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Abstract 

Domain-Specific Modeling Languages (DSMLs) are playing an increasingly significant role in software 
development. By raising the level of abstraction using notations that are representative of a specific 
domain, DSMLs allow the core essence of a problem to be separated from irrelevant accidental 
complexities that are typically found at the implementation level in source code. In addition to modeling 
the functional aspects of a system, a number of non-functional properties (e.g., quality of service 
constraints, timing requirements) also need to be integrated into models in order to reach a complete 
specification of a system. This is particularly true for domains that have distributed real-time and 
embedded needs. Given a base model with functional components, maintaining the non-functional 
properties that crosscut the base model has become an essential modeling task when using DSMLs. 

The task of maintaining non-functional properties in DSMLs is traditionally supported by manual model 
editing or using model transformation languages. However, these approaches are challenging to use for 
those unfamiliar with the specific details of a modeling transformation language and the underlying 
metamodel of the domain, which presents a steep learning curve for many users. This paper presents a 
demonstration-based approach to automate the maintenance of non-functional properties in DSMLs. 
Instead of writing model transformation rules explicitly, users demonstrate how to apply the non-
functional properties by directly editing the concrete model instances and simulating a single case of the 
maintenance process. By recording a user’s operations, an inference engine analyzes the user’s intention 
and generates generic model transformation patterns automatically, which can be refined by users and 
then reused to automate the same evolution and maintenance task in other models. Using this approach, 
users are able to automate the maintenance tasks without learning a complex model transformation 
language. In addition, because the demonstration is performed on model instances, users are isolated from 
the underlying abstract metamodel definitions. Our demonstration-based approach has been applied to 
several scenarios, such as auto-scaling and model layout. The specific contribution in this paper is the 
application of the demonstration-based approach to capture crosscutting concerns representative of 
aspects at the modeling level. Several examples are presented across multiple modeling languages to 
demonstrate the benefits of our approach. 

1. Introduction 

Domain-Specific Modeling (DSM) [17] has become an important part of Model-Driven Engineering 
(MDE) [27] to address the complexity of software systems. A Domain-Specific Modeling Language 
(DSML) can be used to declaratively define a software system with specific domain concepts. Various 
software artifacts (e.g., source code, simulation scripts, XML deployment description files) can be 
generated automatically from the models. By raising the level of abstraction, DSM helps to protect key 
intellectual assets from technology obsolescence, resulting in less effort and fewer low-level details to 
specify a given system, which can lead toward improvements for supporting end-user development [9]. 



Although much effort has been focused on using DSMLs to specify the functional properties of a system, 
the correct and complete specification of non-functional properties is also critical in many domains such 
as distributed systems, embedded systems, or large-scale applications. The non-functional properties 
range from performance, timing, and Quality of Service (QoS) constraints, to some behavior requirements 
such as logging and concurrency control. Although several modeling tools (e.g., GME [22], GMF [14], 
GEMS [13]) have been developed to allow users to define various types of DSMLs and instantiate model 
instances, the tools to support the maintenance of non-functional properties in a DSML are not well-
developed. In most situations, manual maintenance has to be done through the basic operations provided 
by the editing environment, which is tedious, error-prone, and time-consuming, particularly when the 
base model is large and complex. A manual process for maintaining model changes often involves 
repeated and complicated changes and computations [15]. 

An alternative for automating the maintenance of non-functional properties with DSMLs is to use 
executable Model Transformation Languages (MTLs) [28], which can define a set of transformation rules 
that specify how to add, remove, or modify the non-functional properties in a base model. Although 
MTLs are very powerful and expressive for handling a wide range of non-functional properties in diverse 
DSMLs, using a transformation language is not always the perfect solution. Firstly, even though most 
MTLs are high-level declarative languages, they have a steep learning curve due to the complexity of 
their syntax, semantics, and other special features (e.g., OCL [24] specification is used in many MTLs). 
Moreover, model transformation rules are often defined at the metamodel level, rather than in the context 
of a concrete model instance, which exposes users to abstract metamodel concepts. Because many 
potential model users (e.g., requirements engineers, domain experts) are not necessarily software 
engineers or programmers, learning transformation languages and understanding the formal syntax 
definitions may be beyond their capability. Such challenges may prevent some users from realizing non-
functional property maintenance tasks for which they have extensive domain experience. Consequently, 
this leads to an irony that a technology (i.e., DSM) meant to enable end-users to participate in the 
specification of functional components of a software system does not enable end-users to manage the 
non-functional properties easily. 

To overcome the problem and provide an end-user approach to support automating the maintenance of 
non-functional properties in DSMLs, we have been investigating and extending the idea of Model 
Transformation By Demonstration (MTBD) [29], which applies a demonstration-based approach to 
enable users to specify the desired maintenance process of non-functional properties and execute the 
process to any model instance through an execution engine. The goal of the approach is to assist general 
model users (e.g., domain experts and non-programmers) in realizing the automated maintenance of non-
functional properties in DSMLs without knowing a specific model transformation language or the 
metamodel definitions. 

This paper provides the following contributions to the study of non-functional system property 
maintenance in DSMLs: 

• We describe how MTBD is extended and adapted to support the demonstration of non-functional 
system property maintenance tasks in a DSML (including a user refinement mechanism and an 
updated transformation engine to enable users to accurately specify where to apply the properties 
and how to apply them) without using MTLs or exposing metamodel definitions to end-users. 

• We present how MTBD can generalize and infer a transformation pattern that can be used to 
automate the whole maintenance process through an execution engine, as well as how users can 
refine the pattern. 

• We select two typical non-functional system property maintenance tasks (i.e., adding a logging 
mechanism and applying QoS strategies) in DSMLs that have already been solved using MTLs, 
and present the new solutions using MTBD. 

• We present an evaluation by comparing efforts (based on operational effort to perform the same 
tasks) between the two approaches to solve the exact same tasks. This evaluation identifies the 



key advantages of using MTBD over using MTLs in the maintenance of non-functional system 
property tasks. 

The remainder of the paper is organized as follows: two non-functional property maintenance scenarios in 
two different DSMLs are presented in Section 2 as motivating examples; Section 3 explains the MTBD 
concept through two motivating examples. In Section 4, a comparison of MTDB and the use of traditional 
model transformation languages is given in the context of the two motivating examples. Related works 
are discussed in Section 5, and Section 6 offers concluding remarks and summarizes the directions of 
future work. 

2. Motivating Examples of Non-Functional Properties in Models 

This section presents two examples that motivate the need for automating the maintenance of non-
functional system properties in different DSMLs. For each of the examples in Sections 2.1 and 2.2, 
background information about the specific application domain and the context of the DSML will be given, 
followed by an illustration using a concrete model instance. Then, we present a typical non-functional 
system property maintenance scenario in the domain, and describe the desired model instance after the 
maintenance of these properties. The challenges of accomplishing each task will be summarized 
afterwards. We have used both of these examples in previous efforts focused on MTLs [15][16]. In this 
paper, we compare our new approach that is focused on end-user demonstration to the more traditional 
approach that uses MTLs. The solution of using MTBD to address the exact same problems will be given 
in Section 3, so that a better comparison can be made between the traditional MTL approach and the new 
MTBD approach. 

2.1 Maintaining Non-Functional System Properties in ESML Models 

The Embedded Systems Modeling Language (ESML) [20] is a DSML used to graphically model real-
time mission computing embedded avionics systems. ESML is specifically designed for modeling 
component-based avionics application deployment and distribution middleware infrastructure, which 
allows users to model the system from several different aspects such as Interfaces, Events, Components, 
Interactions, and Configurations. 

Figure 1 shows an excerpt of an ESML model specified for one usage scenario. The top of Figure 1 
illustrates the interaction among components in a mission-computing avionics application. The set of 
components collaborate to process a video stream that provides a pilot with real-time navigational data. 
The bottom of Figure 1 shows the internal representation of two components (Display_Device and 
AirFrame_SynchProxy), revealing the data elements and other constructs used to describe the 
infrastructure of component deployment and the distribution middleware. An event-driven model is 
implemented for the infrastructure that enables different components to update and transfer data to each 
other through event notification and callback methods. 

Maintaining Non-Functional Properties in ESML. The need to maintain non-functional properties in 
ESML models arises from the requirement to apply non-functional properties to each Data in the 
components. For instance, different logging mechanisms (e.g., LogOnRead and LogOnWrite) can be 
added to each data element to realize the recording policy of a black-box flight data record; specific 
constraints are occasionally required to attach the data element as preconditions to assert a set of valid 
values when a client invokes the component at runtime; in some cases, concurrency elements (e.g., 
Internal Locking and External Locking) specifying the synchronization strategy should be distributed 
across the components.  

As the first example used in this paper, we choose the task of adding a logging mechanism for each data 
element, which is defined as follows: 



Example 2.1: In each implementation Component (i.e., the name of the component ends with “impl”), if 
an Action exists in the Component, a LogOnRead logging element should be attached to every Data 
element in the Component. 

The tasks of adding data constraints and synchronization policies share a similar process as Example 2.1, 
and therefore can be solved using the same approach. A correct process of maintaining these non-
functional properties involves navigating the model and locating the correct places to insert the non-
functional properties, and then adding the correct non-functional elements and specifying the 
corresponding attributes. Although the maintenance process can be done by manual editing, it is tedious, 
time-consuming, and error-prone, particularly when the base model is large and complex (e.g., the partial 
system model shown in Figure 1 is only a subset of a system with thousands of components). Thus, an 
automated process can benefit the maintenance process when evolving model properties. 

 
Figure 1. Adding non-functional properties in ESML models (adapted from [15]) 

2.2 Maintaining Non-Functional System Properties in QoSAML Models 

The maintenance and evolution of distributed real-time and embedded systems is often challenging 
because of the consideration of different Quality-of-Service (QoS) constraints that might conflict with 
each other and must be treated as trade-offs among a series of alternative design decisions [16]. The QoS 
Adaption Modeling Language (QoSAML) [16] was designed to address the challenges of using an MDE 
approach, which uses a finite state machine representation extended with hierarchy and concurrency 
mechanisms to model the QoS adaptive behavior of the system. 



One successful usage of QoSAML is to specify the QoS properties for an Unmanned Aerial Vehicle 
(UAV) [19]. A UAV is an aircraft that is capable of surveying dangerous terrain and territories. The UAV 
continuously sends video streams to a central distributor, so that operators can observe the video and give 
further commands to the UAV. In order to reach a precise and timely response from operations, a smooth 
video stream must be guaranteed, which means that the video must not be stale, or be affected by jittering. 
However, due to the changing conditions in the surveillance environment, the fidelity of the video stream 
must be maintained by adjusting the QoS parameters. For example, as shown in Figure 2, in good 
conditions where a reliable network transmission is available, a smooth video stream can be kept using a 
high video Size and a high video FrameRate, while in a poor environment, both video Size and 
FrameRate should be reduced in order to keep the same video transmission latency. 

	    
Figure 2. QoS Issue in the UAV Image Transmission Scenario 

Figure 3 is part of a QoSAML model that specifies the QoS properties for a UAV application. In this 
model, the latency is a dependent variable input to a hierarchical state machine called Outer State. Inside 
the OuterState, there are state machines that describe the adaption of identified independent control 
parameters, such as Size State, FrameRate State. In each of the state machines, several States are included 
to represent the options for the corresponding control parameter. A state specifies three Data for the 
option: Pri defines the priority of this option; Max defines the maximum value that can be used for this 
parameter; and Min defines the minimum value for the parameter. Model translators have been developed 
in previous efforts that generate run-time conditions (expressed in the Contract Description Language 
[19]) from the QoSAML models automatically, which can be integrated into the runtime kernel of the 
system [16]. 

Maintaining Non-Functional Properties in QoSAML. The model in Figure 3 is not complete, because 
the transitions between different states have not been specified. A transition connects a source state to a 
target state, representing how a control parameter can be changed and adapted. To give the transitions, 
there are two different strategies that can be used, as illustrated in Figure 4. The left side of the figure 
specifies a protocol that exhausts the effect of one independent parameter (Size) before attempting to 
adjust another independent parameter (FrameRate). In other words, the FrameRate parameter has a 
higher priority so that it is not reduced or increased until there is no further reduction or increment 
possible to the Size. By contrast, the strategy in the right side of the figure is more equitable, with a zig-
zag pattern suggesting that the reduction or the increment of one parameter is staggered with the reduction 
or the increment of another [16]. From this scenario, it can be seen that weaving the strategy protocols 
becomes a challenging task when more control parameters are involved, or a large number of intermediate 
states are included in the state. 



 
Figure 3.QoSAML Model 

	  

  
Figure 4. Two state transition protocols to adapt to environment - Priority Exhaustive (left) and Zig-zag (right) 

As the second example for this paper, we choose the task of weaving the priority exhaustive protocol to 
the QoSAML model, which is defined as follows: 



Example 2.2: In a given state machine, for each pair of two states included in the state machine, if their 
priority data are less than 5, and if the priority data of one state is one less than the other, add a 
transition between the two states from the state with the lower priority (SourceState) to the one with the 
higher priority (TargetState). In addition, set up the attributes for the transition: the Guard of the 
transition should be given from the users input, and the Action of the transition should be in the format of 
“ControlParameterName = (SourceState.Max + TargetState.Max) / 2).” 

For example, Figure 5 shows the model after applying the priority exhaustive protocol to Size State and 
FrameRate State. The challenges of this task result from locating all pairs of the states that consist of the 
qualified priority data (i.e., SourceState.Priority = TargetState.Priority – 1, SourceState.Priority < 5, 
TargetState.Priority < 5), performing the repeated computation to obtain the average value from the two 
Max data, as well as enabling user input. 

 

Figure 5. A QoSAML model after applying the Priority Exhaustive protocol 

3. Demonstration-based Non-Functional Property Maintenance using MTBD 

Model Transformation By Demonstration (MTBD) is our solution that enables general end-users to 
evolve and maintain non-functional properties of models, without knowing programming languages or 
metamodel definitions. MTBD is a new model transformation approach that was initially designed to 
handle model refactoring problems [29]. The idea of MTBD is to offer an alternative to writing model 
transformation rules manually, such that users are asked to demonstrate how the model transformation 
should be performed by directly editing (e.g., add, delete, connect, update) the model instance to simulate 
the model transformation process step-by-step. The user evolves and maintains a source model to the 
target model during the demonstration process. A recording and inference engine captures all user 
operations and infers a user’s intention in a model transformation task. A transformation pattern is 
generated from the inference, which can be reused and executed in any model instance at any time to 
carry out the same model transformation process. 



We have extended the MTBD concept to non-functional property maintenance tasks, so that it can be 
used to demonstrate the specific maintenance process and generate a reusable pattern to automatically 
realize the process to the rest of the model, as well as other model instances.  

	  

Figure 6. High-level overview of using MTBD to address non-functional property maintenance 

Figure 6 is an overview of the approach. In any non-functional property maintenance task, two 
fundamental specifications are required to precisely define a task. First, we need to specify the “where” 
(i.e., the locations in the models where the non-functional property or behavior emerges). The desired 
locations can be specified through constraints on its structure (i.e., the presence of required model 
elements and connections) and attributes (i.e., the model elements and connections with qualified attribute 
values). Second, we need to specify the “what” (i.e., the specific composition of the non-functional 
properties or behavior). As shown in the two examples, a non-functional property can contain various 
types of actions ranging from adding new elements or connections (removing and modifying elements 
and connections also happens in some tasks), conducting computations, asking for user input and 
initializing attributes. Using the MTBD approach, users can simply select one of the qualified locations, 
and then perform the necessary non-functional property maintenance tasks on the specific location. At the 
same time, the recording engine captures all the information about the demonstration, and later 
generalizes an initial pattern from the user’s demonstrated behavior. Because the initial pattern may not 
reflect the precise specification about the locations, refinements are enabled in the extended MTBD to 
allow a user to provide more detailed feedback in order to restrict the pattern in terms of the structure and 
attributes. The pattern is finalized after the refinement, and can be executed and applied to the whole 
model instance to realize the complete weaving process. 

In Section 3.1, we explain the approach with more implementation details about each step, along with 
solving the motivating Example 2.1. Section 3.2 continues to illustrate the approach by presenting the 
solution to motivating Example 2.2. 

3.1 MTBD in Action 

The main steps of the extended MTBD approach for non-functional property maintenance are shown in 
Figure 7. To better describe the idea, we use Example 2.1 to explain the specific processes. 



	  
Figure 7. The implementation of MTBD (initially described in [29]) 

Step 1 – User Demonstration and Recording. Users first give a demonstration by locating one of the 
correct places in the model where non-functional properties are needed, and directly editing a model 
instance (e.g., add a new model element or connection, modify the attribute of a model element, connect 
two model elements) to simulate the maintenance task. During the demonstration, users are expected to 
perform operations not only on model elements and connections, but also on their attributes, so that the 
attribute composition can be supported. An attribute refactoring editor has been developed to enable users 
to access all the attributes in the current model editor and specify the desired computation (e.g., string and 
arithmetic computation). It also provides a mechanism for users to create a temporary data pair (i.e., a 
variable name plus its value), and use this data to simulate user input data during the whole demonstration. 
At the same time, an event listener has been developed to monitor all the operations occurring in the 
model editor and collect the information for each operation in sequence. 

  
Figure 8. A selected Component before (left) and after (right) the demonstration of adding a logging mechanism 

In Example 2.1, the task is to add a Logging mechanism to each Data in the Component whose name ends 
with “impl”; there also must be an Action in the Component. Therefore, the demonstration is performed 
on a selected Component (BM_DeviceComponentImpl) that qualifies these conditions as shown in the left 
of Figure 8. 

With a desired location, the demonstration is straightforward. Users can add a new Logging element in the 
Component, and set up its type attribute as “LogOnRead,” after which a user makes a connection between 
the new Logging element to a Data element. List 1 shows all the operations performed during the 
demonstration, and the model after the demonstration is presented in the right of Figure 8. The 
demonstration only needs to be done for one of the Data elements, because the execution engine can 
automatically match all the other locations. 



List 1. Operations performed for Example 2.1 in the demonstration 

Sequence Operation Performed 
1 Add a Logging in ESMLRoot.BM_DeviceComponentImpl 
2 Set Logging.LogType = “LogOnRead” 
3 Connect Logging to data1_ 

Step 2 – Operation Optimization. The list of recorded operations indicates how a non-functional property 
should be composed in the base model. However, there is no guarantee that all operations in the 
demonstration are meaningful. Users may perform useless or inefficient operations during the 
demonstration. For instance, without a careful design, it is possible that a user first adds a new element 
and modifies its attributes, and then deletes it in another operation later, with the result being that all the 
operations regarding this element contradict each other and do not take effect in the transformation 
process. Thus, the operations are meaningless, even though they do not lead to an incorrect demonstration. 
Thus, after the demonstration, the engine optimizes the recorded operations to eliminate any meaningless 
actions. The optimization algorithm is specified in [29]. The operations in List 1 are all meaningful and 
are unchanged after this step. 

Step 3 – Pattern Inference. With an optimized list of recorded operations, the transformation can be 
inferred by generalizing the behavior in the demonstration. Because the MTBD approach does not rely on 
any model transformation language, it is not necessary to generate specific transformation rules, although 
that is possible. Instead, we generate a transformation pattern, which summarizes the precondition of a 
transformation (i.e., where a non-functional property emerges) and the actions needed in a transformation 
(i.e., how a non-functional property should be maintained in this location).  

Precondition Actions 
elem1.elem2 
elem1.elem2.elem3 

 

1. Add Logging in elem2 
2. Set up Logging.LogType = “LogOnRead” 
3. Connect Logging to elem3 elem1: ESMLRoot 

elem2: Component 
elem3: Data 

Figure 9. The initial generalized pattern 

As the initial generalized pattern, the precondition in this pattern is called the minimum precondition, 
which means that it only ensures that all the operations can be executed correctly with the minimum 
required model elements and connections. As shown in Figure 9, the precondition in this pattern defines 
that there must be a Component available, and in this Component, a Data element must exist. Obviously, 
this precondition provides sufficient operands for the operation actions to be executed correctly. However, 
in many cases, the generalized precondition is not restrictive and precise enough due to the limited 
expressiveness of the user demonstration. For example, although an Action is included in the Component 
in the demonstration, it is not incorporated in the generalized precondition, because this element was 
never used in any of the user operations. Similarly, we intentionally chose the Component called 
“BM_DeviceComponentImpl” as the desired location of our demonstration. The constraint on the name of 
this component is not inferred. Therefore, to provide further constraints on the precondition, more 
feedback is needed from users. 

Step 4 – User Refinement. The inaccuracy of the initial pattern resulting from the limitation on the 
expressiveness of the user demonstration is a main issue undermining the applicability of MTBD to the 
maintenance tasks of non-functional properties, because it is often essential to accurately specify the exact 
locations of applying a non-functional property based on precise constraints. In order to address this 
problem, we extended the original version of MTBD to permit users to refine the inferred transformation 
by providing more feedback for the precondition of the desired transformation scenario from two 
perspectives – structure and attributes. For instance, users can restrict the precondition by selecting and 



confirming extra model elements or connections in the model editors that must be included in the pattern. 
A new type of operation – Confirm Containment– is implemented in the editor for this purpose, which 
allows users to right-click on any model element in the editor and confirm to the engine that it should be 
contained in the final precondition. In addition, the precondition related with the implicit structure is also 
supported, such as replacing element A only if A has no incoming or outgoing connections. The 
refinement on the attributes can be realized by choosing the element in the demonstration and typing the 
specific conditions (e.g., add new element B in C only when the attribute value of C is greater than 200). 
All the user refinements are still performed at the model instance level without being aware of the 
metamodel definitions, after which a transformation pattern will be finalized and stored in the pattern 
repository for future use. 

Reconsidering Example 2.1, two more user refinement operations are needed in this step, as shown in List 
2. 

List 2. Refinement operations performed for Example 2.1 in the demonstration 

Sequence Operation Performed 
4 Confirm the containment of ESMLRoot.BM_DeviceComponentImpl.Action 
5 Specify precondition: 

ESMLRoot.BM_DeviceComponentImpl.name.endsWith(“Impl”) 

Figure 10 shows the final transformation pattern after user refinement (the bold rectangle outline 
represents the attachment of preconditions on its attributes). The generated pattern will be stored in the 
repository for future reuse. 

Precondition Actions 
elem1.elem2 (name.endsWith(“Impl”)) 
elem1.elem2.elem3 
elem1.elem2.elem4 

 

1. Add Logging in elem2 
2. Set up Logging.LogType = “LogOnRead” 
3. Connect Logging to elem3 

elem1: ESMLRoot 
elem2: Component 
elem3: Data 
elem4: Action 

Figure 10. The final generated pattern after user refinement 

Step 5 – Pattern Execution. The final generated patterns can be executed on any model instances. Users 
can select a specific part of the model to apply the pattern, or by default apply the pattern on the whole 
model. Because a pattern consists of the precondition and the transformation actions, the execution starts 
with matching the precondition in the new model instance and then carrying out the transformation 
actions on the matched locations of the model. The MTBD engine has also been updated to validate the 
preconditions refined by users in the previous step. The execution can be carried out in any selected 
locations in the model, or to the whole model by default. The execution engine applies a backtracking 
algorithm that works similar to graph matching, which can be found in [29]. The selected existing model 
elements in a model instance serve as a candidate pool, and the precondition is matched using subsets of 
the pool to find the satisfied locations based on both the structural and attribute constraints.  

Users can select the pattern in the execution controller dialog to execute an inferred transformation 
pattern from the repository. Users can select multiple patterns to execute in sequence, which is 
particularly useful when a model transformation task is divided by sub-tasks and specified by different 
demonstrations. In addition, the total times for executing the selected pattern(s) can be specified, because 
in some use cases (e.g., model scalability), a transformation pattern(s) needs to be executed multiple times 
to transform the model to a specific state and configuration. 



Executing the generated pattern from Step 4 leads to the Logging element added to all the locations that 
qualify the conditions. 

Step 6 – Correctness Checking and Debugging. Although the location matching the precondition 
guarantees that all transformation actions can be executed with the necessary operands, it does not ensure 
that executing them will not violate the syntax, semantics definitions, or external constraints. Therefore, 
the execution of each transformation action will be logged and model instance correctness checking on 
syntax and static semantics is performed after every execution. If a certain action violates the metamodel 
definition, all executed actions are undone and the whole transformation is cancelled. An execution 
control component has been developed as part of MTBD to control the number of execution times, and 
enable the execution of multiple patterns together in sequence. A debugger has been created (out of the 
scope of this current paper’s context) to enable end-users to track the execution of the transformation 
pattern without being exposed to low-level execution information. 

3.2 Solving Non-functional Property Maintenance Tasks in QoSAML 

The demonstration of adding a QoS transition strategy is performed on the selected Size State, as shown 
in Figure 11. Inside the Size State, we locate the two States with the proper Pri values, and perform the 
operations in List 3. The Action attribute configuration by operation 2 is conducted through the attribute 
refactoring editor, which allows users to access all the model elements and connections in the current 
model editor and load the attribute values to specify the computation process and evaluate the concrete 
value. The attribute refactoring editor also provides a mechanism to let users create a temporary data pair, 
with a given name and a value. The creation of the temporary data is actually used to simulate the user 
input process, and the data can be used in any attribute configuration and computation process through the 
entire demonstration. The creation of the temporary data will be generalized as a user input action and 
will display an input box when the final pattern is executed. 

List 3. Operations performed for Example 2.2 in the demonstration 

Sequence Operation Performed 
1 Add a Transition between  

QoSAMLRoot.OuterState.SizeState.State1 and QoSAMLRoot.OuterState.SizeState.State2 
2 Set Transition.Action =  

QoSAMLRoot.OuterState.SizeState.name + “ = “ +     
      (QoSAMLRoot.OuterState.SizeState.State1.Max.value +   
QoSAMLRoot.OuterState.SizeState.State2.Max.value) / 2  
      = “Size = 125” 

3 Create a temporary data pair  
(Name: guard, Value: “Latency > 25 && FrameRate < 5”) 

4 Set Transition.Guard = guard.value = “Latency > 25 && FrameRate < 5” 

The initial pattern generalized from the demonstration is shown in Figure 12. Similar to Example 2.1, the 
precondition is not accurate enough, because the relationship between the two Pri values are not reflected 
in the demonstration. Moreover, although the two Max elements are included in the pattern, they share the 
same type as Min and Pri (their meta type are all Data), the consequence being that it is possible that the 
execution engine incorrectly uses Min or Pri to calculate the average value, or use Max or Min to compare 
the Pri relationship. Thus, it is necessary to further restrict the Data involved in the pattern with their 
names. The following operations in List 4 are performed in the user refinement step. Operations 5 – 10 
confirm the required Pri data elements and their relationship, while operations 11 – 12 ensure that Max 
data elements exist in the two States. Figure 13 shows the final generated transformation pattern. 



	  
Figure 11. Demonstration of adding a transition and setting up the attributes for the new transition 

List 4. Refinement operations performed for Example 2.2 in the demonstration 

Sequence Operation Performed 
5 Confirm the containment of QoSAMLRoot.OuterState.SizeState.State1.Pri 
6 Confirm the containment of QoSAMLRoot.OuterState.SizeState.State2.Pri 
7 Specify precondition  

QoSAMLRoot.OuterState.SizeState.State1.Pri.name = “Pri” 
8 Specify precondition  

QoSAMLRoot.OuterState.SizeState.State2.Pri.name = “Pri” 
9 Specify precondition  

QoSAMLRoot.OuterState.SizeState.State1.Pri.value  =      
QoSAMLRoot.OuterState.SizeState.State2.Pri.value  - 1 

10 Specify precondition  
QoSAMLRoot.OuterState.SizeState.State2.Pri.value < 5 

11 Specify precondition  
QoSAMLRoot.OuterState.SizeState.State1.Max.name == “Max” 

12 Specify precondition  
QoSAMLRoot.OuterState.SizeState.State2.Max.name == “Max” 

Executing the pattern on any selected States will make the execution engine automatically traverse the 
state and locate all the pairs of included States that satisfy the Pri relationship constraint and contains the 
needed Max elements. This allows the Transition to be added correctly and combined with a user input 
Guard value. 



 

Precondition 
elem1.elem2.elem3.elem4 
elem1.elem2.elem3.elem5 
elem1.elem2.elem3.elem4.elem6 
elem1.elem2.elem3.elem5.elem7 

 

 

elem1: QoSAMLRoot 
elem2: State 
elem3: State 
elem4: State 
elem5: State 
elem6: Data 
elem7: Data 
Actions 
1. Add a Transition between elem4 and elem5 
2. Set Transition.Action = elem3.name + “=” + (elem6.value + elem7.value) / 2 
3. Create a data pair (guard = “Latency > 25 && FrameRate < 5”) 
4. Set Transition.Guard = guard.value 

Figure 12. The initial generalized pattern 

Precondition 
elem1.elem2.elem3.elem4 
elem1.elem2.elem3.elem5 
elem1.elem2.elem3.elem4.elem6 
(elem6.name == “Max”) 
elem1.elem2.elem3.elem5.elem7 
(elem7.name == “Max”) 
elem1.elem2.elem3.elem4.elem8 
(elem8.name == “Pri”) 
elem1.elem2.elem3.elem5.elem9 
(elem9.name == “Pri”) 
(elem8.value == elem9.value – 1) 
(elem9.value < 5) 

 
 
 
 
 

 
 

elem1: QoSAMLRoot 
elem2: State 
elem3: State 
elem4: State 
elem5: State 
elem6: Data 
elem7: Data 
elem8: Data 
elem9: Data 
Actions 
5. Add a Transition between elem4 and elem5 
6. Set Transition.Action = elem3.name + “=” + (elem6.value + elem7.value) / 2 
7. Create a data pair (guard = “Latency > 25 && FrameRate< 5”) 
8. Set Transition.Guard = guard.value 

Figure 13. The final generated pattern after user refinement 



4. Comparison Between MTBD and Traditional Model Transformation Languages 

The MTBD implementation is a plug-in called MT-Scribe that is hosted within the GEMS [13] modeling 
tool. MT-Scribe is triggered by the end user by pressing a “record” button in the model editor. Thus, any 
modeling language defined in GEMS that can be edited in the model editor can apply MTBD to address 
the maintenance of non-functional properties, which means MTBD is a general solution that can be 
applied across multiple DSMLs. 

Using MTBD, users are only involved in editing model instances to demonstrate the non-functional 
property maintenance process and giving feedback after the demonstration. In other words, users only 
participate in Step 1 and Step 4 (Section 3.1). All of the other procedures (i.e., optimization, inference, 
generation, execution, and correctness checking) are fully automated. In both Step 1 and Step 4 where 
users are involved, all of the information exposed to users is at the model instance level, rather than the 
metamodel level. For instance, the demonstration is done using the basic editing operations in the GEMS 
model editor; the attribute configuration is accomplished using the attribute refactoring editor, which 
contains all the concrete attribute values from all the available elements and connections; the containment 
confirmation is simply realized by a one-click operation on the desired model element or connection; and 
the extra precondition is given using the dialog where users can access all the elements touched in the 
demonstration and type the constraints directly. The generated patterns are invisible to users (Figure 9, 10, 
12, 13 are presented for the sake of explanation, which are not visible to users when using MTBD). 
Therefore, apart from the basic knowledge about the domain, users are isolated from the formal and 
abstract metamodel definitions and implementation details. Furthermore, no model transformation 
languages and tools are used in the implementation of MTBD. Thus, users are completely isolated from 
knowing model transformation languages or programming language concepts. 

 
defines Start, FindData1, AddLog; 
 
strategy FindData1() 
{ 
     Atoms()->select(a | a.kindOf() == “Data”)->AddLog(); 
} 
 
strategy AddLog() 
{ 
     declare parentModel : model; 
     declare dataAtom, logAtom : atom; 
 
     dataAtom := self; 
     parentModel := parent(); 
 
     if (parentModel.atoms(“”)->select(m | m.kindOf() == “Action”)->size() >= 1) 
     then  
         logAtom := parentModel.addAtom(“Log”, “LogOnWrite”); 
         logAtom.setAttribute(“Kind”, “On Write”); 
         parentModel.addConnection(“AddLog”, logAtom, dataAtom); 
     endif; 
} 
 
strategy Start() 
{ 
     rootFolder().findFolder(“ComponentTypes”).models().select(m | m.name() 
         .endWith(“impl”))->FindData1(); 
} 

Figure 14.The ECL code to implement Example 2.1 [23] 	  

defines AddTransition, FindConnectingState, ApplyTransitions; 
 



strategy AddTransition(stateName, prevID, guard : string; prevPri : integer) 
{ 
     declare pri, minVal, maxVal, avgVal : integer; 
     declare endID : string; 
     declare aConnection : node; 
     findAtom("Priority").findAttributeNode("InitialValue").getInt(pri); 
     if(pri == prevPri + 1)  
     then 
         getID(endID); 
         findAtom("Min").findAttributeNode("InitialValue").getInt(minVal); 
         findAtom("Max").findAttributeNode("InitialValue").getInt(maxVal); 
         avgVal := (minVal + maxVal) / 2; 
         <<CComBSTR action(stateName);    // exit statement to C++ 
         action.Append("="+XMLParser::itos(avgVal)); >> 
         aConnection := 
         parent().addConnection("Transition", "Transition", "Transition", 
                                endID, prevID); 
         aConnection.addAttribute("Guard", guard); 
         aConnection.addAttribute("Action", action); 
     endif; 
} 
 
strategy FindConnectingState(stateName, guard : string) 
{ 
     declare pri : integer; 
     declare startID : string; 
     findAtom("Priority").findAttributeNode("InitialValue").getInt(pri); 
     getID(startID); 
     if(pri< 4)  
     then 
         parent().models("State")-> 
         forAll(AddTransition(stateName, startID, guard, pri)); 
     endif; 
} 
 
strategy ApplyTransitions(stateName, guard : string) 
{ 
     declare theModel : node; 
     theModel := findModel(stateName); 
     theModel.models("State")->forAll(FindConnectingState(stateName, guard)); 
} 

Figure 15. The ECL code to implement Example 2.2 (from [16]) 

To compare MTBD to traditional usage of transformation languages, we considered MTBD with the 
actual transformation rules used to specify the same transformation tasks for the two motivating examples 
[15][16]. These transformation rules were used by C-SAW (Constraint-Specification Aspect Weaver) 
[15][23], as shown in Figures 14 and 15. We compare the two approaches by analyzing the specific 
implementation differences as well as some general development summaries in Section 4.1 and 4.2. As a 
special type of MTLs, we discuss the differences and advantages of MTBD over graphical MTLs in 
Section 4.3. 

4.1 Comparison on specific implementation differences between MTBD and C-SAW 

Identifying the desired locations of the non-functional properties that must be maintained is very easy 
using MTBD (i.e., a user just selects an example of the specific location using an instance model). In the 
transformation rules sent to C-SAW, the location of the non-functional properties is defined by extended 
OCL constraints (e.g., forAll(), select()) together with APIs provided in the transformation language 
(e.g., models(“State”), atoms()). The process becomes more complex when the different APIs are 
called and used together in a single statement. By contrast, the main location specification in MTBD is 
automatically handled in the demonstration process. It is the recording engine that detects the location of 



the operation happening and generalizes the location context information, so that users focus on selecting 
a desired location without being aware of a generalized locating process. 

The specific constraints on the preconditions using MTBD are more intuitive and direct than writing 
transformation rules. By selecting and clicking on the desired model elements or connections, constraints 
on the structure can be specified. The location and selection of the attribute in MTBD is realized by 
clicking on the element in the precondition specification dialog and providing much simpler expressions 
based on the instance model. However, in C-SAW, OCL expressions and condition statements need to be 
applied (e.g., if …select(m | m.kindOf() == “Action”)->size() >= 1). When it comes to defining 
the precondition on attribute values, we believe that MTBD is simpler than using conditional statements 
that access the modeling tool APIs. For example, the following is an expression that would be needed in a 
typical model transformation rule using the traditional approach: 

findAtom("Priority").findAttributeNode("InitialValue").getInt(pri); 

Non-functional property maintenance and composition are implemented using model manipulation APIs 
in C-SAW (e.g., parent().addConnection("Transition", "Transition", "Transition",endID, 
prevID), aConnection.addAttribute("Guard",guard)), while using MTBD, the composition process 
is demonstrated using the basic operations in the model editor (i.e., add, delete, update attributes). 
 
4.2 Comparison on development efforts between MTBD and C-SAW 

We have not performed a formal user study on the comparison between the two approaches. However, 
some general summaries related to development using the two approaches are given. Table 1 lists the 
concrete effort to create the deliverable transformation artifact, indicating that with the demonstration 
approach, only a small number of operations are needed using MTBD to accomplish the exact same tasks 
that were done by writing dozens of lines of transformation code. To better measure the effort, we asked 
two users to accomplish the two tasks using these two approaches so that we could measure the time 
spent using each approach. The user who used MTBD was a trained MTBD user, while the other user 
who wrote the transformation rules is one of the C-SAW co-authors. The result in Table 2 shows that 
using MTBD to solve these two examples is 10 times faster than writing C-SAW rules. This fast 
development cycle enables users to quickly test patterns and make modifications. For instance, in order to 
determine if a generated pattern is too general or not, users need to execute the pattern and test the result 
just as testing programs are tested. In some cases, modifications have to be made to fix errors followed by 
re-executing the new pattern. MTBD shortens these development iterations. 

Table 3 describes the prerequisite knowledge for each approach. For MTBD, the development 
environment is integrated in the modeling tool itself, so users only need to know a few additional buttons 
to use MTBD. The demonstration is performed using the same model editing operations, so the only new 
things to learn are the 3 types of UIs for inputting pattern refinements. For C-SAW, the development 
environment is a plug-in to GME, and it requires a regular textual editor to specify the transformation 
rules. Learning C-SAW requires learning the new syntax and semantics of the language, including a 
number of new keywords, program structures and functions. Finally, we identified the possible errors that 
could happen in the development process using the two approaches. For MTBD, users might perform 
incorrect editing operations or give invalid expressions in the precondition specification and refinement. 
The base pattern and minimum preconditions are automatically generated at the background, so there is 
no way that users can make mistakes on this part. For C-SAW or nearly any other textual or visual 
transformation programming language, the transformation rules could suffer from general programming 
issues such as the syntax errors and semantics bugs in the logical perspective. 

 

Example MTBD C-SAW Rules 



Example 2.1 3 editing operations 
2 precondition refinement 
(1 mouse-click on 1 element, 1 string 
expression constraint on an attribute) 

23 SLOC 

Example 2.2 4 editing operations 
8 precondition refinement 
(2 mouse-click on 2 elements, 4 string 
expression constraints on 4 attributes, 2 
numerical constraints on 2 attributes) 

40 SLOC 

Table 1. The comparison of development effort to solve the two motivating examples 

 

Example MTBD C-SAW Rules 
Example 2.1 30 seconds for demonstration 

1.5 minute for refinement 
20 minutes 

Example 2.2 40 seconds for demonstration 
4 minutes for refinement 

35 minutes 

Table 2. The comparison of development time to solve the two motivating examples 

 

MTBD C-SAW  
1. MTBD development environment 
2. How to demonstrate by model editing 
3. How to perform refinement (i.e., the 
usage of 3 types of refinement UIs) 

1. C-SAW syntax and semantics 
including 12 keywords, 5 main 
program structure, and 4 functions. 
2. C-SAW development environment 

Table 3. The comparison of prerequisite knowledge to solve the two motivating examples 

 

MTBD C-SAW  
1. Demonstrate with the wrong editing 
operation 
2. The incorrect specification on the 
attribute precondition expressions 

1. General programming language 
syntax error. 
2. Semantics error or bugs on the 
transformation logic 

Table 4. The comparison of possible errors to solve the two motivating examples 

4.3 Comparison with graphical MTLs 

Besides the textual C-SAW transformation comparison, MTBD also shows advantages over general 
graphical MTLs (e.g., GReAT [2]). Graphical MTLs specify the transformation rules by configuring the 
source model in the left side and the target model in the right side. The transformation engine matches the 
source model and replaces it with the target model. Compared with the textual MTLs, graphical MTLs 
provides a more visual and straightforward approach to specify the rules. However, in order to specify a 
transformation rule using graphical MTLs, users must map the concrete model elements with the concrete 
syntax of a certain domain to the syntax of the graphical MTL they choose. Depending on the specific 
domain and MTLs, the syntax and semantics gap of converting the desired model transformation scenario 
into a rule varies. Additionally, the rules are still defined using metamodel definitions even though they 
are represented graphically. Similar to graphical MTLs, the execution engine of MTBD applies a similar 
semantics to match a precondition and carry out the execution process, but MTBD hides the left side and 



right side rules (the right side rules in MTBD are in the format of an operational change list as described 
in Section 3) and avoids the gap by the demonstration process. Users specify the transformation on 
concrete model instances by directly editing, without having to convert the idea into another syntax 
format.  

Apart from the general graphical MTLs, some innovative new graphical MTLs (e.g., MATA [33]) 
provide and improved user experience and ease of use by applying concrete syntax to specify the rules 
without the knowledge of metamodel definitions, as well as combining the left hand side rule and right 
hand side rule together into a single view. This type of graphical MTLs shows similar user experience as 
MTBD. However, there are still some fundamental differences between the two approaches as follows: 

First, MTBD is not designed as a language or programming language, but as a new user experience and 
interface integrated with the model editing environment to perform model transformations. Thus, 
programming concepts are avoided in the MTBD process. Users demonstrate transformations rather than 
writing programmatic rules to specify them. The underlying tool takes care of deriving the programmatic 
expressions to generalize the demonstrated transformation. Some of the expressions used in the 
precondition specification are programmatic in nature, but have no conditional logic, loops, or complex 
expressions, and their usage is minimized through intuitive UIs (e.g., dialog showing the related model 
element and connections) to assist users’ specification. By comparison, graphical MTLs such as MATA 
are still programming languages based on a grammar or specific metamodel (e.g., UML), with its own 
syntax and semantics. Although it is really easy to use, users still need to have the basic knowledge about 
a programming language or graph transformations to correctly utilize the language. For many domains, 
users do not have sufficient experience with programming language or graph transformation concepts to 
write transformation rules. 

Furthermore, MTBD is designed to be at a higher level of abstraction than the graphical MTLs. This 
results in the fact that a lot of low-level implementation details are hidden (e.g., patterns are generated and 
executed based on graph theories in MTBD, but are invisible to end-users). On the other hand, the higher 
level of abstraction actually means that not all possible transformations can be expressed. We did not 
design MTBD to support all types of model transformation and all possible non-functional aspect 
modeling activities. A lot of tasks that can be easily specified using regular MTLs cannot be directly 
demonstrated using MTBD (e.g., using max/min in precondition specification, non-functional properties 
weaving based on multiple metamodels). However, we target the most practical and commonly used 
transformation scenarios in different domains and try to ensure the improved user experiences. 

Finally, we would also like to highlight the fact that the target user group of MTBD is a little different 
from the general MTLs. We expect the main users of MTBD to be domain experts using DSMLs to build 
models, who do not necessarily have any programming or graph transformation background. For 
computer scientists or programmers, we believe that they may find it more efficient and comfortable to 
write specific rules using MTLs to accomplish certain tasks rather than using demonstration based 
approach, but for users without programming background, MTBD offers a feasible alternative for them to 
finish certain basic model transformation tasks in a potentially simpler way without a steep learning curve. 
With so many DSMLs being emerging, this group of users is becoming increasingly important in model-
driven engineering community. 

  

5. Related Work 

Non-functional system properties in DSMLs have been well-investigated [5][6], ranging from the 
specification of non-functional properties to the measurement and analysis of the non-functional 
properties. Troya et al. [30] regard non-functional properties as dynamic semantics and specify the 
properties using domain-specific observers. Boulanger et al. [7] propose a multi-view modeling approach 



to model both functional and non-functional viewpoints. Berardinelli et al. [4] apply a unifying 
conceptual framework to model context-aware aspects of mobile software systems. Yrjönen and 
Merilinna [35] propose a non-functional properties framework to check the satisfaction of specified 
requirements. Kupfer and Hadar [21] present a methodology to achieve predefined non-functional 
properties by understanding and representing deployment requirements. 

Regarding the maintenance of non-functional properties, the current main practice is to use MTLs. For 
example, Paige et al. [26] propose to use Epsilon [10] to capture failure behavior. Of course, the 
traditional model transformation languages and tools are also applicable to support automating the 
maintenance of non-functional properties in DSMLs. The most direct way is to use general-purpose 
porgraming language (GPL) such as Java or C++ to access and manipulate the internal structure of a 
model instance using an API provided by a host modeling tool [28], but this approach is not feasible for 
end-users who do not have programming experience. The power of a transformation is often restricted by 
the supported API within the modeling tool. 

Many modeling tools support importing and exporting model instances in the form of XMI. Therefore, it 
is also possible to use existing XML tools (e.g., XSLT [32]) to manage the non-functional properties 
outside of a modeling tool using XMI as an intermediate representation. However, the problem of XSLT 
is that it is tightly coupled to XML, requiring experience to define the transformations using concepts at a 
lower level of abstraction than DSMLs. 

Model transformation languages are the most popular approach to support non-functional property 
maintenance, because the process of maintaining the properties in the base model can be considered as a 
model transformation. Textual MTLs specify the transformation rules using high-level expressions and 
statements. C-SAW [15], ATL [18], and QVT [25] are representative examples of powerful MTLs that 
can be used to manage the weaving of models. Moreover, graphical MTLs (e.g., GreAT, VIATRA [3]) 
also exist to convert non-functional property maintenance tasks into a graph transformation problem by 
utilizing graph matching and rewriting techniques. Compared with textual MTLs, it is easier to define 
specific model patterns using graphs, leading to a simplification of the transformation rules in many cases. 
However, whether a MTL has a high level of abstraction, graphical or textual, its usage always suffers 
from the challenges mentioned in Section 1 (i.e., the steep learning curve and need to understand the 
details of the metamodel). 

An alternative approach to simplify the maintenance of non-functional properties is to use end-user model 
transformation approaches, as proposed in this paper. To address the challenges inherent from using 
MTLs, Model Transformation By Example (MTBE) [31][34] was developed so that instead of writing 
transformation rules manually, users are asked to build a prototypical set of interrelated mappings 
between the source and target model instances, and then the metamodel-level transformation rules are 
semi-automatically generated. This approach simplifies model transformation implementation to some 
extent, but is not appropriate for non-functional property maintenance tasks because: 1) it focuses on 
direct concept mapping between two different domains rather than maintaining property models within 
the same domain; 2) they do not support attribute transformation, preventing the automatic setup of 
attributes needed in many maintenance tasks.  

Another work has been described by Brosch et al. [8], which uses an example-based approach to address 
model refactoring tasks. Because it supports model transformation within the same domain, it also has 
potential to be applied in non-functional property maintenance scenarios. However, the user feedback step 
may not be at the proper level of abstraction in their approach, and complex attribute transformation is not 
provided. 

EMF Refactor [11] is a new open source component that provides tool support for generating and 
applying refactoring for models based on EMF. The capabilities of EMF Refactor simplify the process of 
adding new refactoring functions in EMF editors and supporting model evolution activities, which can be 
used also to address the maintenance of non-functional properties. However, the initial definition of the 



maintenance rules is based on EMF Tiger [12], a graphical MTL, which is based on writing model 
transformation rules.	  

6. Conclusion and Future Work 

In this paper, we presented an end-user approach to enable general users (e.g., domain experts or non-
programmers) to manage the non-functional properties in different DSMLs without knowing model 
transformation languages or metamodel definitions. The MTBD approach is based on demonstrations 
made in a modeling tool by the end-user, which are then generalized. We have shown through two 
examples how non-functional properties can be introduced using demonstrations provided by a domain 
expert. 

As future work, we will investigate using MTBD to support the maintenance of non-functional properties 
across different domains and metamodels (e.g., separation of common non-functional properties in a way 
that can be reused across multiple modeling languages). For instance, the base model may need to be 
transformed to a new domain first and then apply the non-functional properties, but the current 
implementation of MTBD cannot handle this type of maintenance because of the nature of supporting 
only endogenous model transformation in MTBD. Extending the MTBD idea to exogenous 
transformation will enlarge its applications in practice. 

Due to the higher level of abstraction, which allows domain experts to manage non-functional properties, 
MTDB is less powerful and expressive than a well-defined transformation language. Some functions (e.g., 
getMax(), getMin()) can be simply realized using function calls or a customized part of code, which can 
be very challenging to demonstrate. Therefore, in order to enhance the functionality of MTBD, those 
commonly used functions in the maintenance of non-functional properties will be identified, and 
integrated in the demonstration and user refinement steps. Furthermore, there are also some features that 
can be done to improve the demonstration user experience. For instance, when confirming a containment 
of an element in the user refinement step, it would be a good feature to automatically include the basic 
constraints on not only the element type but also the attributes (e.g., name). 
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