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Abstract. While Generalized Feistel Networks have been widely studied
in the literature as a building block of a block cipher, we propose in this
paper a unified vision to easily represent them through a matrix repre-
sentation. We then propose a new class of such schemes called Extended
Generalized Feistel Networks well suited for cryptographic applications.
We instantiate those proposals into two particular constructions and we
finally analyze their security.
Keywords:Generalized Feistel Networks, Matrix Representation, Scheme
Proposal, Security Analysis.

Introduction

While a classical Feistel network, such as DES [23] or Camellia [2], divides a
plaintext into 2 n-bit-long halves, a Generalized Feistel Network (GFN) divides
it into k ≥ 2 n-bit-long subblocks. Various GFNs exist in the literature. This
includes Source-Heavy (SH) as in RC2 [25] and SHA-1 [29]; Target-Heavy (TH)
as in MARS [7]; Type-1 as in CAST-256 [1] and Lesamnta [11]; Type-2 as
in RC6 [26], HIGHT [13] and CLEFIA [28]; Type-3 and Nyberg’s GFNs [24].
Pseudorandomness of these constructions is studied in [33, 21, 12] for Type-1,
Type-2 and Type-3, in [22, 12] for SH GFN and [21, 12] for TH GFN. Figure 1
gives an example of Type-3 GFN. Usually GFNs perform a block-wise cyclic shift
in their permutation layer.

In [30], Suzaki and Minematsu proposed to use a non-cyclic permutation
instead and applied it to Type-2 GFNs. More precisely, they studied the maximum
diffusion round. Roughly speaking, it is the minimum number of rounds such as
every output block depends on every input block. They exhaustively searched all
the optimum permutations for k ≤ 16 and found that the diffusion in Type-2
GFNs can be improved. They also showed a lower bound on the maximum
diffusion round of Type-2 GFNs and when k is a power of 2, they gave a generic

⋆ This work was partially supported by the French National Agency of Research:
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construction based on de Bruijn graphs whose maximum diffusion round is close
to the lower bound they found. Besides, they studied the pseudorandomness of
these GFNs and their resistance against classical attacks and showed that it is
actually improved as well. One of these Type-2 GFNs is used in TWINE [31].

Following the work of [30], Yanagihara and Iwata [32] studied the case of
Type-1, Type-3, SH and TH GFNs with non-cyclic permutation. For Type-1 and
Type-3 GFNs, they showed that the maximum diffusion round can be improved
by changing the permutation while for SH and TH GFNs it cannot. Besides,
for Type-1 GFNs, they gave an optimum generic construction for any k and
identified a necessary and sufficient condition for improved Type-3 to have a
finite maximum diffusion round. They also evaluated the resistance of all those
GFNs against classical attacks and showed that it can be improved in the Type-1
and Type-3 cases.

In this paper, we first investigate a unified vision of GFNs using a matrix
representation and use it to further study the diffusion properties of GFNs. We
then extend this matrix representation and propose a broader class of Feistel
networks that we call Extended Generalized Feistel Networks (EGFNs). We
finally propose one particular EGFN with good diffusion properties and study
the security of this proposal.

This paper is organized as follows: Section 1 gives the matrix representation
of a GFN, its link with diffusion and shows how each possible GFN could be
represented using a particular matrix. Section 2 extends GFNs into EGFNs and
contains a particular EGFN proposal with good diffusion properties. In Section
3 we present a complete security analysis concerning this proposal.

1 Matrix Representation of Feistel Networks

Before defining the matrix representation of a GFN, let us introduce a few
notations.

1.1 Definitions and Notations

A GFN divides its input into k ≥ 2 blocks of n bits each. Let x0, · · · , xk−1 denote
the input blocks of a GFN round and y0, · · · , yk−1 the corresponding output
blocks. A GFN can be separated into two successive layers, as done in [30, 32]: a
round-function layer and a permutation layer, as on Fig. 1. The round-function
layer is made of key-dependent functions whose inputs are some of the blocks and
whose outputs are added (x-ored) to some other blocks. The permutation layer
is a block-wise permutation of the k blocks. How the different round-functions
are arranged depends on the type of GFN considered, while the permutation is
usually the cyclic shift. We further denote by yri the content of the i-th block
after r rounds.
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Fig. 1. One round of a Type-3 GFN with k = 8 blocks.

1.2 Diffusion Delay

We say input block xi affects output block yrj if xi effectively appears in the
expression of yrj seen as a function of x0, · · · , xk−1. We say xi has diffused at
round r if xi affects every yrj for 0 ≤ j ≤ k − 1. If every input block xi has
diffused at round r, we say the GFN has reached full diffusion, that is every
output block yrj depends on every input block xi. We call full diffusion delay the
minimum number of rounds required to reach full diffusion and denote it d+. In
fact, the notion of full diffusion delay is a general notion that can be applied to
any automaton as done in [3]. In the particular case of GFNs, this is exactly the
same notion as the maximum diffusion round introduced in [30].

Another way to see the full diffusion delay is from a graph point of view.
For a k-block GFN, let us define the associated directed graph as the graph
with vertex set {0, · · · , k − 1} and such that (i, j) is an edge if the output yj
depends on the input xi (directly or via a round-function). In other words, this
is simply the usual Feistel schemes with outputs folded onto the input with same
index. Knowing that, it is easy to see that the notion of block xi affecting block
yrj becomes there exists a path of length exactly r going from i to j. Thus the
full diffusion delay d+ can be alternately defined as the smallest integer r such
that for all ordered pair of vertices (i, j) there exists a path of length exactly r
going from i to j. Two things should now be noticed. First, if a GFN is in a full
diffusion state at round r then it will remain so at round r + 1. Second, the full
diffusion delay of a GFN depends solely on the structure of this graph and not
on the round-functions used in the GFN.

Similarly, we can define full diffusion delay when considering decryption
instead of encryption and denote it d−. Following the work of [30], we consider
the both-way full diffusion delay d = max(d+, d−). The both-way full diffusion
delay d for the different classical GFNs is summed up in Table 1. For security
reasons, it is necessary that d be finite.

1.3 Matrix Representation of Feistel Networks

Recall that a GFN is divided into two distinct transformations: first, the round-
function layer and second, the permutation layer, represented by a permutation
matrix P . We call matrix representation of the round-function layer, the matrix
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Table 1. Both-way full diffusion delay d for various GFNs with k blocks.

GFN Type SH TH Type-1 Type-2 Type-3 Nyberg [32] Type-1 [30] Type-2

d k k (k − 1)2 + 1 k k k k(k + 2)/2− 2 2 log
2
k

denoted F with an all-one diagonal and with a parameter we call F at position
(i, j) if and only if there is a round-function going from xj to xi. The parameter
F is a formal parameter, meaning it merely indicates the presence of a round-
function in the GFN, the same F is used for all the different round-functions
used throughout the cipher. If one follows the matrix representation idea, one
would define the matrix of the whole GFN as M = P × F .

In other words, for a GFN with k blocks, let M be the k×k matrix over Z[F ]
defined as follows: for indices 0 ≤ i, j ≤ k − 1, coefficient at row i and column
j of M is either a 1 if output yi directly depends on xj , that is without going
through a round-function, or a formal parameter F , if yi depends on xj via a
round-function, or 0 otherwise. This corresponds to the definition of Encryption
Characteristic Matrix given in [14]. E.g. Fig. 2 gives the matrices M, P and F
of the GFN on Fig. 1.
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Fig. 2. Decomposition of the transition matrix of the Type-2 GFN given on Fig. 1

As round-functions in a GFN are unlikely to be linear, such a matrix is not
an exact representation. However it still retains enough information to evaluate
diffusion; namely which output block yi is influenced by which input block xj

and whether this done directly or via a round-function.
An important feature of GFNs is to transform a set of non-invertible round-

functions into an invertible permutation. Hence the matrix of the GFN in
decryption mode M−1 should not contain inverses of expressions containing a F .
This translates into det(M) is independent of F , or equivalently det(F) = ±1,
as P is a permutation matrix. This is the case for all of the classical GFNs (SH,
TH,. . . ) including those of [30, 32] because the matrix F is lower triangular with
an all-one diagonal.

An other feature of many GFNs is quasi-involutiveness, that is encryp-
tion/decryption is roughly the same process, up to using the direct/inverse
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permutation layer P. To ensure that, one asks that the round-function layer be
quasi-involutive. Except the Type-3 GFNs where the round-functions must be
evaluated sequentially, all GFNs round-function layers are quasi-involutive. We
choose to focus on GFNs that satisfy this property:

Definition 1. A matrix M with coefficients in {0, 1, F} ⊂ Z[F ] is a GFN matrix
if it can be written as M = PF such that P is a permutation matrix and the
matrix F satisfies the following conditions:

1. the main diagonal is filled with 1,
2. the off-diagonal coefficients are either 0 or F ,
3. for each index i, row i and column i cannot both have an F coefficient.

In other words, the blocks of the GFN can be partitioned into three categories:
blocks that emit (through a round-function), blocks that receive and blocks that
do not emit nor receive. This definition encompasses most of the known GFNs,
with the exception of the Type-3. The property of quasi-involutiveness comes
from the following theorem.

Theorem 1. Let M = PF be a GFN according to Definition 1. Then F is
invertible and F−1 = 2I − F , where I stands for the identity matrix.

Proof. To prove F is invertible, we compute det(F). Because of Condition 3 of
Definition 1, for each index i either row i or column i is all-zero except for the
diagonal coefficient. Thus by successively expanding the determinant along either
row i or column i, det(F) = 1.

To prove F−1 = 2I − F , we equivalently prove (F − I)2 = 0. Let fi,j (resp.
f ′
i,j) denote the coefficient of F − I (resp. (F − I)2) at row i and column j.
By definition of the matrix product, for all i and j, we have f ′

i,j = fi,ifi,j +
fi,jfj,j +

∑

ℓ 6=i
ℓ 6=j

fi,ℓfℓ,j =
∑

ℓ 6=i
ℓ 6=j

fi,ℓfℓ,j . In the sum, consider one term fi,ℓfℓ,j . As

ℓ 6= i, fi,ℓ can either be zero or F . But, if fi,ℓ is non-zero then the ℓ-th column
of F contains an F thus, by Condition 3 the ℓ-th row must not contain any F ,
implying fℓ,j = 0 for all j 6= ℓ. Thus, each term fi,ℓfℓ,j is zero, so f ′

i,j = 0. ⊓⊔

Notice that in the case where the outputs of round-functions are xored with other
blocks, then matrix F−1 = 2I −F is simply F itself. Besides, we can characterize
the matrices F for which F−1 = 2I − F holds.

Theorem 2. Let F be a matrix that verifies Conditions 1 and 2 of Definition 1.
If (F − I)2 = 0 then F also verifies Condition 3.

Proof. Let fi,j be the coefficient of F − I at row i and column j. For all i and

j, we have 0 =
∑k−1

ℓ=0 fi,ℓfℓ,j =
∑

ℓ 6=i,j fi,ℓfℓ,j . All the coefficients fi,ℓ and fℓ,j in
the previous equation are off-diagonal, thus are either F or 0. Hence the sum
can be zero only if all its terms are zero. For each index ℓ, we need to prove that
row ℓ and column ℓ cannot both have an F coefficient. Suppose column ℓ has an
F coefficient, say fi,ℓ with i 6= ℓ. This implies that for all j 6= ℓ, fℓ,j = 0. Thus
row ℓ has no F coefficient. By transposing, the same goes when considering rows
instead of columns. ⊓⊔
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In other words, the GFNs round-function layer matrices F which are quasi-
involutive are exactly those where Condition 3 of Definition 1 holds.

Recall that the full diffusion delay can be expressed in term of distance in a
directed graph. In fact, if one evaluates the matrix M of the GFN in F = 1, we
obtain the adjacency matrix of this graph. The full diffusion delay d+ is then the
smallest integer such that Md+

has no zero coefficient. The same goes for the
decryption full diffusion delay d−, using M−d−

.

1.4 Matrix Equivalences

Now that we have matrices representing GFNs, we define an equivalence relations
on them that will help us to find GFNs.

Definition 2. Two GFNs matrices M and M′ are equivalent if there exists a
permutation (matrix) π of the k blocks such that πMπ−1 = M′.

In other words, two GFNs are equivalent if they are the same up to block
reindexation and thus share the same properties, such as a common full diffusion
delay. We then have the property of ”equivalent decompositions”:

Theorem 3. Let M = PF and M′ = P ′F ′ be two GFNs according to Definition
1 and equivalent under Definition 2. Let also be π such that πMπ−1 = M′. Then
πPπ−1 = P ′ and πFπ−1 = F ′.

Proof. By hypothesis, we have πPFπ−1 = P ′F ′. Also by definition, F and F ′

have an all-one diagonal and either F or zero elsewhere. Hence F and F ′ both
evaluate to the identity matrix I in F = 0. Thus, specifying the above equation
in zero, we obtain πPπ−1 = P ′, which implies πFπ−1 = F ′. ⊓⊔

In other words, two GFNs are equivalent if and only if both layers are equivalent
with same conjugating element. For example, if one studies a class of GFNs with
a fixed F matrix, as done in [30, 32], Theorem 3 allows to define an equivalence
relation on the permutation layer.

1.5 Exhaustive Search of Feistel Networks

We investigated all the GFNs according to Definition 1 with k = 8 blocks up to
equivalence. We consider three parameters:

– the full diffusion delay d,
– the number of round-functions per round s,
– the cost for full diffusion, i.e the total number of round-functions required

for full diffusion, c = d× s.

We found there is no GFN with cost c < 24. However, there are cases where the
number of rounds d is a more important criterion than the total cost c. For each
possible value of d ≤ 12, Table 2 gives the minimum number of round-functions s
required for an 8-block GFN to fully diffuse in d rounds. It also gives the number



7

Table 2. Minimum number s of functions per round required to have a full diffusion in
d rounds and corresponding total cost c = s× d. For each case, the number of different
F matrices (#F) and the total number of GFNs (#M) are also given up to equivalence.

d 1, 2 3 4 5 6 7 8 9 10 11 12

s ∞ 16 7 6 4 4 4 3 3 3 2

c ∞ 48 28 30 24 28 32 27 30 33 24

#F 0 1 1 8 3 13 13 1 6 6 1

#M 0 5 3 26 9 101 652 18 100 56 5

of GFNs that achieve such diffusion, splitted into the number of different F
matrices (row #F) and the total number of GFNs (row #M), up to equivalence.

Note that among the GFNs that fully diffuse in d = 6, with s = 4 round-
functions, are the Type-2 GFNs with non-cyclic permutation given in [30], which
are then diffusion-optimum among the GFNs of Definition 1.

2 New Feistel Network Proposals

2.1 Extended Generalized Feistel Networks

For a GFN M = PF , to achieve quicker diffusion, one can increase the number
of round-functions in F . However, this also makes costlier GFNs. The other
possibility is to look at the permutation layer P. Definition 1 already allows for
block-wise permutations. A possible generalization is to use a linear mapping
instead, thus looking for GFNs M = GF with G an invertible k× k matrix. This
is however much costlier than a simple block-wise permutation and besides it
loses the quasi-involutive property. What we propose is to have a G which is itself
a GFN but with the identity mapping as round-functions. In other words, we
write G = PL where P is a permutation matrix and L is matrix similar to F but
with I off-diagonal non-zero coefficients instead of F . We call this matrix L the
linear layer. In that case, the whole Feistel network matrix becomes M = PLF ,
e.g. Fig. 3. Because matrices L and F have common structure, we regroup them
into a single matrix N = LF , and write M = PN . The matrix N is the new
round-function part of the Feistel network but now has two formal parameters:
F for non-linear round-functions to provide cryptographic security and I for
identity round-functions to provide quick diffusion. We call these new schemes
Extended Generalized Feistel Networks (EGFNs).

As done in Sect. 1.3 for GFNs, to be considered an EGFN we require that
matrix M = PN is invertible and that det(M) does not depend on F nor I,
which translates into det(N ) = ±1. Again, we choose to focus on EGFNs that
are quasi-involutive. Hence the following definition.

Definition 3. A matrix M with coefficients in {0, 1, F, I} ⊂ Z[F, I] is an Ex-
tended Generalized Feistel Network (EGFN) matrix if it can be written as
M = PN such that P is a permutation matrix and the matrix N satisfies
the following conditions:
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Fig. 3. Overview of an EGFN three layers and corresponding matrices (right).

1. the main diagonal is filled with 1,
2. the off-diagonal coefficients are either 0, F or I,
3. for each index i, row i and column i cannot both contain a non-zero coefficient

other than on the diagonal,
4. for each index i, if row i contains an I then it also contains an F .

As in Sect. 1.3, Condition 3 allows to partition the blocks into emitters and
receivers. Condition 4 ensures that the pseudorandomness evaluation of EGFNs
can be computed (see Sect. 3.1). Because Definition 3 is essentially the same as
Definition 1, the following theorem on quasi-involutiveness is straightforward.

Theorem 4. Let M = PN be an EGFN according to Definition 3. Then
det(N ) = 1 and N−1 = 2I − N .

Proof. Same as Theorem 1, since Conditions 1, 2 and 3 of Definition 3 are
essentially the same as in Definition 1. ⊓⊔

Besides, define matrices L and F for the EGFNs of Definition 3.

Definition 4. Let M = PN be a EGFN according to Definition 3. Then define
matrix F ∈ Z[F ] as the evaluation of N in I = 0 and similarly matrix L ∈ Z[I]
as the evaluation of N in F = 0.

Theorem 5 verifies this definition works as intended, that is M = PLF .

Theorem 5. Let N , F and L be defined as in Definition 4, then N = L+F −I
and N = L × F = F × L.

Proof. The first equation is a straightforward consequence of the definition of N ,
L and F . As for the second, let ai,j be the coefficient at row i and column j of
matrix LF and show that ai,i = 1 and ai,j = Li,j +Fi,j otherwise (with obvious
notations). Write ai,i = Li,iFi,i +

∑

ℓ 6=i Li,ℓFℓ,i. Then ai,i = Li,iFi,i = 1 because
all terms in the rightmost sum are 0 as a consequence of Condition 3 of Definition
3. For the same reason, if i 6= j, ai,j = Li,iFi,j + Li,jFj,j +

∑

ℓ 6=i
ℓ 6=j

Li,ℓFℓ,j and

then ai,j = Li,j + Fi,j . ⊓⊔
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Finally, the last thing to update to EGFNs is the equivalence relation. The
definition of two equivalent EGFNs M and M′ is the same as for GFNs, the only
difference being that M and M′ now also have I coefficients. In other words,
a conjugating element π of M and M′ exchanges the positions of F ’s, as well
as the positions of I’s but it cannot exchange an F and an I. The analogous of
Theorem 3 is straightforward.

Theorem 6. Let M = PLF and M′ = P ′L′F ′ be two equivalent EGFNs defined
by Definition 3. Let also π be such that πMπ−1 = M′. Then πPπ−1 = P ′,
πLπ−1 = L′ and πFπ−1 = F ′.

Proof. Same as Theorem 3 by evaluating I, F or both in 0. ⊓⊔

2.2 An Efficient Example

We give here a particular case of EGFN with good full diffusion delay and cheap
cost. This EGFN with k blocks is depicted on Figs. 4 and 5. Its diffusion is issued
in Theorem 7. Besides Sect. 3 studies the security of this EGFN.

M =
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. . .

F (0)
... 1

F I I · · · I 1
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1
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Fig. 4. EGFN matrix M (left) with s = k

2
round-functions with the corresponding

diagram (right) that reaches full diffusion in d = 4 rounds.

Theorem 7. For an even integer k, let M be the k-block EGFN defined on Fig.
4 and let d be its full diffusion delay. Then if k = 2 then d = 2 and if k ≥ 4 then
d = 4.

Proof. Write M = (A I
I 0 ) ∈ Z[F, I] where I stands for the k

2 × k
2 identity matrix

and the upper left quarter of M is A =

















F
(0) F I

... I

F (0)
...

F I I ··· I

















. Note that A2 has no
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zero coefficient. Then M2 =
(

A2+I A
A I

)

. If k = 2 then M2 has no zero coefficient,

hence d+ = 2. But if k > 2, it still has. Computing M3 =
(

A3+2A A2+I

A2+I A

)

shows

it still has zero coefficients, as A does. Compute then M4 =
(

A4+3A2+I A3+2A
A3+2A A2+I

)

.

Thus M4 has no zero coefficient, hence if k ≥ 4, d+ = 4. To conclude, just note
that M−1 =

(

0 I
I −A

)

, which implies d− = d+ = d. ⊓⊔

Thanks to Theorem 7, we then have a family of EGFNs with s = k
2 round-

functions and a diffusion delay of d = 4, thus with total cost c = 2k. In comparison,
[30] gives a family of Type-2 GFNs that diffuse in d = 2 log2 k rounds. Their
total cost is then c = k log2 k. For k > 4, we achieve full diffusion at a cheaper
cost than they do.
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Fig. 5. EGFN with k = 16 blocks and s = 8 round-functions that reaches full diffusion
in d = 4 rounds.
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3 Security Analysis of our proposed Feistel Scheme

As done in [30], we analyze the proposed scheme with essentially k = 8 and
k = 16 as parameters regarding first the pseudorandomness of the scheme and
second its resistance to classical attacks.

3.1 Pseudorandomness

As we have defined a new block cipher structure, it is legitimate to introduce the
pseudo-random-permutation advantage (prp-advantage) and the strong-pseudo-
random-permutation advantage (sprp-advantage) of an adversary as done in
several works such as [16, 21, 10]. For this purpose, we introduce the two advantage
notations as:

AdvprpC (q) =def max
A:q-CPA

∣

∣Pr[AC = 1]− Pr[APn = 1]
∣

∣ (1)

AdvsprpC (q) =def max
A:q-CCA

∣

∣

∣
Pr[AC,C−1

= 1]− Pr[APn,P
−1
n = 1]

∣

∣

∣
(2)

where C is the encryption function of an n-bit block cipher composed of uniform
random functions (URFs) as internal modules [16] whereas C−1 is its inverse; Pn

is an n-bit uniform random permutation (URP) uniformly distributed among all
the n-bit permutations; P−1

n is its inverse. The adversary, A, tries to distinguish
C from Pn using q queries in a CPA (Chosen Plaintext Attack) attack and
tries to distinguish, always using q queries, (C,C−1) from (Pn,P

−1
n ) in a CCA

(Chosen Ciphertext Attack) attack. The notation means that the final guess of
the adversary A is either 0 if A thinks that the computations are done using
Pn, or 1 if A thinks that the computations are done using C. The maximums of
Equations (1,2) are taken over all possible adversaries A with q queries and an
unbounded computational power. Many results [16, 21, 10] have appear evaluating
the security of Feistel variants in this model. For example, Luby and Rackoff in
their seminal work [16] proved the security of a 2n-bit classical Feistel cipher with
3 rounds in the prp model and with 4 rounds in the sprp model considering that
the classical Feistel cipher is composed of n-bit-to-n-bit URFs (the bounds they
found are in O(q2/2n) for both cases). Those initial results have been generalized
in many ways [33, 19].

To prove the bounds of our scheme in those models, we follow the methodology
of [30] based on the results of [20]. To do so, we introduce the following notations:
Let Φkn,r denote our k-block scheme acting on n-bit blocks, using r rounds and
with diffusion delay d. We first introduce the following definition that will be
useful for the next lemma:

Definition 5. Let H be a keyed permutation over ({0, 1}n)k and let x = (x0, · · · ,
xk−1) ∈ ({0, 1}n)k with x[i] = xi. H is said to be an ǫ-AU (ǫ Almost Universal)
function if:

max
x 6=x’

Pr[H(x)[i] = H(x’)[i], for i ∈ {0, · · · , k − 1}] ≤ ǫ
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Lemma 1. Let H and H ′ be two keyed permutations over ({0, 1}n)k that are
respectively ǫ-AU and ǫ′-AU; Let denote by Φkn,r our r-round EGFN with k
branches acting on n-bit blocks with a diffusion delay d where all n-bit round-
functions are independent URFs. Then we have:

AdvprpΦkn,2◦H
(q) ≤

(

ǫ+
k

2n

)

·

(

q

2

)

(3)

AdvsprpH′−1◦Φkn,2◦H
(q) ≤

(

ǫ+ ǫ′ +
k

2n−1

)

·

(

q

2

)

(4)

Proof. Intuitively, for equation (3), this lemma uses the fact that after the
application of H the inputs of function Φkn,2 are sufficiently distinct and are
random strings. We then have rare collisions at the outputs of Φkn,2. For equation
(4), same arguments hold in both directions. The proof of this lemma is omitted
as it is similar to those of Theorem 3.1 and Theorem 3.2 of [22] or is a direct
extension of Lemma 9 and Theorem 7 of [19]. ⊓⊔

Theorem 8. Given the r-round EGFN Φkn,r with k branches acting on n-bit
blocks with a diffusion delay d where all n-bit round functions are independent
URFs. Then we have:

AdvprpΦkn,d+2
(q) ≤

kd

2n
q2 (5)

AdvsprpΦkn,2d+2
(q) ≤

kd

2n−1
q2 (6)

Proof. To demonstrate Theorem 8, we have first to show that Φkn,d is an ǫ-AU
function and second that Φkn,d which is Φ−1

kn,d without the final shuffle is also an
ǫ-AU function.

Let us first demonstrate (as done in [30]) that

Pr[Φkn,d(x)[i] = Φkn,d(x’)[i]] ≤
d

2n
, for all i ∈ {0, · · · , k − 1}] (7)

We assume that (xk/2−1, xk/2−2, xk/2+1) 6= (x′
k/2−1, x

′
k/2−2, x

′
k/2+1), without

loss of generality. We then estimate the probability that Φkn,d(x)[0] = Φkn,d(x’)[0].
By definition of d, there is an appropriate path of length d on the graph of
Φkn,d starting and finishing at vertex 0. For h = 1, · · · , d, we can define a
sequence of internal inputs Yh = Φkn,h(x)[s(h)] following the appropriate path. It
is straightforward to see that Pr[Y1 = Y ′

1 ] = Pr[F (xk/2−2)⊕ xk/2−1 ⊕ xk/2+1 =
F (x′

k/2−2) ⊕ x′
k/2−1 ⊕ xk/2+1] ≤ 1/2n because the round function F is a URF

(using the same reasoning, this result also holds for probabilities of the other
branches, even the branch xk−1 due to the presence of an F function). Then,

Pr[Yd = Y ′
d ] is over bounded by

∑d
j=2 Pr[Yj = Y ′

j |Yj−1 6= Y ′
j−1] + Pr[Y1 = Y ′

1 ] ≤
d/2n because all round functions are independent, i.e. Pr[Yj = Y ′

j |Yj−1 6= Y ′
j−1] ≤

1/2n. This proves Equation (7). Thus, Φkn,h is a kd
2n -AU function. Equation (5)

of Theorem 8 is straightforwardly proved using equation (3) of Lemma 1.
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To prove the second equation of Theorem 8, we use exactly the same reasoning
on Φkn,d to show that Pr[Yd = Y ′

d ] ≤ d/2n with Yh = Φkn,h(x)[s(h)] for h =

1, · · · , d. We then deduce that Φkn,d is a kd
2n -AU function. Combining the fact

that Φkn,d is a kd
2n -AU function and that Φkn,d is a kd

2n -AU function through
Equation (4) of Lemma 1, we obtain Equation (6). ⊓⊔

3.2 Evaluation of Security against classical attacks

Differential/Linear Cryptanalysis. Differential and linear cryptanalysis are
the most famous attacks on block ciphers. They have been introduced respectively
in [5] and in [18]. Since their discovery, many works have been done to first show
the links between both forms of cryptanalysis [8] and to find better ways to
prevent those attacks from happening for a given cipher [9]. The usual consensus
about this last point is to count the minimal number of active S-boxes crossed
all along the cipher by differential and linear characteristics and thus to estimate
the induced maximal differential/linear probability, under the independence
assumption.

If the maximal differential/linear probability of an S-box is denoted by DP/LP
and if the minimal number of active S-boxes is N , then the best differential/linear
attack against the cipher has a complexity of about 1/(DPN ) (resp. 1/(LPN ))
operations. Thus, a cipher is supposed to be secure against differential/linear
cryptanalysis as soon as 1/(DPN ) (resp. 1/(LPN )) is greater than the entire
codebook, equal here to 2kn.

In Table 3, we evaluate the minimal number of active S-boxes up to 20 rounds
for our scheme and compare it the results of [30] for their optimal construction.
We obtain a greater number of active S-boxes in our case.

Table 3. Number of active S-boxes for every round compared with results of [30].

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k = 8 [30] 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24 26
k = 8 Ours 0 1 2 6 9 9 12 14 15 19 19 22 24 25 29 29 32 34 35 39

k = 16 [30] 0 1 2 3 4 6 8 11 14 19 21 24 25 27 30 31 33 36 37 39
k = 16 Ours 0 1 2 10 17 17 18 26 33 33 34 42 49 49 50 58 65 65 66 74

Finally, if we want to estimate the number of rounds that could be attacked
using differential/linear cryptanalysis, we could estimate DP and LP for classical
n-bit S-box construction, i.e. we write F the internal n-bit function as F (x) =
S(K ⊕ x) where K is a subkey different at each round. We have the following
bounds on DP and LP for such an F function: if we assume n is even, then
DP and LP are over bounded by 2−n+2; if n is odd then DP and LP are over
bounded by 2−n+1. For example, if we assume that F works on 8-bit words with
k = 8, our scheme ciphers 64-bit plaintexts. We have DP = LP = 2−6 and
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the maximal number of active S-boxes that could be crossed is equal to 10 to
have 264 > 1/(DPN ) = 26·10. From Table 3, we could deduce that, under those
hypotheses, our scheme is resistant to differential/linear cryptanalysis as soon
as 7 rounds have been performed. In the same way, with k = 16 and n = 4,
DP = LP = 2−2, the maximal number of S-boxes that could be crossed is equal
to 31 and at least 9 rounds of our 16 branches scheme must at least be performed.

The total number of rounds to perform for preventing differential/linear
attacks is smaller than the one required for the schemes proposed in [30] because
the number of S-boxes crossed at each round is more important.

Integral Attack. In [15] L. Knudsen and D. Wagner analyze integral cryptanal-
ysis as a dual to differential attacks particularly applicable to block ciphers with
bijective components. A first-order integral cryptanalysis considers a particular
collection of m words in the plaintexts and ciphertexts that differ on a particular
component. The aim of this attack is thus to predict the values in the sums (i.e.
the integral) of the chosen words after a certain number of rounds of encryption.
The same authors also generalize this approach to higher-order integrals: the
original set to consider becomes a set of ml vectors which differ in l components
and where the sum of this set is predictable after a certain number of rounds. The
sum of this set is called an lth-order integral. In [27], the authors improve the
already known results in the case of Feistel structure noticing that computations
of the XOR sum of the partial decryptions can be divided into two independent
parts through a meet-in-the-middle approach. We define the following properties
for a set of 2n n-bit words:

– ’C’ (for Constant) in the ith entry, means that the values of all the ith words
in the collection of texts are equal.

– ’A’ (for All) means that all words in the collection of texts are different.
– ’?’ means that the sum of words can not be predicted.
– ’B’ (for Balanced) means that the sum of all words taken on a particular

word is equal to 0.

Integral characteristics are of the form (α → β) with α ∈ {C,A}k containing
at least one A and β ∈ {C,A, ?, B}k containing at least one A or one C or
one B. To find integral characteristics, we apply the method and the properties
described in [6]. We first look at characteristics α containing exactly one A
subblock, the other ones being C. By definition of d, the state after d rounds
does not contain C. If we assume that the state after d rounds contains two As
for the most favorable n-bit blocks, say i and j (for example blocks with indices
k/2− 1 and k − 1), then by adding one more round, the state at the subblock
s = P(j) becomes a B = (F (A)⊕A) or a B = (F (A)⊕A⊕A) subblock for the
simplest transformations, the other transformations straightforwardly give same
kind of results. After one more round, the state at indice t = P(s) is of the same
form because no F function has been crossed. Adding another round transforms
this state into a state of the form ? = F (B)⊕? or ? = F (B) ⊕ B⊕? or more
complicated expressions for y1. Therefore, an integral characteristic (containing
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one A and k − 1 Cs) exists for at most d + 2 rounds. If we try to extend at
the beginning this first order characteristic into an lth-order characteristic, we
could add at most d rounds at the beginning due to the definition of d. Thus,
the maximum number of rounds that could be reach by an lth order integral
characteristic is d + d + 2 = 2d + 2. We confirm this bound by experimental
analysis being able to find a first order integral characteristic for at most d+ 2
rounds.

Impossible Differential Attack. Impossible differential cryptanalysis [4] is
a form of differential cryptanalysis for block ciphers. While ordinary differen-
tial cryptanalysis tracks differences that propagate through the cipher with a
probability as large as possible, impossible differential cryptanalysis exploits
differences with 0 probability in intermediate rounds of the cipher to sieve wrong
key candidates.

More formally, impossible differential attacks are represented by a differential
transition α 6→ β with α, β ∈ ({0, 1}n)k for a cipher E with k n-bit blocks with
Pr[E(x) + E(x + α) = β] = 0 for any x. Intuitively, if we want to form an
impossible differential transition for our EGFN, we need to first form the first
part of the impossible differential on r1 rounds between the input differential α0 =
(α0

0, · · · , α
0
k−1) and the output differential after r1 rounds αr1 = (αr1

0 , · · · , αr1
k−1).

Then, we form the second part of the impossible differential in the decryption
direction on r2 rounds between β0 = (β0

0 , · · · , β
0
k−1) and βr2 = (βr2

0 , · · · , βr2
k−1).

Then, the impossible differential on r1 + r2 rounds is α0 6→ β0 if the differences
αr1 and βr2 are not compatible in the middle of the cipher.

From the U -method of [14] or the UID-method of [17], the differences αr1 and
βr2 could be of the types: zero difference (denoted 0), nonzero unfixed difference
(denoted δ), non zero fixed difference (denoted γ), exclusive-or of nonzero fixed
and nonzero unfixed difference (denoted by δ+γ), and unfixed difference (denoted
t). As done in [30], we could determine the maximal number of rounds for an
impossible differential attack using the U -method described in [14]. This number
of rounds mainly depends on d as shown below:

– If αd
i for i in {k/2, · · · , k−1} has type γ, there exists a data path, P that does

not pass through any F (i.e. the equation corresponding to this path does
not contain α0

i as a part of arguments of F ). If αd
j for j in {0, · · · , k/2− 1}

has type δ then αd+1
l with l = P(i) has type δ + γ. If βd

k has type γ, we are
able to construct an impossible differential attack on 2d+ 1 rounds.

– If all the data paths pass through at least one F function, then both αd and
βd do not contain differences of type neither γ nor 0. Thus, we could only
mount differences on d− 1 rounds for the direct sens (i.e. α difference) and
on d rounds for the decryption sens (i.e. β difference). The maximal number
of rounds for this type of impossible differential attack is 2d− 1 rounds.

– By definition of d, there exists α0 such that αd−1
i has type γ for some i.

Similarly, there exists β0 with βd−1
j has type γ′ for some j. If i = j and

γ 6= γ′, we can construct an impossible differential attack on 2d− 2 rounds.
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Finally, the implementation of the U-method gives us the same results: the
maximal number of rounds for our scheme looking at impossible differential
attack is equal to 2d− 2, 2d− 1 or 2d+ 1.

4 Conclusion

In this article, we have introduced a generic matrix representation that captures
most existing Generalized Feistel Networks. We explained diffusion properties
of those schemes through this representation. We then introduce a new kind
of schemes called Extended Generalized Feistel Networks that adds a diffusion
layer to the classical GFNs. We finally instantiated this class of schemes into two
proposals and proved the security of them under classical security and attack
models.

Our further work will be to propose a complete block cipher using small
S-boxes for round-functions and based on our EGFNs proposals that have proved
security bounds and provide a more efficient diffusion with a reasonable additional
cost, and confront our theoritical study to the ruthless world of cryptanalysis
and of cryptanalysts.
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