
HAL Id: hal-00915973
https://hal.inria.fr/hal-00915973

Submitted on 9 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Higher-order complexity in analysis
Hugo Férée, Mathieu Hoyrup

To cite this version:
Hugo Férée, Mathieu Hoyrup. Higher-order complexity in analysis. CCA - 10th International Confer-
ence on Computability and Complexity in Analysis - 2013, Jul 2013, Nancy, France. �hal-00915973�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49704669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00915973
https://hal.archives-ouvertes.fr

Higher-order complexity in analysis

Hugo Férée and Mathieu Hoyrup

June 13, 2013

Abstract

We present ongoing work on the development of complexity theory in
analysis.

Kawamura and Cook recently showed how to carry out complexity
theory on the space C [0, 1] of continuous real functions on the unit in-
terval. It is done, as in computable analysis, by representing objects by
first-order functions (from finite words to finite words, say) and by measur-
ing the complexity of a second-order functional in terms of second-order
polynomials.

We prove that this framework cannot be directly applied to spaces
that are not σ-compact. However, representing objects by higher-order
functions (over finite words, say) makes it possible to carry out complexity
theory on such spaces: for this purpose we develop the complexity of
higher-order functionals. At orders above 3, our class of polynomial-time
computable functionals strictly contains the class BFF of Buss, Cook and
Urquhart.

1 Introduction

Computability theory was initiated with the definition of a computable function
from N to N. The theory has been extended in several directions, among which
we mention higher-order computability theory and computable analysis. The
first one is concerned with the definition and study of computable functionals
of higher-order types (taking functions as inputs). The second one is concerned
with the definition and study of computable objects that are encountered in
mathematical analysis (real numbers, open sets, linear operators, etc.).

Extending complexity theory to higher-order types or in analysis are much
more difficult tasks that have been only partially carried out. The class bff2

of Basic Feasible Functionals from N → N to N → N, introduced in [17] and
characterized in [9] is considered to be the natural class of polynomial-time
computable type-two functionals. Basic Feasible Functionals above order 2 have
been defined and characterized [2, 5, 3, 21, 7] but there is less evidence that they
should be considered as the class of polynomial-time functionals. In analysis,
Ko and Friedman’s work, mostly gathered in [15], is a reference for complexity
theory on the real numbers. Abstract approaches, applicable to any space in

1

some classes of topological spaces, have been developed by Weihrauch [?] and
Schröder [20] and very recently by Kawamura and Cook [12]. These approaches
differ in the following way. In the first approach, the polynomials measuring
the execution time are ordinary (i.e., first-order) polynomials: while the input
objects are infinite, their size has to be measured by a single natural number.
This technical restriction imposes the space under consideration to be compact
or σ-compact. The novelty of Kawamura and Cook’s approach is to adopt the
ideas of higher-order complexity, allowing for second-order polynomials: the
size of an infinite object is a function from N to N and the execution time is a
second-order function of the size function of the input. Their approach allows
to have a sound complexity theory on larger spaces that are not σ-compact, as
the space C [0, 1] of continuous real functions over the unit interval.

In [11] it is asked whether complexity theory can be carried out to other
spaces, in particular functions spaces. In this ongoing work, we provide both
a negative and a positive result. The first one is that Kawamura and Cook’s
framework cannot be applied to larger spaces. Namely, if X is a Polish space that
is not σ-compact then there is no representation of C (X, R) that is acceptable
from a complexity perspective (Theorem 3.1). The positive result is that it is
possible to overcome this limitation, at the price of increasing the order type
of the functions used to represent objects. To summarize, our results tend to
show that, while first-order functions admissibly represent objects from many
spaces from a topological and computability-theoretic point of view, allowing
to use higher-order functions is necessary and sufficient to admissibly represent
objects from a complexity perspective.

In Section 2 we present the spaces on which we work: the QCB-spaces,
on which computability and topology are closely related. In Section 3 we recall
Kawamura and Cook’s recent framework, which applies second-order complexity
theory to analysis, and show the limitations (Theorem 3.1) of restricting to order
2, which suggests to develop complexity theory at higher orders. We present an
outline of this development in Section 4. In Section 5 we apply this framework
to analysis.

2 Computable analysis

Different directions have been followed to develop computability theory on other
spaces. The most famous ones are domains [1] and represented spaces [22]. We
will use the second approach. While originally the theory was developed for
countably-based topological spaces only, it has been later extended to quotients
of topological spaces, which happen to be exactly the spaces admitting admis-
sible representations [19].

Definition 2.1. A QCB-space is the topological quotient of a countably-based
topological space.

Every QCB-space is sequential, i.e. a function from a QCB-space to an-
other topological space is continuous if and only if it is sequentially continuous

2

(i.e., maps converging sequences to converging sequences and commutes with
the limit operation). The category QCB of QCB-spaces with continuous func-
tions as morphisms enjoys remarkable properties. We will only be concerned
with the fact that this category is cartesian closed. Precisely, the product and
exponentiation are performed as follows:

• if X,Y are QCB-spaces then the cartesian product X ×Y is a QCB-space
with the topology induced by the following notion of convergence: (xi, yi)
converge to (x, y) if xi converge to x and yi converge to y. The topology
on X × Y is stronger than the product topology;

• if X, Y are QCB-spaces then the set C (X, Y) of continuous from X to
Y is a QCB-space with the topology induced by the following notion of
convergence: fi converge to f if for every sequence xi converging to x,
fi(xi) converge to f(x).

QCB-spaces happen to be exactly the spaces on which computability theory
can be extended. B denotes the Baire space of functions from N to N with the
product topology.

Definition 2.2 ([22, 19]). A representation of a set X is a partial surjective
map δX ⊆: B → X.

A representation δX of a topological space (X, τ) is admissible if:

• δX is continuous,

• δX is projective in the sense that for every partial continuous map f : B →
X there exists a partial continuous map F : B → B such that f = δ ◦ F .

Theorem 2.1. [19] The QCB-spaces are exactly the topological spaces that
admit an admissible representation.

On QCB-spaces X, Y endowed with admissible representations δX , δY , the
continuous functions are exactly the functions f : X → Y that have a continuous
realizer, i.e. a partial continuous function F : B → B such that f ◦ δX =
δY ◦ F . Hence the computable functions are automatically continuous and the
continuous functions are exactly the functions that are computable relative to
some oracle.

2.1 Higher-order functionals

Here we present an important class of QCB-spaces.
We define the finite types as follows:

τ = N | τ1 × . . . × τn → N

We interpret each type as a QCB-space, inductively on the structure of the
type: N is interpreted as the set of natural numbers with the discrete topology
and the QCB-space associated to τ1 × . . .× τn → N is obtained by applying the
product and exponentiation in the category QCB.

The elements of these QCB-spaces are exactly the Kleene-Kreisel continuous
functionals (see [18]).

3

3 Complexity in analysis

The class bff2 of Basic Feasible Functionals defined by Mehlhorn [17] is con-
sidered as the natural class of polynomial-time computable type-two functional
from Σ∗ → Σ∗ to Σ∗ → Σ∗, as it enjoys many desirable properties and ad-
mits several characterizations [9, 10, 8]. Kawamura and Cook [12] made use of
this class to define the notion of polynomial-time computable function between
represented spaces.

For technical reasons, they use as representation space the subspace Reg of
length-monotonic functions from Σ∗ to Σ∗ (where Σ is a finite alphabet). For the
purpose of the current section, it makes no difference. For us a representation
starts from B. The size of n ∈ N is the length of its binary expansion and the
size of f : N → N is |f |(n) = max|p|≤|n| |f(p)|.

Definition 3.1. Let (X, δX) and (Y, δY) be represented spaces. A function
f : X → Y is polynomial-time computable if there is a polynomial-time
computable functional F : B → B such that f ◦ δX = δY ◦ F .

Working on compact or σ-compact spaces allows for the development of first-
order complexity theory, i.e. where the complexity of functions is expressed in
terms of ordinary, first-order polynomials [20, 16]. The novelty of [12] was to
develop complexity theory on spaces that are not σ-compact, like C ([0, 1], R).
Kawamura [11] asks to which spaces X, Y (in place of [0, 1] and R respectively)
their approach can be extended. More precisely, for which spaces X and Y is
there an admissible representation of C (X, Y) which makes EvalX,Y : C (X, Y)×
X → Y polynomial-time computable and that “polynomially reduces” to any
such representation. Here we show that even a weakening of the first condition
cannot be satisfied when X is a Polish space that is not σ-compact: for any
representation of C (X, Y), the time complexity of EvalX,Y is not even well-
defined!

Definition 3.2. Let X, Y be QCB-spaces together with admissible representa-
tions. A computable function f : X → Y has well-defined time complex-

ity if there is an oracle Turing machine M and a total continuous function
T : B×N → N such that for each representation s of some x ∈ X, Ms computes
a representation of f(x), and Ms(u) runs in time bounded by T (|s|, |u|).

Observe that if f is polynomial-time computable then its time-complexity
is well-defined: T is a second-order polynomial. In a similar way, one could
define exponential-time computable functions: any such function would have
well-defined time complexity.

Theorem 3.1. Let X be a Polish space that is not σ-compact and Y = R.
There is no representation of C (X, R) making the time complexity of EvalX,R :
C (X, R) × X → R well-defined.

Proof. Let δ ⊆: B → C (X, R) be such a representation. The composition of Eval
with δ gives partial continuous function form B → C (X, R) which is bounded by

4

a total continuous function T : B → C (X, R). We define a continuous function
F : X → R which is not in the image of δ. By a theorem of Hurewicz ([13],
Theorem 7.10, p. 39) and the assumption on X, B is homeomorphic to a closed
subset C of X, let Φ : B → C be such an homeomorphism. We first define F

on C by F (Φ(s)) = T (s)(Φ(s)) + 1 and extend it to X by the Tietze extension
theorem. If F = δ(s) for some s then F (Φ(s)) ≤ T (s)(Φ(s)) which contradicts
the definition of F .

Particular examples of such spaces X are the Baire space B and the space
C ([0, 1], R). Even if the complexity of continuous functions from X to R can
be defined, it does not seem possible to carry out a complexity theory where
these objects are first-class citizens, i.e. are objects of some represented space
C (X, R).

Intuitively, the Baire space is not large enough to represent objects of larger
spaces in a way that respects the size of the objects. An object contains so much
information that when encoding it into a sequence of natural numbers, one has
to postpone the information very far in the sequence so the time needed to reach
a piece of information is arbitrarily larger than the size of the representation, and
cannot be bounded by a continuous function of the size of the representation.
Observe that replacing B with Σ∗ → Σ∗ or Reg does not solve the problem, as
3.1 can be adapted to those cases.

We now show that allowing larger representation spaces, namely higher-order
functions spaces over N, one can carry out complexity theory for larger spaces.

4 Higher-order complexity

As mentioned in the introduction, there is already a notion of polynomial-time
computable functional at any finite type, namely the Basic Feasible Functionals
(bffi). However this class is unsatisfactory in the sense that it misses functionals
that are intuitively feasible, which is illustrated by the following example taken
from [7] (Appendix A).

Example 1. Let f∞ be the zero function of type N → N, and for all x ∈ N, fx

the function of same type such that fx(2x) = 1 and fx(y) = 0 otherwise. Now
we can define two functionals of order 3:

Φ(F, x) =

{

0 if F (fx) = F (f∞)

1 otherwise.
Ψ(F, x) =

{

0 if F (fx) = F (f∞)

2x otherwise.

First, note that fx is polynomial time computable, even relatively to x. So
evaluating these two functionals is just a matter of evaluating F on two polyno-
mial time computable functions and comparing the results, so this comparison
is feasible. Indeed, Φ is a basic feasible functional. On the other hand, Ψ is
not in bff3 since the size of the answer is exponential in the size of |x| and the
computation time of Ψ cannot be bounded by a polynomial in the size of x and
the size of F (as a function). Nevertheless, Ψ is intuitively feasible (as pointed

5

out by the authors of [7]). The idea is that if F distinguishes f(x) and f∞, then
during these evaluations, F had to ask for the value of its argument at input
2x (since it is the only point where they differ). In this case, the time taken for
this computation is at least 2x, so writing 2x as an output at most doubles the
computation time between Φ and Ψ. The reason why Ψ is not in bff3 (and
other previous notions of higher order feasibility) is that the evaluation of |F |
is seen as a black box where only the size of the input and the output matters
whereas the modulus of continuity is not taken into account.

We will show in example 7 that the Ψ functional is indeed polynomial time
computable in our sense.

This behavior also appears in computable analysis and the following example
describes a real functional which is also intuitively feasible for similar reasons.

Example 2.

Γ(F, n) =
∏

0≤i≤2n

(1 + |F (hi,n)|)

where hi,n is the peak function of height 1 and width 2−n.
This functional might not seem feasible since it requires to evaluate F on an

exponential number of points. This idea is reinforced by the fact that Γ cannot
be realized by a bff3 functional (which will be made formal in Section 5).
Indeed, if we set F to be the infinite norm ||.||∞, the size of Γ(||.||∞, n) = 22n

is not bounded by a polynomial in ||.||∞ and n.
However, there is a feasible way of computing Γ. Here are a sketch of this

procedure and partial justifications for its feasibility. Compute F on the zero
function (say, with precision 2−2n). During this computation, F only makes
a finite number of queries to its argument. Then, if a function h is small at
these points, then F (h) is small too. This way, we only need to compute F on
the hi which are close to these points to compute Γ. The evaluation of F on
the zero function and on each hi can be made in polynomial time. The only
reason for this procedure not to be feasible is the number of hi to evaluate, but
this number already appears during the computation of F on the zero function.
Then, roughly speaking, the time to compute Γ(F) is about the time to compute
F (0) multiplied by the time to compute F on one of the hi, which is polynomial
in the computation time of F . In particular, if F is polynomial time computable,
then the number of hi to evaluate is bounded by a polynomial in n.

4.1 Notations & definitions

We define the level of finite types as follow: N has level 0, and τ1×· · ·× τn → N

has level 1+maxi level(τi). In the following we may write, by abuse of language,
that τ has type n instead of level n.

|.| will denote the size of the binary encoding of integers or finite words.
We will further need to denote each occurrence of N in τ1 × · · · × τn → N:

The only occurrence in N is denoted by the empty word ε. If a is a code for an
occurrence in τi, then this occurrence is denoted by i.a in τ1 × · · · × τn → N.

6

Definition 4.1. The rightmost occurrence of N in τ1 × · · · × τn → N is posi-
tive, and any positive (resp. negative) occurrence of N in τi is negative (resp.
positive) in τ1 × · · · × τn → N.

Note that it is equivalent to say that an occurrence is positive if and only if
its code is a list of even length.

Example 3. In the type (N × N → N) → N, the occurrences are: ε, 1, 1.1 and
1.2.

In the following we will use indexed occurrences: if i0 . . . ik is an occur-
rence in τ , and n0, . . . nk are integers, then in0

0 . . . ink

k is an indexed occurrence.
For simplicity, we might omit the indexes when they are equal to 0.

4.2 Higher order strategies

A type 1 machine (i.e., a classical Turing machine) takes integers as input, so
a type 2 machine must be able to evaluate its type 1 argument by providing
it with integers. This is precisely the idea behind the oracle Turing machine
model defined in [10] for type 2 functionals. It can be seen as a mechanism where
the machine asks questions and waits for the device computing its argument to
answer.

Then, naturally, a type 3 machine should be able to evaluate its type 2
argument the same way. Thus this argument should be, in turn, able to ask
questions and wait for the machine to answer them. This way, we can see the
interaction between a machine of arbitrary type with its arguments as a dialogue
where both can ask and answer questions to each other.

We describe the dialogue between a function of type τ1×· · ·×τn → N and its
arguments of type τ1, . . . , τn as a game, inspired by the Game of Higher Types,
used by Hyland and Ong [6] to provide a full abstraction for PCF.

Definition 4.2. A move in the game τ is either a question ?a or an answer
!a(v), where a is an indexed occurrence in τ and v an integer.

A play is a list of moves, with a few restrictions:

• The moves at even (resp. odd) position are called the opponent’s (resp.
player’s) moves.

• The first move of a game is always ?ε.

• Each player’s (resp. opponent’s) move (except the first one) must be
justified by a previous opponent’s (resp. player’s) question this way:

– a question ?a.in is justified by a previous open question ?a and n must
be minimal such that ?a.in does not appear previously in the play

– an answer !a(v) is justified by a question ?a and we then say that this
question is closed

• We say that the game is over if the last move answers the initial ?ε question
(it is then of the form !ε(v)).

7

Note that the player (resp. opponent) only asks questions at negative (resp.
positive) occurrences and answers to positive (resp. negative) questions.

Definition 4.3. A strategy s is a partial function which, given a play p of odd
length, outputs a valid move s(p), i.e. such that (p, s(p)) is still a valid play.
We write s(p) = ⊥ when the strategy is not defined.

Definition 4.4. Within type τ1 × · · · × τn → N, if 1 ≤ i ≤ n and k ∈ N, viewk
i

is defined this way on plays:

• viewk
i (p, ?ik.a) = viewk

i (p), ?a

• viewk
i (p, !ik.a(v)) = viewk

i (p), !a(v)

• viewk
i (p, m) = viewk

i (p) otherwise.

In other words, we take the moves in p concerning an indexed occurrence be-
ginning with ik and remove ik from this numbered occurrence.

More generally, we define view(h) as viewk
i (h) if h ends with a move con-

cerning ik (i.e. ?ik.a or !ik.a).

Definition 4.5. A game is the interaction between several strategies. If s is
a strategy for τ1 × · · · × τn → N and for all i, si is a strategy for τi, then the
game between s and s1, . . . , sn is defined this way:

The initial play is p =?ε. While s has not answered the initial question (i.e
the last element of p is of the form !ε(v)), look at the next move s(p) of s and
add it to the play (p becomes p, s(p)). If s(p) concerns ik, then look at the next
move of the ith argument (namely si(view(p, s(p)))). If it is a question ?a, add
?ik.a to the play and if it is an answer !a(v), add !ik.a(v) to the play.

When an answer of the form !ε(v) appears, the game terminates and v is
called the result of the game and is denoted by s[s1, . . . sn]. If at some
point s(p) = ⊥ or view(p, s(p)) = ⊥, the game is interrupted and the result is
undefined. s[] is then a partial function mapping strategies to integers.

The final play is called the history of the game and is denoted by H(s, s1, . . . , sn).

In this definition, we use view to build the argument of a strategy. Thus we
have to prove that in this case, the provided argument is a valid play.

Proposition 4.1. At each step of the game, the current play p is valid for the
game in τ , and for every (i, k), viewk

i (p) is a valid play for the game in τi.

Remark 4.1. There are two ways for a game not to terminate: one of the strate-
gies cannot play (is not defined) or there are an infinite number of moves.

We define the representability of a function with a strategy by induction on
the order of the function.

Definition 4.6. A partial function f of type τ1 × · · · × τn → N is represented
by a strategy s if for (f1, . . . , fn) in the domain of f and for every strategies
s1, . . . , sn representing f1, . . . fn respectively, s[s1, . . . sn] = f(f1, . . . fn).

This implies that an integer k, as a function of level 0, is represented by the
only strategy s verifying s(?ε) =!ε(k) and undefined otherwise.

8

Remark 4.2. A function f : N → N can be represented by the following strategy:

• s(?ε) =?1

• s(?ε, ?1, !1(v)) =!ε(f(v))

Theorem 4.1. A function f : τ1 × . . . × τn → N is continuous if and only if it
is represented by a strategy.

Proof idea. Strategies easily correspond to associates as defined by Kleene [14].
The continuous functionals are exactly the functionals that admit an associate.

Here is another way to present strategies:

Definition 4.7 (Execution tree). Given a strategy s, we define the associated
execution tree as an infinite tree with labeled nodes and edges. The nodes are
labeled with the strategy moves, and the edges with its possible opponent’s
moves:

• The root node has no label and leads to an edge labeled with ?ε

• If the path from the root to an edge is labeled with p, then the node at
the end of the edge is labeled with s(p).

• If the path from the root to a node is labeled with p and the last move of
p concerns ik, then the outputting edges from this node are labeled with
all the possible moves of an opponent si on viewk

i (p).

We can also define the execution tree corresponding to a subset of opponent’s
strategies.

Remark 4.3. The interaction between s and its input strategies is always finite
if and only if the corresponding execution tree has only finite branches.

4.3 Complexity

For type 1 functions, complexity is defined as the run time of a machine with
respect to the size of the inputs. The inputs are now strategies, and we need to
define their size before defining complexity.

Let us assume that we have a reasonable encoding enc of moves and plays
as finite words. Then, a strategy can be seen as function from binary words to
binary words, so we can say that a strategy is computable if is computable as
a type 1 function, and that a functional is computable if it is represented by a
computable strategy.

Definition 4.8 (Size of a strategy). We define inductively the size of a strategy
and the set of strategies of bounded type. The size of a strategy is a function
of the same type. If s is a strategy over τ1 × · · · × τn → N, then its size is:

9

Ss(b1, . . . , bn) = max
(s1,...sn)∈Kb1

×···×Kbn

|enc(H(s, s1, . . . sn))|

Where Kb denotes the set of strategies s over type τ1 × · · · × τn → N whose
size is bounded by b with respect to the pointwise ordering verifying: whenever
s(p) is defined, then there exists strategies (s1, . . . sn) ∈ Kτ1 × · · · × Kτn such
that p is a prefix of H(s, s1, . . . sn) (where Kτ is the union Kb with b of type τ).
Finally, call K the union of the Kτ , for every finite type τ .

Remark 4.4. • In particular, the size of a strategy of type N is (roughly)
the size of the encoding of the integer it computes.

• For every strategy s in Kτ1×···×τn→N, s[] is total on Kτ1 × · · · × Kτn and
s is entirely described by its behavior on Kτ1 ×· · ·×Kτn . In other words,
the set of paths in the execution tree of s is exactly

{H(s, s1, . . . sn) | (s1, . . . sn) ∈ Kτ1 × · · · × Kτn}

Theorem 4.2. Ss(b1, . . . , bn) is defined if and only if the execution tree of s

restricted to strategies in Kb1 × · · · × Kbn
is finite.

Remark 4.5. Note that the size of a strategy of type 0 representing an integer
n is Size(?ε, !ε(n)) = O(|n|). So the size of a strategy of type 0 is close to the
size of the integer it computes.

Simlarly, the size of a strategy computing a function of type 1 as described
in remark 4.2 is roughly bounded by: n 7→ n + max|k|≤n |f(k)|, which is almost
the definition of the size used in bff (defined in [4] and characterized in [3]).

The size of strategies of types 0 and 1 match in some sense the size of the
functions they represent.

Example 4. Let Φ : ((N → N) → N) × N → N be defined by:

Φ(F, n) = F (λx.n)

A strategy to compute Φ is to query n, and then query F by playing the
role of a strategy computing λx.n. An evaluation of this strategy could be
?ε, ?2, !2(n), ?1, !1(v), !ε(v) if the strategy for F immediately answers v (thus F is
constant), or of the form ?ε, ?2, !2(n), (?1, ?1.1, !1.1(n), ?1.12 , !1.12(n), . . . , !1(v)), !ε(v),
where the part between parenthesis corresponds to the evaluation of the strat-
egy of F on the strategy of λx.n. The size of the latter is bounded by λy.|n|+C

(for a constant C), so the size of this evaluation is bounded by |F |(λy.|n| + C)
by definition. This also bound the size of the last answer (!ε(v)), so finally, the
size of the strategy for Φ is bounded by λG.λx.2 ∗ G(λy.x + C) + C ′ for some
constant C ′.

Now that we have defined the size of our inputs, we need a notion of compu-
tation time. This can be achieved by defining a model of machines simulating
strategies, generalizing the oracle Turing machine model (for type 2 function-
als). For sake of simplicity, we only sketch this definition here. A higher order

10

Turing machine over the finite type t is an oracle Turing machine with one spe-
cial state for each occurrence of N in t and special tapes for indexes and answers.
The machine can write to these tapes and enter the special states to simulate
questions and answers for its arguments. Then, the corresponding argument
strategy (or machine) can reply the same way. The cost of such an answer is
the size of the simulated move. Finally, the complexity of such a machine is a
bound on its computation time given a bound on the size of the input strategies.

4.4 Polynomial time complexity

To define a class of higher type feasible functionals we need a notion of poly-
nomial bound for higher type time bounds. There is already such a bound to
characterize the basic feasible functionals of type 2 with oracle Turing machines.

P := c | X | P + P | P × P | Y (P)

where X is a type 0 variable and Y is a type 1 one.
This notion has been extended to all finite types in [7].

Definition 4.9 (Higher type polynomials). The higher order polynomials are
the terms of HTP , the simply-typed lambda calculus over N with special terms
+ and ∗ of type N × N → N.

Definition 4.10. We say that a higher order functional is computable in poly-
nomial time if it is computed by a machine whose running time is bounded by
a higher order polynomial.

Example 5. The evaluation operator Eval : (τ1× . . .× τn → N)× τ1× . . .× τn →
N is polynomial-time computable. Indeed, it can be computed by simulating
the progress of the game between its arguments as follows: query the first
argument on ?ε and while the game is not over, read the provided move, translate
and copy it to the corresponding argument strategy, wait for its answer, and
translate it back to the main strategy (as it is done in definition 4.5). The
computation time is then about the size of the main strategy applied to the size
of its arguments, that is to say T (t, t1, . . . , tn) = t(t1, tn). As a consequence,
the class of polynomial time computable functionals is stable with respect to
composition.

Example 6. This definition of higher type polynomials coincides with the usual
polynomials at type 1 and with the second order polynomials (used in [9] to
characterize bff2). Additionally , the induced complexity class matches the
standard classes at types 1 and 2 (that is fp=bff1 and bff2). More generally,
every functional belonging to bff is polynomial-time computable, but as the
next example shows, the other direction does not hold.

Example 7. Now that we have the formalism of strategies we can show that the
Ψ functional of example 1 is indeed computable in polynomial time. Indeed, if a
strategy computes some F which distinguishes f∞ and fx, then the play against
the strategy representing fx necessarily contains the question ?2x , which entails

11

that |F |(|fx|) > 2x. Then, in any case, the computation time of the machine
computing Ψ (whose bahavior was shortly described in example 1) is about
|F |(|0|) × |F |(|fx|), which is a third order polynomial in |F | and |x|, since |fx|
is a polynomial.

5 Application to computable analysis

Now our goal is to use higher-order functionals to represent objects and to
extend complexity notions from higher-order functionals to QCB-spaces.

Remind the types inductively defined by τ = N | τ1 × . . . × τn → τ . Re-
mind that a type is interpreted as a QCB-space of hereditarily total continu-
ous functions. However when representing objects one usually considers partial
functions, which can be seen as total on their domains. Formally, wee define a
particular class of QCB-spaces, the τ -spaces, which will serve as representation
spaces.

Definition 5.1. Let τ be a finite type. A τ-space is defined inductively by:

• an N-space is a subset of N endowed with the discrete topology,

• given τi-spaces Ai and a τ -space A, a (τ1×. . .×τn → τ)-space is a subspace
of the space C (A1 × . . . × An, A) of total continuous functions, with the
induced topology.

Definition 5.2. A τ-representation of X is a partial surjective continuous
function δ ⊆: A → X where A is a τ -space.

Observe that usual representations can be viewed as (N → N)-representations.
In terms of topology and computability, τ -representations can be used in place of
(N → N)-representations, as for any τ -space can be embedded in a τ ′-space, for
any τ, τ ′ such that τ ′ has depth at least 1 hence any admissible τ -representation
induces an admissible τ ′-representation.

The results presented in Section 3 can be formulated as follows: there is no
admissible (N → N)-representation of C (X, Y) which makes the time complexity
of Eval : C (X, Y) × X → Y well-defined, whenever (X,Y) = (C (N, N), N) or
(X,Y) = (C ([0, 1], R), R).

One has to use τ -representations with arbitrary τ to carry out complexity
theory on larger functions spaces.

Definition 5.3. Let δX be an admissible τ1-representation and δY an admissible
τ2-representation. We define a (τ1 → τ2)-representation δX→Y of C (X, Y) as:
if f : X → Y is continuous and F : τ1 → τ2 is continuous and f ◦ δX = δY ◦ F

then δC (X,Y)(F) = f .

Observe that as δX and δY are admissible, δC (X,Y) is a representation: it is
onto and maps continuous functions to continuous functions.

Proposition 5.1. The representation δC (X,Y) is admissible. Moreover, Eval :
C (X, Y) × X → Y is polynomial-time computable.

12

Proof. The first point is proved by the same arguments as in [22, 19], adapted
to τ -spaces.

Eval on X and Y is computed by Eval on τ1 and τ2, which is polynomial-time
computable (see Example 5).

We do not answer the question whether there exists a minimal representation
of C (X, Y), i.e. a representation that polynomially reduces to any representa-
tion that makes Eval polynomial-time computable. We leave that problem for
future investigations. Another interesting problem is to study the categorical
properties of spaces admitting a representation admissible form a complexity-
theoretic perspective. The results presented here suggest that the underlying
category may be cartesian closed.

References

[1] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science Volume 3, pages 1–168. Oxford University Press, 1994.

[2] Samuel R. Buss. The polynomial hierarchy and intuitionistic bounded
arithmetic. In Alan L. Selman, editor, Structure in Complexity Theory,
Proceedings of the Conference hold at the University of California, Berke-
ley, California, June 2-5, 1986, volume 223 of Lecture Notes in Computer
Science, pages 77–103. Springer, 1986.

[3] S.A. Cook and B.M. Kapron. Characterizations of the basic feasible func-
tionals of finite type. Foundations of Computer Science, IEEE Annual
Symposium on, 0:154–159, 1989.

[4] Stephen Cook and Alasdair Urquhart. Functional interpretations of feasibly
constructive arithmetic. Annals of Pure and Applied Logic, 63(2):103 – 200,
1993.

[5] Stephen A. Cook and Alasdair Urquhart. Functional interpretations of
feasibly constructive arithmetic (extended abstract). In David S. John-
son, editor, Proceedings of the 21st Annual ACM Symposium on Theory
of Computing (STOC), May 14-17, 1989, Seattle, Washigton, USA, pages
107–112. ACM, 1989.

[6] J. M. E. Hyland and C. H. Luke Ong. On Full Abstraction for PCF: I, II,
and III. Inf. Comput., 163(2):285–408, 2000.

[7] Robert Irwin, Bruce Kapron, and Jim Royer. On characterizations of the
basic feasible functionals, part ii. Unpublished, 2002.

[8] Robert J. Irwin, James S. Royer, and Bruce M. Kapron. On charac-
terizations of the basic feasible functionals (part i). J. Funct. Program.,
11(1):117–153, 2001.

13

[9] Bruce M. Kapron and Stephen A. Cook. A new characterization of
mehlhorn’s polynomial time functionals (extended abstract). In A New
Characterization of Mehlhorn’s Polynomial Time Functionals (Extended
Abstract), pages 342–347. IEEE Computer Society, 1991.

[10] Bruce M. Kapron and Stephen A. Cook. A new characterization of type-2
feasibility. SIAM J. Comput., 25(1):117–132, 1996.

[11] Akitoshi Kawamura. On function spaces and polynomial-time computabil-
ity, October 2011. Presented at Dagstuhl Seminar 11411.

[12] Akitoshi Kawamura and Stephen A. Cook. Complexity theory for operators
in analysis. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010,
pages 495–502, 2010.

[13] Alexander S. Kechris. Classical Descriptive Set Theory. Springer, January
1995.

[14] SC Kleene. Countable functionals. Constructivity in Mathematics, pages
81–100, 1959.

[15] Ker-I Ko. Complexity Theory of Real Functions. Birkhauser Boston Inc.,
Cambridge, MA, USA, 1991.

[16] Daren Kunkle and Matthias Schröder. Some examples of non-metrizable
spaces allowing a simple type-2 complexity theory. Electr. Notes Theor.
Comput. Sci., 120:111–123, 2005.

[17] Kurt Mehlhorn. Polynomial and abstract subrecursive classes. J. Comput.
Syst. Sci., 12(2):147–178, April 1976.

[18] Dag Normann. Chapter 8 the continuous functionals. In Edward R. Griffor,
editor, Handbook of Computability Theory, volume 140 of Studies in Logic
and the Foundations of Mathematics, pages 251 – 275. Elsevier, 1999.

[19] Matthias Schröder. Extended admissibility. Theor. Comput. Sci.,
284(2):519–538, 2002.

[20] Matthias Schröder. Spaces allowing type-2 complexity theory revisited.
Math. Log. Q., 50(4-5):443–459, 2004.

[21] A. Seth. Turing machine characterizations of feasible functionals of all finite
types. Feasible Mathematics II, pages 407–428, 1995.

[22] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[23] Klaus Weihrauch. Computational complexity on computable metric spaces.
Mathematical Logic Quaterly, 49(1):3–21, 2003.

14

	Introduction
	Computable analysis
	Higher-order functionals

	Complexity in analysis
	Higher-order complexity
	Notations & definitions
	Higher order strategies
	Complexity
	Polynomial time complexity

	Application to computable analysis

