eSustainability Initiative. GeSI, 2008.

