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ABSTRACT
Air quality monitoring as well as comfort or overall
energy performance require accurate information on
airflow patterns, while they are particularly difficult
to assess in existing buildings. We present an innova-
tive instrumentation system using gas tracers, based on
the combined use of several highly sensitive emerging
micro-gas chromatographs (µGC) as pollutant sensors
and an identification method for data processing. The
strategy used is based on the optimal control theory in
which only the time evolution of the components of the
velocity field needs to be reconstructed thanks to the
use of a proper orthogonal decomposition (POD) me-
thod. We present numerical results showing evidence
of the performance of the approach in the case of a
unimodal flow.

INTRODUCTION
Airflow patterns are very difficult to assess in exis-
ting buildings. However, they are of uttermost impor-
tance for the overall energy performance and for in-
door air quality monitoring. In order to limit energy
losses, building envelopes tend to be more and more
insulated and actual air change rates (ACR) are redu-
ced. As a consequence it has been observed that pol-
lutant levels can be higher inside than outside while
we spend about 90% of our time indoor (EPA, 2001).
Insufficient ventilation is responsible for unhealthy in-
door conditions to the point that a new term was inven-
ted to name this preoccupying phenomenon: the sick
building syndrom. A more careful design and control
of ventilation are necessary in order to satisfy both re-
quirements on energy saving and air quality, as well
as occupant comfort. This in turn raises the need for
airflows assessment and monitoring techniques. The-
refore, accurate quantification and documentation on
building airflows are essential.
In this scope, many techniques have been developed.
Among them, direct measurement methods consist in
directly measuring the air velocity at given points
through the use of sensors such as hot wire anemome-
ters (Mueller and Vogel, 1994). With this technique,
it is however difficult to efficiently measure a flow in
all directions with sufficient sensitivity. In addition, in-
direct methods using gas tracers are more popular as

they allow getting more information on the building,
such as leak detection or air change rate (Laussmann
and Helm, 2011) that is essential, for instance, to the
assessment of air quality under conditions of natural
ventilation. In the previous studies, sensors were often
either very limited in terms of performance or unaffor-
dable in view of real-life deployment. For instance, op-
tical units such as photoacoustic spectrometers (Har-
ren and G. Cotti, 2000) were popular for their accu-
racy but these devices were expensive and bulky. Pas-
sive samplers based on carbon adsorbent are also wi-
dely used for their low cost and simplicity (Shinohara
et al., 2010), but this technique has a low time resolu-
tion and does not allow real-time monitoring.
Nevertheless, ongoing miniaturization and integration
of sensor technologies enable one to consider ins-
trumentation systems based on several sensor units
spread over the building. Micro-gas chromatographs
are sensors amongst the best candidates to be used
in such application. These microsystems, in the man-
ner of their popular (but bulky) laboratory counter-
parts, are based on the principle of gas separation: a
gas sample is injected in a capillary column in which
analytes travel at different speeds before being detec-
ted downstream. An additional functional unit called
preconcentrator can be used to accumulate the ana-
lytes for a certain period of time before rapidly re-
leasing them in the column, which greatly amplifies
the detection signal to the price of a longer analysis
time. This modularity makes micro-chromatographs
highly sensitive and selective devices. Many efforts
are being made in order to improve the capabilities
of each individual µGC component. As a small set
of examples, one can cite nanotube-coated separation
column (Reid et al., 2009), fast-response optical sen-
sors (Reddy et al., 2011) or preconcentrators optimi-
zed for pollution monitoring (Camara et al., 2011)).
Other groups demonstrated the possibility of using
particular injection techniques to further improve sen-
sitivity of such systems (Cesar et al., 2013). Using a
hybrid micro-gas chromatograph, detection capabili-
ties of down to ppt levels (which is extremely low)
with a measurement time of few minutes have been
reported (Chang et al., 2010). Real-time analysis of
air in contaminated homes using two µGC prototypes



have also been perfomed (Kim et al., 2011). In this
latter study, more than 45 volatile organic compounds
(VOC) could be separated in less than one minute. In
fact, µGC systems have the potential of being able to
detect very small quantities of very large kinds of com-
mon gases (they are particularly adapted to the detec-
tion of VOCs), including the usable tracer gas recom-
mended by the ASTM (Standard E741), with a time
resolution of the order of a minute. Last but not least,
monolithic integration of micro-chromatography sys-
tems, including pumping and injection units, would
give them the great advantage of being small-sized and
batch-fabricated, so that they could be easily spread
within a room.
In this study, we present an innovative instrumenta-
tion system, based on the combined use of several
micro-gas chromatographs, gas tracer and an inverse
identification method for data processing. This paper
focuses on the numerical treatment of the data. For
the sake of simplicity, we consider a source emitting
a single gas, although a multi-tracer technique could
be used with the type of sensors we consider. We use
a strategy based on the optimal control theory, which
consists in identifying the velocity field that minimizes
the misfit between data provided by sensors and the di-
rect model output. This model is based on the isother-
mal Navier-Stokes (NS) and advection-diffusion equa-
tions, which are coupled together because of the ad-
vection process. Minimization is performed by solving
a gradient-based descent algorithm where the regula-
rized cost functional gradient is derived by solving an
adjoint problem. The spatial velocity field is projec-
ted on a finite dimensional space using POD model
reduction. Only the time evolution of the components
of the velocity field in the reduced space needs to be
reconstructed. This assumption dramatically reduces
the computational cost. The reliability of a similar ap-
proach, in the case of a multizone model, was demons-
trated by (L. Chen, 2012) where an orthonormal basis
was obtained through the use of singular value decom-
position (SVD). Our test case is a room with two aper-
tures that allow air circulation. Direct and adjoint pro-
blems are solved using finite element method (FEM).
We present numerical results showing evidence of the
performance of the approach in the case of a unimodal
flow.

DESCRIPTION OF THE PROBLEM

Test case

For this study, we chose a test case inspired from
the ADN-bati benchmark case (CNRS/Limsi,Univ.
Réunion/PIMENT, INES/LOCIE) which consists of a
6.5m-long and 2.5m-high room including two aper-
tures allowing cross-ventilation. We use a 2D repre-
sentation of the room, in a vertical cross section as
depicted in figure (1). The velocity flow is driven by
prescribing a parabolic distribution on the left window.

FIGURE 1 – Geometry used for simulations and spa-
tial distribution of input velocity

Mass transfer equation
The concentration evolution of the gas tracer in the
room can be described by the following parabolic
equation :

∂c

∂t
+ (~u.~∇)c−D4c = s Ω× [0, T ]

~∇c.~n = 0 ∂Ω
c(x, 0) = c0(x) Ω

(1)

In this advection-diffusion equation, c is the concen-
tration (ppm), ~u is the velocity field (m.s−1), D is the
diffusion coefficient (m2.s−1) and s(x, t) is a source
term (ppm.s−1). x ∈ Ω and t ∈ [0, T ] are the space
and time variables respectively. ~n is a vector normal to
the boundary ∂Ω.

Flow characteristics
Although the airflow is the unknown control parame-
ter that we aim at reconstructing, we know that it obeys
the rules of fluid dynamics. In a building under isother-
mal conditions, the following incompressible Navier-
Stokes (NS) equations apply :


∂~u

∂t
+ (~u.~∇)~u− ν4~u+

1

ρ0

~∇P = ~f Ω× [0, T ]

~∇.~u = 0 Ω
~u = ~yi Γi ⊂ ∂Ω

(2)
In equation (2), ν is the kinematic viscosity of air
(m2.s−1), ρ0 is its density (kg.m−3), P is the pres-
sure (bar) and ~f represents the gravity forces (m.s−2).
The flow is assured by defining the velocity at the left
aperture according to a normal parabolic spatial dis-
tribution (1) and the velocity on the right window can
then be deduced from the incompressibility property.
In addition, the no-slip boundary condition (~yi = 0) is
set on the walls (i ∈ [[3, 8]]).

Inverse problem
To reconstruct the flow, we use local information on
concentration evolution from the N sensors that are
placed within the room at positions {xk}Nk=1. Note that
although they are capable of measuring multiple gas
concentrations, we assume that we use a single tra-
cer gas so that we get data as N functions of time
cd = {cdk(t)}Nk=1. We also make use of the direct
physical models that describe the whole evolution of



concentration (equation (1)) assuming that all system
parameters, including the velocity field, are known.
The identification method we present is based on the
optimal control theory. It consists in seeking the ve-
locity field that minimizes the misfit between the di-
rect model response and the data given by the sensors.
This kind of problem have been extensively studied in
the literature, for instance in the fields of heat transfer
(Liu et al., 2012) or atmospheric sciences (Pudykie-
wicz, 1998).
In the case we use a POD basis ~ξ of size M for flow
projection, the velocity field writes :

~u(x, t) ' u0(x) +

M∑
i=1

ai(t)~ξi(x) (3)

and as a consequence, the problem boils down to iden-
tifying the set of time functions a = {ai(t)}Mi=1.
The difference between the data and the direct model
output is measured through the cost functional :

J(a) =
1

2

∥∥C(c(x, t;a))− cd
∥∥2

M +
ε

2
‖a‖2U (4)

In this equation, M = L2([0, T ])N and U =
L2([0, T ])M are the measure and control spaces res-
pectively endowed with the following scalar products
‖u‖2M = (u, u)M and ‖u‖2M = (u, u)M with

(u,v)M =

N∑
k=1

∫ T

0

ukvk dt (5)

(u,v)U =

M∑
i=1

∫ T

0

uivi dt (6)

Here C is an observation operator that maps the di-
rect model’s output to the observations inM. We will
choose C such that : u ∈ V = L2(Ω× [0, T ]),v ∈M

v(t) = C(u(x, t)) =

∫
Ω

u(x, t)ψ(x)dx
(7)

In practice, the functions ψ = {ψk}Mk=1 are unitary
sharp gaussian functions modeling local measurement
of each sensor.

ψk(x) = αkexp(− (x− xk)2

2dk
2 ) (8)

αk is a unitary-scaling coefficient and dk is the mean
measurement distance of the kth sensor. The choice of
the observation operator must fit as well as possible
the sensor’s mode of operation. Here we consider the
case of an ideal sensor whose output is a measure-
ment of the concentration at a precise time. Micro-
chromatographs can also perform an averaging of the
concentration over a certain period of time when they
are used with a preconcentrator. In this case, an other
observation operator should be defined and that could

be the subject of an other study. The term ε
2 ||a||

2
U (ε is

a small positive coefficient) in equation (4) is a Thiko-
nov regularization term that is added in order to avoid
the ill-posedness of such control problem (Franklin,
1974).
Finally, the identification problem consists in finding
the unknown set of parameters a ∈ U that minimizes
the functionnal J :

J(a) = inf
b∈U

J(b) (9)

The resolution of this problem can be performed
through a descent method which consists in iterati-
vely computing parameters that tend towards the point
where the gradient∇J vanishes. The method for com-
puting this cost functional as well as the descent algo-
rithm will be presented below.

IDENTIFICATION METHOD
Flow projection: method of snapshots
Let us consider a spatial orthonormal basis ~ξ such that
~ξ = {~ξi(x)}∞i=1, and let be ~u0(x) the time-averaged
flow. By projecting ~u−~u0(x) into this basis, it comes :

~u(x, t) = u0(x) +

∞∑
i=1

ai(t)~ξi(x) (10)

As a consequence, instead of seeking ~u in the whole
space Ω × [0, T ], it is possible to reconstruct the flow
by determining the collection of time functions a =
{ai(t)}∞i=1. In practice, the size of the projection basis
is limited to M elements, and this order reduction in-
troduces errors in the identification process. However,
it is possible to efficiently reduce this error by choo-
sing a basis whose vectors support most of the flow
energy. Such basis can be found using the a priori in-
formation known from the NS equations. As a matter
of fact, it is often possible to limit the size to a rather
low value of M , which dramatically reduces the com-
putational cost. This technique, called POD is exten-
sively employed in CFD since its first report (Lumley,
1967), and is also used in pattern recognition (Sirovich
and Kirby, 1987) and in various simulations (Sempey
et al., 2009) and control (Li et al., 2012) problems. Dif-
ferent types of POD methods are presented in (Luch-
tenburg et al., 2009). The method we use is the "me-
thod of snapshots", which consists in constructing the
basis ~ξ from a set of M steady velocity fields taken
from a simulation based on equation (2) at different
times ti ∈ [0, T ] :

~ui = ~u(x, ti), i ∈ [[1,M ]] (11)

A mean fluctuation value is computed :

~u0 =
1

M

M∑
i=1

~ui(x) (12)

and the so-called correlation matrix C is derived.

Cij =
1

M

∫
Ω

(~ui − ~u0).(~uj − ~u0)dx (13)



C is Hermitian since it is real and symmetric. It is the-
refore diagonalizable and its eigenvalues {λi}Mi=1 are
positive. The eigenvector a[i] = (a

[i]
1 , ..., a

[i]
M ) verify

the equation :
Ca[i] = λia

[i] (14)

Before using the eigenvectors in the POD basis com-
putation, the eigenvectors coefficients are scaled so
that :

a[i].a[j] = Mλiδij (15)

The POD modes {~ξi}Mi=1 are finally computed as fol-
lows :

~ξi =
1

Mλi

M∑
m=1

a[i]
m(~um − ~u0) (16)

The energy contained in each mode is directly given
by the associated eigenvalue, so that it is easy to sort
the modes by importance and to truncate the basis as
needed.
The method of snapshots is a particular case of POD in
which the decomposition is performed in the time do-
main. Inversion models based on this method are then
limited to reconstructing one particular unsteady flow
with well known parameters. In a more general case,
one or several flow parameters such as velocity boun-
dary conditions may vary and the resulting flow may
not be properly described in the chosen basis. In or-
der to avoid that issue, the POD decomposition must
be performed both in time and parameters domains,
which leads to a more exhaustive basis, adapted to in-
situ analysis.

Optimization algorithm
The direct problem (equation (1)) is non-linear with
respect to the sought parameters a. As a consequence,
the optimization problem described in the previous pa-
ragraph is not linear and the cost functional is not qua-
dratic. We will use the Levenberg-Marquardt descent
algorithm that can be used to solve this particular kind
of problems. This method consists in successively mi-
nimizing a cost functional built around successive li-
nearization points of equation (1). Each of these func-
tionals is minimized with the conjugate gradient me-
thod with optimal descent step, that requires the com-
putation of their gradient. This gradient is derived from
the solution of an adjoint problem that have a structure
similar to the direct problem of equation (1).
The first order linearization of the model equation (1)
around the linearization point ai is given in equation
(17). It is obtained by considering a small variation of
the unknown parameters δa around ai.

c(ai + δa) ' c(ai) + δc(δa) (17)

We introduce the new functional J ′i(δa) built using
this linearized problem (17) :

J ′i(δa) =
1

2
‖
∫

Ω

(c(ai) + δc)ψ dx− cd‖2M

+
ε

2
‖δa‖2U

(18)

The term δc is the solution of the linearized first order
sensitivity equation (19), derived from the lineariza-
tion of equation (1) around ai in the case where the
velocity field ~u is projected as in equation (3).



∂δc

∂t
+ (~u0 +

M∑
n=1

ain
~ξn).~∇δc−D4δc = Ω×[0, T ]

−(

M∑
n=1

δain
~ξn.~∇)c(ai)

D~∇δc.~n = 0 ∂Ω
δc(x, 0) = 0 Ω

(19)
In the above sensitivity equation, the control parame-
ters {δain}Mn=1 appear in a source term and are linear
with respect to δc. Since J ′i is quadratic, standard li-
near minimization processes such as conjugate gra-
dient method can be used in this case.
The descent algorithm consists in finding at step i the
unknown parameter ai+1 such that :

J ′i(a
i+1 − ai) = inf

a∈U
J ′i(a− ai) (20)

At each iteration, a new linearization point ai+1 is
then computed in the descent direction of the func-
tionnal J . Each of these minimization processes being
itself iterative, the optimization algorithm includes
two nested loops. Besides, the gradient of J ′i that in-
dicates the descent direction is computed using the
well-known adjoint method (Yamaleev et al., 2010)
(D.N. Srinath, 2010), which consists in deriving ∇J ′i
from the adjoint problem of equation (19) :

−∂p
∂t
− (~u0+

M∑
n=1

ain
~ξn).~∇p−D4p = Ω×[0, T ]

N∑
k=1

(∫
Ω

(c(ai)+δc)ψkdx−cdk
)
ψk

(D~∇p+ (~u0 +

M∑
n=1

ain
~ξn)p).~n = 0 ∂Ω

p(x, T ) = 0 Ω
(21)

Note that this adjoint equation has a similar structure
with the direct equation (19), where time is reversed
and where the source term includes the data misfit.
However, the final condition p(x, T ) = 0 has a conse-
quence on the reconstructed parameters. As a matter of
fact, the gradient and consequently the descent direc-
tion at t = T will always be equal to zero, so that the
final boundary value of the reconstructed parameters
will be equal to the arbitrary initial guess. This pro-
blem can be avoided using particular functional spaces
as presented in (Bourquin and Nassiopoulos, 2011).
The gradient of J ′i is obtained as a function of the ad-
joint state p, c(ai) and δa :

∇J ′i(δa) =

∫
Ω

−p~∇c(ai).~ξdx+ εδa (22)



This expression is obtained from operations on the va-
riational form of (19), equation (21) and the expression
of the cost functional (18). These rather cumbersome
but standard computations are not presented in this do-
cument for the sake of clarity but as an example simi-
lar computations can be found in (Nassiopoulos and
Bourquin, 2013).
As a summary, the Levenberg-Marquardt algorithm
writes :
• Initialization : i = 0, a0

• i-loop
– Initialization : j = 0, δa0

i

– Compute ci = c(ai) satisfying (1)
– j-loop

1. Compute δcji = δc(δaji ) satisfying (19)
2. Compute pji then ∇J ′ji from (21) and (22)
3. Compute the descent direction for j ≥ 1

dj = ∇J ′ji +
‖∇J ′ji ‖2U
‖∇J ′j−1

i ‖2U
dj−1 (23)

4. Compute the optimal descent step

ρj =
(∇J ′ji ,d

j)U

(Adj ,dj)U
(24)

5. Set δaj+1
i = δaji − ρjd

j

6. Increment j and break the j-loop if j = J

– Set ai+1 = ai + δaJi
– Increment i and break the i-loop if i = I

• The optimal solution is finally aI

The steps 3 and 4 are the realizations of the conjugate
gradient with optimal step method, in which A is an
operator based on equations (19), (21) and (22). This
method was first introduced in (Hestenes and Stiefel,
1952).

SIMULATION RESULTS
The different problems have been solved using the fi-
nite element method. Domain meshing, problem reso-
lution as well as matrix diagonalization were perfor-
med with the open-source software environment Free-
FEM++.

POD basis construction
In this section, we will present an example of POD ba-
sis construction using the method of snapshots.
First, the unsteady Navier-Stokes equation (2) is sol-
ved using a regular triangle mesh with 10000 nodes.
We take a 3-node linear (P1) elements for the pressure
and 6-node quadratic (P2) elements for the velocity.
We use an implicit formulation of the problem, and the
non-linear advective term is comprehended using the
method of characteristics as described in (Hecht and
Pironneau, 2012). The simulation is run with a time
interval T = 10min and a timestep of dt = 1s, and
the maximum flow velocity imposed at the left win-
dow is um = 0.05m.s−1. In our example, we choose
the set of 40 snapshots that corresponds to the solu-
tions taken at times {ti = 10i s}39

i=0. Note that these

snapshots correspond to the transient flow when the air
starts to be blown from the left to the right window and
crosses the room. Besides, the resulting basis will have
a maximal size of 39.

FIGURE 2 – Euclidian norm of the velocity snapshot
taken at t = 6min. Scale : 0 to 0.05m.s−1

The mean field ~u0 and the basis vectors are then com-
puted as explained before.

FIGURE 3 – Euclidian norm of modes 1 (~ξ1), mode 6
(~ξ6) and 22 (~ξ22) of the orthonormal POD basis

The relative amount of energy Ei carried by the ith

mode is :

Ei =
λi∑M
j=1 λj

(25)

The rapid decrease of the eigenvalues and the conver-
gence of their sum implies that the energy Ei is al-
most equal to the real energy of the flow if M is large
enough. The values Ei as well as the corresponding
eigenvalues λi for each 6 first modes are reported in
table (1). The orthogonality property between each
mode is verified through the use of the scalar product :

(~ξi, ~ξj) =

∫
Ω

~ξi.~ξjdx = δij (26)



TABLE 1 – Eigenvalue and relative energy carried by
the 6 first modes of the POD basis

Mode i Eigenvalue λi Relative energy Ei
1 4.22 10−6 22.1%
2 3.22 10−6 16.9%
3 2.42 10−6 12.7%
4 1.83 10−6 9.6%
5 1.51 10−6 7.9%
6 1.20 10−6 6.3%

On can notice that almost 80% of the energy is carried
by 15% of the modes.

Inversion method: case of a unidimensional basis

We will present in this part the performance of the
inversion method considering a single mode. The pro-
blem thus reduces to the case where the pattern of the
flow is known but its time evolution is not. The wor-
king principle of the algorithm should easily extend
to the multi-mode case, i.e. to the case where the flow
pattern is unknown.

In this problem, we consider that ~u0 = ~0 and dima =
1 so that ~u = a1(t)~ξ1(x). We take as a realistic ba-
sis ~ξ1(x) the normalized steady state solution of the
Stokes problem, which is equivalent to the problem of
equation (2) without the advective term. The direct and
adjoint models used in the optimization algorithm are
discretized in space using linear (P1) elements and si-
mulations are run over a time period of T = 30min,
and sensor measurements are performed every dt =
1min. This value is taken large in order to fit the
micro-chromatograph typical measurement time. We
take the characteristic of a standard COV such as me-
thane, that a micro-chromatograph is able to detect.
The gas diffusivity is set to D = 5 10−3m2.s−1.
The source term is a narrow gaussian function placed
in front of the left window that also has a gaussian time
evolution :

s(x, t) = σ exp
(
− (x−xs)2+(y−ys)2

2ds2 − (t−ts)2

2tsd2

)
(27)

with

TABLE 2 – Parameters of the source function s(x, t)

Parameter Unit Value
σ ppm.s−1 10
xs m 0.5
ys m 2.2
ds m 0.25
ts s 150
ysd s 90

Sensor optimal placement and quantity could be the
subject of a whole study. In our example, we will sim-
ply use two sets of 3 (set 1) and 6 (set 2) sensors, pla-
ced as shown in figure (4).

FIGURE 4 – Placement of the source and sensors

To test the algorithm, data is simulated by running
a direct mass transfer simulation (equation (1)) with
known velocity field and parameters. The correspon-
ding concentration field is then processed using the
measurement operator (equation (7)) to obtain the si-
mulated data for each sensor. The arbitrarily chosen
velocity field temporal evolution is a time-centered
gaussian function :

a1(t) = α exp
(
− (t− tc)2

2td
2

)
(28)

where we take α = 0.05m.s−1, tc = 15min and
td = 5min. This function will be the target function
that the algorithm will try to reconstruct. The simula-
ted data obtained with this velocity evolution is shown
on figure (5) and figure (6) for the sensors sets 1 and 2
respectively.

FIGURE 5 – Data recorded by sensor set 1

FIGURE 6 – Data recorded by sensor set 2

We take I = 5 and J = 5 as loop break-parameters,
as good results were obtained with these values. The



total number of iterations is thus 25. Figure (7) shows
the evolution of each functional J ′ji over the algorithm
iterations. One can notice that although every J ′ji is
decreasing, the functional value may increase after a
new i-loop iteration. However, the overall functional
tends to decrease as expected. Besides, the functional
for sensor set 2 is higher than for sensor set 1, as more
information is recorded by its 3 extra sensors.

FIGURE 7 – Cost functional evolution through itera-
tions in both i and j loops and for both sensors sets

In figure (8), one can see the different values of the re-
constructed velocity profile over the i-loop iterations,
for sensor set 1. From the first iteration, the gaussian-
shape is already roughly approximized, and at step 4,
the target and the reconstructed curve almost overlap.

FIGURE 8 – Reconstruced velocity profiles through ite-
rations in the i-loop, for sensor set 1

The precision of the reconstruction at step i can be eva-
luated through the relative reconstruction error, that is
given by :

εia =

(∫ T
0

(a1 − air)2dt∫ T
0
a1

2dt

)1/2

(29)

where air denotes the reconstructed velocity profile at
step i. Likewise, an relative error can be computed for

the concentration c :

εic =

(∫
Ω

∫ T
0

(c(a1)− c(air)2dxdt∫
Ω

∫ T
0
c(a1)

2
dxdt

)1/2

(30)

where c is computed from equation (1). Figure (9)
shows these errors as a function of the step in i-loop.
One can notice that the number of sensors does not
impact much on the result in this test case. The error
is even higher with the set of 6 sensors. This reveals
the importance of sensor placement which is a main
parameter to optimize the performances. Besides, the
relative error on the concentration is always lower than
the error on the velocity. This is due to the fact that the
algorithm tends to decrease the data misfit in terms of
concentration, and not in terms of velocity.
Finally, the concentration error after five iterations is
lower than 0.3%, while the airflow is reconstructed
with an error lower than 2.9%.

FIGURE 9 – Reconstruction error on the concentration
εic and the velocity εia through iterations in the i-loop

CONCLUSION
In this paper, we propose an instrumentation system
for airflow characterization, based on the combined
use of several micro gas chromatographs, gas tracer
and an inverse identification method for data proces-
sing. We describe an inversion method based on the
optimal control theory where the spatial velocity field
is reconstructed in a finite dimensional space obtained
through the use of a partial orthogonal decomposition
method. Simulation results that demonstrate the per-
formance of the method are presented in the case of
a unimodal POD basis. Demonstration of the method
using a higher order basis will be presented in a future
work. This method should find valuable utilizations in
the fields of building diagnosis and control, for appli-
cations such as indoor air quality analysis as well as
ventilation strategies for energy efficiency and thermal
comfort.

NOTATIONS
Bold parameters such as d are multi-element parame-
ters. Arrowed parameters such as ~u are spatial vectors.
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