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Adaptive Steering Control for Autonomous Lane Change 

Maneuver*  

Plamen Petrov and Fawzi Nashashibi, Member, IEEE 

� 

Abstract— In this paper, we present a two-layer nonlinear 

adaptive steering controller for autonomous lane change 

maneuver with respect to a stopped vehicle. First, we derive a 

dynamic model of the vehicle using the Boltzmann-Hamel 

method in quasi-coordinates for nonholonomic systems. The 

lane change maneuver is investigated as a tracking problem 

with respect to desired cycloidal trajectory, which is generated 

in real time.  An adaptive update control law is designed that 

allows tracking the desired trajectories in the presence of 

unknown inertial parameters of the vehicle. Simulation results 

illustrate the performance of the proposed controller.  

I. INTRODUCTION 

In recent years, significant advance has been made in 
designing automated vehicles. The ultimate goal in 
automating the driving process is to reduce accidents caused 
by human errors and improve safety. In the same time, the 
full automation can greatly increase the roadway capacity and 
diminish air pollution by efficient use of fuel. Fully 
automated vehicle operation has been investigated, 
prototyped and demonstrated in several projects during the 
last decades like Cybercars and CyberCars 2, STARDUST, 
CyberMove, CityMobil, HAVEit, which address the issue of 
automated driving like adaptive cruise control, lane keeping, 
lane change,  stop&go and  platooning. The lane change 
maneuver has been a challenging problem for road 
automation during the last two decades. The objective of the 
lane changing is to transfer a vehicle in an adjacent lane 
which could be also interpreted as an obstacle avoidance   
maneuver with respect to a moving or a stopped vehicle. For 
this purpose, vehicle longitudinal and lateral control is   
required.  The automatic control of the longitudinal and 
lateral motion of the vehicle during the lane changing is often   
separately undertaken, and each controller is designed as if 
the longitudinal and steering vehicle dynamics is decoupled. 
For low speed motion (for speeds less than 5m/s), which is 
often the case of automated vehicles, a reasonable 
assumption is that the slip angles of the wheels are zero, [1], 
and classical methods from analytic mechanics can be used to 
develop mathematical models of the vehicle as a 
nonholonomic system [2,3]. During the lane change 
maneuver, the vehicle should have predefined (desired) 
trajectory to track.  The existing desired trajectories can be 
categorized, based on the types of curves that generate: 
circular [4], harmonic [5], polynomial [6,7] line segments, 

which, in general, should be  functions of time. Control 
techniques as sliding mode [8] and robust switching control 
[9] have been used for designing lane change controllers. 
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Figure 1.  Automated vehicle developed at INRIA equipped with two laser 

rangefinders  

In this paper, we propose a two-layer nonlinear adaptive 
steering controller for an autonomous lane change maneuver 
with respect to a stopped vehicle. We consider the problem of 
autonomous lane change without the use of road 
infrastructure with only the current inter-vehicle position and 
orientation available for feedback control which is obtained 
from onboard sensors. In Fig. 1, is shown an experimental 
automated vehicle developed at INRIA which is equipped 
with two laser rangefinders for automatic obstacle avoidance. 
The organization of the paper is as follows: A dynamic model 
of the vehicle is derived in Section II. The Problem 
formulation is given in Section III.  In Section IV, a nonlinear 
adaptive control law is designed. Section V contains 
simulation results. Conclusions are presented in Section VI.  

II. VEHICLE MODEL 

A. Vehicle Kinematic Model  

In this paper, we consider a front-wheel steering vehicle 
as shown in Fig. 2. The kinematic scheme of the vehicle 
represents a two-mass system: the first one consists of a 
vehicle body comprising the driver and passengers, and the 
second consists of the two steering wheels including the 
steering mechanism. It is assumed that the vehicle is moving 
along flat road at low speed (less than 5m/s). It is also 
assumed that the wheels roll without lateral sliding, and  the 
velocity vectors of the wheels are in the direction of the 
orientation of the wheels, i.e., the wheels are non-deformable. 
In order to develop a mathematical model of the vehicle 



  

suitable for control design applications, we consider the so 
called “bicycle model”, where the front steering wheels and 
the rear wheels are replaced by  single virtual wheels at the 
mid-point S  and P of the front and rear vehicle axles, 
respectively, (Fig. 2). An inertial frame Fxyz is defined in the 
plane of motion, where the z-axis is perpendicular to the 
road.  A body-fixed coordinate frame PxPyPzP is attached at 
the mid-point P between the rear wheels such that the xP axis 
is parallel to the vehicle longitudinal base and yP is in the 
direction of rear wheel axle.  
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Figure 2.  Schematic plan view of a front-wheel steering vehicle   

A coordinate system SxSyS is attached to the front virtual 
wheel and has its origin placed at the center of the wheel, as 
shown in Fig. 2. The coordinates of the reference point P 
with respect to an inertial frame Fxyz in the plane are denoted 
by (xP, yP). The angle T defined as angle between the x and xP 
axes of Fxy and PxPyP, respectively, is the orientation angle 
of the vehicle. The distance between the reference point P 
and the center of mass of the vehicle body G is denoted by d, 
the vehicle base (the distance between the front and rear 
vehicle axels) is denoted by l, and . is the front-wheel 
steering angle. If the inertia of the wheels with respect to 
their proper axes is ignored, using the coordinates of the 
reference point P, the configuration of   the   vehicle   can be   
described by four  generalized  coordinates  
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The system is characterized by the following nonholonomic 
constraints on the generalized velocities  q�

                                                               (2) 0)(  qqA �
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and the vector � R4 x 1 is a vector of the generalized 

velocities. The constraint equations (2) can be converted 
into an affine driftless control system of the form 
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form a basis of the null space of the matrix A. The 
components of the vector �b  
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are the so called quasi-velocities and includes the velocity 
component vPx of point P taken along the axis PxP and the 
angular velocity &. of the front virtual wheel about a 
vertical axis passing  trough point S. The quasi-velocities vPx 

and &. can be expressed in terms of the generalize velocities 
as follows 
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where the matrix B � R2 x 4 has the form 
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B. Boltzman-Hamel Equations 

  In order to derive the dynamic model of the vehicle, we 
use the Boltzmann-Hamel method [10, 11], which is suitable 
for systems with nonholonomic constraints. Consider a 
system, which is subject to m nonholonomic constraints of 
the form 

                                                                  ( 9) 0)(  qqA �

where A � Rm x n is the matrix of the constraints, q� Rn x 1 is a 
vector of the generalized coordinates of the system, and � 

Rn x 1 is the vector of the generalized velocities. Let us 
introduce n expressions for the quasi-velocities K = [Ka| 
Kb]

T� Rn x 1 in  the following manner 

q�
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where �a � Rm x 1 is a vector of the zero quasi-velocities 
defined by the nonholonomic constraints (9) and �b�R(n–m) x 1 

is a vector of the chosen non-zero quasi-velocities. 
Equations (10) can be written in compact form as 
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where the matrix .(q) � Rn x n has the form 
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                                          i = 1,…,n ;   j = 1,…,n 

The only restriction on the choice of the nonzero quasi-
velocities �b is that the matrix .(q) must be nonsingular.  

  The general velocities can be expressed in terms of 

quasi-velocities � as follows 

q�
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where the nonsingular matrix �(q) � Rn x n is obtained as 
follows 
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                                          i = 1,…,n;   j = 1,…,n 

The Boltzmann-Hamel formulation of the system dynamic 
equations is given by 
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where �S are the quasi-coordinates, (d�S/dt = �S); T(�) is the 
kinetic energy of the system expressed in terms of quasi-

velocities �;  are the three-index coefficients; =S are 

generalized forces associated with the quasi-coordinates. 
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  We note that the number of equations in (15) is equal of 
the number (n - m) of DOFs of the system. Using the 
elements of the matrices .(q) and �(q),  the three-index 

coefficients and the expressions of the derivatives of the 

kinetic energy with respect to the quasi-coordinates 
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are determined by using the following relationships 
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for     t = m+1,……,n;  r = 1,……,n;   . nms ,.....,1� 

C. Vehicle Dynamic Equations of Motion 

  In order to derive the dynamic model of the vehicle, we 
introduce the following quasi-velocities � � R4  
         (18) T

PxPySy

TT

ba vvv ],¦,[],¦,[]¦[ 4321 DZKKKKKKK    

where (vSy, vPy) are the velocity components of points S and 
P taken along the axes Sys and PyP, respectively, and �3 and 
�4 are described by (6).  In conformity with the 
nonholonomic constraint (2), 021   KK . In this case, the 

matrices . and � introduced in   (12), and (14), respectively,   
look like 

             (19) 
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  In order to calculate the kinetic energy of the two-mass 

vehicle in terms of the quasi-velocities (18), we first, 
express the velocities vP and vS of points P and S, 
respectively, the angular velocities of the vehicle & and the 
angular velocity of the front virtual wheel &. about a 
vertical axis in terms of quasi-velocities � as follows 
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where PSl   ,( l || l ), is the distance vector between the 

rear and front vehicle axles. Using (21), (22), (23) and (24), 
the overall kinetic energy of the vehicle is obtained in the 
form 
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where mv is the mass of the vehicle without the front virtual 
wheel and the steering mechanism which are denoted by ms,  
Iv and Is are moment of inertia of the vehicle body and the  
front virtual steering wheel about a vertical axes,  and 

PGd   is the distance vector between point P and the 
vehicle center of mass G.                     

  Finally, using (12), (14), (15), (16), (17), (19) and (25), 
the dynamic equations of motion of the vehicle are obtained 
in the following matrix form 

                        * � ),()( bb qhqM KK�                       (26) 
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is 2 x 2 symmetric matrix, 
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and > @T43,** *  is a 2 x 1 vector of the generalized forces 

associated with the quasi-coordinates �S, (s = 3, 4). 
  The generalized forces == [=3, =4]

T  associated with the 
quasi-coordinates �s (s = 3,4) are related to the generalized 

forces > @TQQQQQ 4321 ,,, associated with the generalized 

coordinates q according to the following relationships 
                                   .                                   (29)  QCT *
  Finally, the mathematical model of the vehicle is 

obtained as composition of (7) and (26) in the form  @
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III. PROBLEM FORMULATION  

In this paper, we consider autonomous lane change 
maneuver without any information obtained from road 
infrastructure or inter-vehicle communication. The steering 
commands for the controlled vehicle are set according to the 
relative position and orientation with respect to the stopped 
(overtaken) car and, in that way, the vehicle accomplishes a 
lane change (obstacle avoidance-type) maneuver with respect 
to the stopped vehicle instead of the road. Assume that the 
automated vehicle has to pass the preceding car, which is at 
distance ex

f ahead, (Fig. 3). 
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Figure 3.  Schematic plan view of a lane change maneuver    

Starting with some initial conditions, the automated 
vehicle diverts from its lane and tracks a given desired 
trajectory for a given time period and has to reach a pre-
selected position on the left side (at distance ey

f) of the 
stopped vehicle, (Fig. 3). The maneuver may be also 
considered as a first phase of an overtaking maneuver. 

A.  Error Kinematics 

The path tracking geometry used in this paper is 
represented in Fig. 3. Consider a front-wheel steering vehicle 
moving on a flat surface. A moving reference coordinate 
frame RxRyR is defined such that the xR axis coincides with x-
axis of the inertial frame Fxyz. The xR axis   is oriented in the 
direction of motion, which is parallel to the orientation of the 
stopped vehicle, but shifted at distance ey

f . The yR axis of the 
moving reference frame passes through the reference point P 
of the vehicle. The position and orientation of the robot 
vehicle with respect to the RxRyR are denoted by ey and eT, 
respectively. We suppose that the vehicle velocity vPx(t) is 
time-varying, bounded, but is always greater than zero, i.e., 

. Based on the assumption of pure rolling 

without lateral sliding of the wheels, the kinematic model for 
the lateral motion of the vehicle can be written in the form 
[12]  
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B. Trajectory Planning 

  In this paper, we assign the desired trajectory in the form 
of cycloid which we define in parametric form in the time 

interval  as follows ],0[ ftt �
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The constants ex
f and ey

f in (32), (Fig. 3), are determined 
from considerations of safety driving, sensor requirements, 
and vehicle steering and acceleration capabilities. While the 
displacement ey

f at lateral direction is determined by 
considerations of safe driving and available free place on the 
left side of the stopped vehicle, the displacement ex

f at 
longitudinal direction is determined by lateral acceleration 
requirements and vehicle steering capabilities (maximum 
steering angle).  At low speed operation of the automated 
vehicles in urban environments, parks and district areas, the 
steering capabilities of the vehicle become an important 
consideration in determining the displacement ex

f at 
longitudinal direction. The minimal value of ex

f could be 
roughly determined by considering a circular desired 
trajectory with maximum steering angle |.max|. In this case, it 

is easy to determine that 3min
f

y

f

x ee  , where 

| . Given a cycloidal desired trajectory 

defined as in (32), the time tf needed for performing the 
maneuver is determined from the relationship: 

, where vPx(0) is the vehicle velocity at t = 0. 

It should be pointed out that at t = 0 and t = tf the vehicle 
velocity has the same value, i.e., vPx(0) = vPx(tf), but during 
the maneuver, the velocity is not constant. A specific feature 
of the cycloidal trajectory is that there is not discontinuous 
acceleration, and therefore, infinite instantaneous jerk at the 
boundary points of the time interval.  
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C. Problem Statement 

In order to design the vehicle steering controller, we 
assume that we are able to measure the error coordinates ey 

and eT, the front-wheel steering angle . and angular velocity 
&., as well the vehicle longitudinal speed vPx. The vehicle 
acceleration is not available for feedback control. Given the 
inter-vehicle kinematics in error coordinates (31), the vehicle 
dynamic model (30), and the desired trajectory (32), the 
control objective is to track the trajectory (32) with the 
reference point P of the vehicle.  

IV. ADAPTIVE STEERING CONTROLLER 

The steering control scheme proposed in this paper, has a 
hierarchical two-layer structure based on the principle of 
decomposition of the control problem: an upper level 
kinematics-based path tracking control loop and a lower level 
steering dynamics-based control loop. The upper level 
controller provides a reference signal to the lower level 
controller which have to be tracked. 

A.  Kinematics-Based Controller 

In order to design the upper (kinematics-based) 
controller, we make the following change of coordinates  

                                                                 (33) d

yye eey � 

where the error coordinate ey is the lateral error of the 
vehicle with respect to the moving frame RxRyR and ey

d is 



  

defined by (32). The model (31) for the error kinematics is 
redefined in terms of new coordinate (33) as follows 
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Assuming that the time-varying vehicle velocity vPx(t) is 
bounded (as well its derivatives) and does not converge to 
zero, we propose an inverse kinematics-type control law in 
the form 
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where k0, k1 and k2 are positive constants. The control law 

(35) is valid for 2/ST ze  which is always satisfied from 

practical point of view during a lane change maneuver. We 
note that the control law (35) does not contain derivatives of 
the vehicle velocity vPx(t). Applying the control (35) to the 
system (34), the closed-loop system can be written in the 
form ( )  
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where  . The matrix A is a Hurwitz matrix           

and has the form 
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The system (36) can be viewed as a perturbation of a 
stable linear time-invariant system where the perturbation 

 is composed of two 

terms. The first term, h, is a vanishing perturbation (h(0,t) = 
0)),  and satisfies a linear growth bound 
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second term , does not depend on the state variables y, 

and is a uniformly bounded function of time that 

satisfies

d

ey'

Gd'd

ey
. In this case, the two perturbations are 

treated differently. Detailed stability analysis involves precise 
determination of the bounds � and / for the perturbation 
terms and is left for future work. However, preliminary 
results based on the worst-case analysis show that with some 

constraints imposed on , ultimate boundness of the overall 

system (36) can be claimed.  
Pxv�

B. Dynamics-Based Controller 

In this paper, we design an adaptive controller for the 
lower level steering dynamics control loop by using the   
method of Slotine [13]. For this end, we use the second 
equation from (26) of the vehicle dynamic model developed 

in Section 2, but we neglect the term associate with . 

However, we retain the term which includes the time-varying 
vehicle velocity. Introducing the active torques associated 

with the generalized coordinates, the second equation of (26) 
is rewritten as  

Pxv�
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2 is the driving torque, and kf is a coefficient of friction. The 
moment of inertia Is of the front steering wheel and the 
friction coefficient kf are unknown constant parameters. The 
desired performance of the control system for the steering 
dynamics is chosen to be as follows 
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where cd is a positive constant and  is the reference 

angular velocity obtained from the upper level control loop 
(eq. (35)). We introduce the following constants which 
include the unknown parameters 
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The parameter errors are denoted by 
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where  and  are the parameter estimates. The tracking 

error is defined by 
rÔ mÔ
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We choose a control law for (38) given by 
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Consider a positive definite, radially unbounded function V 

of the form 
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where �y and �r are positive gains. The derivative of V along 
the closed-loop system trajectories is given by 
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We design an adaptive update law as follows 
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Substituting (46) into (45), V results in  �

                                 .                          (47) 02 d� ZDecV d
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The closed-loop error dynamics is obtained in the form 
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From (44) and (47), it follows that the error dynamics is 

stable, and , ZDe rO
~

 and 
mO

~
 are bounded. Furthermore, from 



  

the boundness of , ZDe rO
~

 and 
mO

~
, it follows the boundness 

of (eq. (48)). By using the Barbalat’s lemma [13], it 

follows that the tracking error is asymptotically stable, 

since V is uniformly continuous ( is bounded). 
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The maximal value of the tracking error is obtained to 

be equal to 0.081m. The results of the simulation confirm 
the validity of the proposed controller. 

max
ey

VI. CONCLUSION 

In this paper, a two-layer nonlinear adaptive steering 
controller for an autonomous lane change maneuver with 
respect to a stopped vehicle has been presented. We consider 
the problem of autonomous lane change without the use of 
road infrastructure with only the current inter-vehicle 
position and orientation available for feedback control 
obtained from onboard sensors.  A dynamic model of the 
vehicle using the Boltzmann-Hamel method in quasi-
coordinates for nonholonomic systems was derived. The 
lane change maneuver was investigated as a tracking 
problem with respect to desired cycloidal trajectory, which 
is generated in real time. An update control law was 
designed that allows tracking the desired trajectories in the 
presence of unknown inertial parameters of the vehicle. 
Simulation results illustrate the performance of the proposed 
controller. Our future work will focus on the implementation 
of the proposed controller on the experimental vehicle (Fig. 
1) for personal transport developed at INRIA. 

V. SIMULATION RESULTS 

Simulation results are presented by using MATLAB to 
illustrate the performance of the proposed two-layer steering 
controller. The longitudinal vehicle base of the automated 
vehicle was chosen to be l = 1.5m. The velocity vPx(0) in the 
beginning of the maneuver was 1.5m/s. The vehicle has to 
arrive in the end of the maneuver at the same velocity. The   
constants ex

f and ey
f of the desired cycloidal trajectory were -

2.5m and 7m, respectively. The initial values for the 

estimates of constant   parameters  and for the 

adaptive update control law were chosen to be equal to zero, 
indicating no a priory knowledge. In Fig. 4 and Fig. 5 are 
shown simulation results for the planar path, drown by the 
automated vehicle during the lane change maneuver and 
evolution in time of the vehicle velocity, respectively. 
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