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Abstract

Recent work in the field of medical simulation have led to realadvances in the mechanical simulation of organs.
However, it is important to notice that, despite the major role they may have in the interaction between organs,
the connective tissues are often left out of these simulations. In this paper, we propose a model which can rely on
either a mesh based or a meshless methods. To provide a realistic simulation of these tissues, our work is based
on the weak form of continuum mechanics equations for hyperelastic soft materials. Furthermore, the stability of
deformable objects simulation is ensured by an implicit temporal integration scheme. Our method allows to model
these tissues without prior assumption on the dimension of their of their geometry (curve, surface or volume), and
enables mechanical coupling between organs. To obtain an interactive frame rate, we develop a parallel version
suitable for to GPU computation. Finally we demonstrate theproper convergence of our finite element scheme.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Physically based modeling

1. Introduction

Surgical simulation based on virtual-reality techniques and
its application to training has been a subject of research for
the last two decades. Yet, the current commercial simulators
still suffer from a lack of realism. It mainly comes from the
difficulties to accurately simulate the deformations of soft-
tissues in real-time. Some recent results allow to improve
both precision and performance of simulations while offer-
ing the opportunity to integrate patient-specific data (mostly
issued from medical imaging) [DPP12]. As a result new ap-
plications like pre-operative planning or assisting toolsfor
surgeons can be envisioned.

The common requirement for these applications is to im-
prove precision and interactivity by both enhancing biome-
chanical models and increasing the efficiency of computa-
tions. A majority of recent work deals with specific organs
like the liver [MHC∗10], the brain [HWM07] or even the
pelvic system [RRD∗11]. One of the main difficulties in
these models is to impose proper boundary conditions.

So far, very little work has been dedicated to the simula-
tion of the interactions between organs. In [CJA∗10], these
interactions are simulated as frictional contacts and solved
using an optimized contact resolution method. Though it
constitutes a real advance by its ability to simulate multiple

interacting organs, this model is not completely realistic. In-
deed, organs are rarely directly in contact. Some of them are
surrounded and connected by fibers known as connective tis-
sues orfasciae, which are fibrous biological tissues compris-
ing tendons and ligaments. The liver, for example is linked
to the stomach by the hepatogastric ligament and to the di-
aphragm by the falciform ligament. However, when these
interactions are simulated using frictional contacts, these or-
gans slide on each other whereas they should be, at least
partially, linked by these connective tissues.

One of the difficulties in the modeling of these tissues re-
sides in the fact that they don’t have uniform geometrical
properties. Since they fill the volume between certain or-
gans, they can exhibit both volumetric and very thin parts for
the same anatomical structure. Creating volumetric meshes
for such 3D domains can be difficult: to accurately restitute
thin parts of a model, meshing would require using small
elements. Thus, it would lead to a higher number of ele-
ments and/or ill-conditioning problems due to bad shaped el-
ements, increasing the computational cost. Moreover, some
of the connective tissues may have complex geometries, they
can appear as an heterogeneous volume of soft tissues con-
stituted by a random arrangement of fibers shaped like a
dense web. They can contain small void parts and not fill
entirely the volume they occupy. Thus, they cannot be con-
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sidered as a totally continuous volume of matter. For these
reasons, they are often ignored in the simulations. Yet, they
play a major role by influencing boundary conditions of the
surrounding organs.

Hence, connective tissues need a simulation method of-
fering more liberty on the discretization of the domain and
being able to impose proper boundary conditions for the sim-
ulation of the organs. In addition, a low computational costis
required, to not decrease the performance of the simulation
of the organs, but while still keeping accurate results.

In this paper, to improve the realism of simulations, we
develop a numerical method able to simulate connective tis-
sues and the mechanical coupling they provide between or-
gans. For this purpose, we propose an approach in which
connective tissues are modeled as an interface simulated
with six degrees of freedom (DOF) mechanical points. This
approach relies on atotal Lagrangianformulation and can
be used as either a mesh based or meshfree method. Our
work enables mechanical coupling between organs as well
as the propagation of boundary conditions between organs
which are not directly in contact. Mechanical coupling is
made easier in that we use the same type of degrees of free-
dom as a rigid objects, which can be used to simulate bones,
but also shell and beam elements, that can be used to sim-
ulate hollow organs (like bladder, stomach . . . ), and liga-
ments. Thus, our method offers a wide range of mechani-
cal coupling. In order to achieve real time performance, we
propose a parallel implementation on GPU.

1.1. Previous work

In the field of the finite element method, the handling of large
deformations due to geometrical non-linearities (i.e.local ro-
tations), has been proposed by Felippa in [Fel00] with the
corotationalmethod. By this method, the motion of the ele-
ments is decomposed into a rigid rotation and a deformation.
In [GW08], Georgii et al. proposed a corotational method
based on an energy minimization formulation to extract both
motions, associated with a multigrid solver. The modeling of
hyperelasticity is a subject of major importance in the field
of the surgical simulation seeing that most of biological tis-
sues exhibit this property. In [MHC∗10] Marchesseauet al.
propose an hyperelastic model for liver simulation. The total
Lagrangian approach is quite commonly used in the simu-
lation of elastic objects as in [MJLW07] – where Miller et
al. use this method to simulate organs modeled with mesh
objects – or as in [HWJM10] where Hortonet al. use a
total Lagrangian approach along with a meshless method.
Both of these work rely on an explicit time integration. How-
ever, even though they are quite fast, explicit time integrators
exhibit several disadvantages, especially instability issues.
Very small time steps, especially with stiff or heterogeneous
materials and detailed meshes, are required to maintain sta-
bility [ BW98].

The use of nodes with six degrees of freedom has been

proposed several times and is commonly encountered in
the simulation of beams and shells. The Cosserat’s theory
[CC09], which is extensively used for beams and shells, is
based upon a 6-DOF description of the deformation field.
However, their use for the simulation of volumetric de-
formable objects is less common. In [MHTG05] Müller et
al. use a method known asshape matchingwhere degrees
of freedom are partitioned in several groups. For each of
these groups, an optimal rotation and a translation are es-
timated with respect to the rest configuration and a set of
springs move the vertices to their rest position. This idea is
also used in [CM05], the difference being that Chentanez
et al. use a set of oriented particles along with a general-
ized shape matching to animate deformable models. How-
ever, their methods does not rely on physical laws and, al-
though they handle rotations, they are still based on 3-DOF
nodes. Mixed mesh based/meshfree approaches have also
been proposed. An hybrid method has been used by Sifakis
et al in [SSIF07] where the volumetric mesh of simulated ob-
jects embeds a point cloud to ease the handling of collisions
and fractures by avoiding objects remeshing.

GPUs are increasingly used in physically-based simula-
tions because they enable the simulation of more detailed
models and faster computations. In [ACF11], Allard et al.
proposed a simulation of deformable bodies on GPU using
tetrahedral meshes relying on an implicit time integration.
In [DGW11] Dick et al. proposed a GPU-based approach
of a finite element method relying on hexahedra used along
with a multigrid solver. A review of the use of GPU-based
approaches in surgical simulation is given in [SM06].

Connective tissues simulation is briefly treated in [Sis12]
but only from a collision handling point of view. To the best
of our knowledge, the simulation of the mechanical behavior
of connective tissues has never been treated.

Our method is similar to [GBFP11], in which Gilles et
al. propose a method based ondual quaternionsto simu-
late deformable objects according to the continuum mechan-
ics. Originally designed to simulate very sparse deformable
models, this method offered a limited convergence. How-
ever, using simple quaternion (instead of dual quaternion
which increases the number of DOF per node) along with a
massively parallel implementation, it is now possible to use
many more DOF while keeping the simulation at interactive
frame rate. In addition, by using nodes with six degrees of
freedom, our method is directly compatible with models that
use the same type of degrees of freedom like rigid bodies and
shell or beam elements, which makes mechanical coupling
between these models easier.

2. Simulation

2.1. Kinematics

The objects are discretized by two kinds of primitive: a set
of samples, used to discretize the objects volume, and a set
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of frames. Each frameqi has six degrees of freedom (3 in
translation and 3 in rotation):

qi = [x1 x2 x3 r1 r2 r3]
t = [xi r i ]

t (1)

wherexi is the position andr i the rotation vector correspond-
ing to the orientation of the framei (in practice, the rotation
part is coded using quaternions). Samples have only 3 DOF.
Considering that we use atotal Lagrangianformulation, the
global position of a sample is expressed with respect to its
local position in each frame coordinate system, in the rest
(undeformed) configuration. Thus, the position of the sam-
ples is entirely controlled by their surrounding frames. The
position of a samples locally to a framei in the rest config-
uration is given by:

l̄ is = R̄t
i [p̄s− x̄i ] (2)

whereR̄i andx̄i are respectively the rotation matrix and the
position of framei, and p̄s is the sample’s coordinates in
the rest configuration. The coordinates of a samples in the
deformed configuration is given by:

ps = ∑
i

wi(p̄s)
(

xi +Ri l̄ is
)

(3)

with wi(·) being the value of the shape function associated
with the samples and the framei, andxi andRi the coor-
dinates and the rotation matrix corresponding to the orienta-
tion of the framei in the deformed configuration. The shape
functions are used to interpolate the displacements values–
which are only known at the frames – at the samples loca-
tion. With a mesh based scheme, shape functions generally
rely on barycentric coordinates of the elements. In a mesh-
free approach, many shape functions can be used, like the
MLS as in [BLG94], compactly supported radial basis func-
tions as in [LJ95] or in the SPH [DC96] or evenNatural
Neighbors Interpolation.

Depending on whether the method is used with a mesh
based or meshfree scheme, the sampling method varies.
With a mesh based scheme, the samples are placed inside the
elements of the mesh using barycentric coordinates. Multi-
ple samples can be placed for each element. The frames are
placed at each vertex of the geometric mesh. With a mesh-
free scheme, a boundary surface mesh is used to provide
the geometrical domain of the tissues. Using a voxelization
of this mesh, two different samplings are generated using a
Poisson distribution[Bri07] based on the inter-particle dis-
tance. The first one is used as frames coordinates whereas the
second one, with a smaller inter-particle distance, is usedas
samples coordinates. Note that initial the frames orientation
has no influence on the computations as we only track the
differences between undeformed and current configurations.
For this reason, the frames are initially aligned with world
axis.

2.2. Dynamics

2.2.1. Internal forces

This approach is based upon continuum mechanics which
establishes the relationship between a displacement field
(i.e. deformations experienced at each point of the domain)
and the associated elastic forces, according to the following
scheme:

ui
︸︷︷︸

displacement

→ Fi
︸︷︷︸

deformation
gradient

→ L i
︸︷︷︸

strain
tensor

→ Si
︸︷︷︸

stress
tensor

→ f i
︸︷︷︸

internal
force

During the simulation, internal forces are only applied on
the frames. The samples are used to compute the deforma-
tion gradient, as well as strain and stress tensors. The calcu-
lation of the frame’s internal forces is achieved by integra-
tion on the volume of the object. Thus, the force to apply
on a frame is calculated by accumulating the stress of the
neighboring samples.

In this article we use a total Lagrangian formulation, in
which all the displacements, at any time during the simu-
lation, are evaluated with respect to the rest configuration.
The total Lagrangian approach is well adapted to elastic ob-
jects which always retrieve their rest shape. The calculation
of the internal forcesf relies on a variational formulation (i.e.
a weak form similar to thevirtual work theorem):

δW = δqt · f = δqt
∫

Ω

∂L t

∂q
{S}dΩ (4)

with

L =
1
2
(FtF− I) (5)

whereδW represents the work’s variation,L is theGreen-
Lagrangestrain tensor andF is the deformation gradient.
{S} is the secondPiola-Kirchhoff (PK2) stress tensor in
Voigt notation (see [BLM00], appendix 1) andΩ is the do-
main of the object. As we are considering nonlinear elas-
ticity (large deformations), we choose the Green-Lagrange
strain tensor, which is widely used for modeling hyperelas-
ticity in a total lagrangian formulation. This choice is per-
tinent in that connective tissues with thin parts are likelyto
experience large deformations with geometrical nonlineari-
ties (local rotations). Thus, the rotational invariance ofthis
tensor makes a good fit for our purpose. The strain tensor
derivative with respect to the degrees of freedom is given
by:

∂L
∂q

=
1
2

(
∂Ft

∂q
F+Ft ∂F

∂q

)

(6)

The first step in the internal forces computation is to cal-
culate the deformation gradient for each sample,i.e. the spa-
tial derivative of displacementsFs =∇ps. Then, by looking
at equation (2) one can notice that:

∂l̄ is
∂x̄

=
∂(R̄t

i [p̄s− x̄i ])

∂x̄
= R̄t

i (7)
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Thus, the deformation gradient at a samples, which is a
3×3 matrix, is obtained by differentiating equation (3) and
by using the result of equation (7):

Fs =
∂ps

∂x̄
= ∑

i

[

∇wis

(

xi +Ri l̄ is
)t

+wisRiR̄
t
i

]

(8)

with wis = wi(p̄s).

In order to calculate the Green-Lagrange strain tensor
derivative of equation (6), the deformation gradient has to
be differentiated with respect toq. By doing so, one can ob-
tain the variation of deformation gradient:

δFs =
∂Fs

∂q
δq (9)

Those 9 values are expressed with respect to an infinitesi-
mal variation of both the position and the orientation of the
framesδq, i.e. with respect toδx andδr (δqt = [δx δr ]t ).
Thus, for each coefficienti, j of δFs one obtains:

δFs
i j =∑

n

∂wns

x̄, j
δxi

n −

(
∂wns

x̄, j

[
Rn l̄n ∧

s
]i,

+

wns

[

Rn
[
R̄t

n
], j ∧

]i,
)

·δrn

(10)

where lowercase indices correspond to a spatial coordinate
andn identifies a frame.

Rnl̄ns corresponds tōlns rotated by Rn, [v∧] is the
antisymmetric-matrix representation of the cross product,
[A]i, and [A], j are respectively theith row and thej th col-
umn of the matrixA.

By rewriting the 9 values ofδFs as a column vector, the
equation (10) can be expressed as a matrix-vector product
for each interacting frame/sample pair so thatwis > 0 :








δFs
11

δFs
12
...

δFs
33







= ∑

i
Bi,s δqi (11)

with δqt
i = [δxi δr i ]

t . The matrixB, given in appendix, is a
9×6 matrix.

Having the derivative of the deformation gradient, the
strain tensor derivative∂L i,s/∂q, can be calculated. One
can use equations (6) and (11) to expressδL i,s = ∂L i,s/∂q
as a matrix vector product. The resulting vector is a 6-
dimensional vector sinceδL i,s is a symmetric matrix. Hence,
for δL i,s

jk with j = 1 andk = 2:

δL12 =
(

[δFt ]1, · [F],2+[Ft]1, · [δF],2
)

=
(

[δF11 δF21 δF31] · [F]
,2+[Ft ]1, · [δF12 δF22 δF32]

)

(12)

Furthermore, from equation (10):

[δF11 δF21 δF31] =
[

[B]1, ·δqi [B]
4, ·δqi [B]

7, ·δqi

]

(13)

and

[δF12 δF22 δF32] =
[

[B]2, ·δqi [B]
5, ·δqi [B]

8, ·δqi

]

(14)

substituting equations (13) and (14) into equation (12) and
factoring byδqi one can obtain:

δL12 =
[

F12[B]
1,+F22[B]

4,+F32[B]
7,

+ F11[B]
2,+F21[B]

5,+F31[B]
8,
]

·δqi

(15)

Then, rewriting the 6 values ofδL i,s in Voigt notation one
finally has:









δL i,s
11

δL i,s
22

...
2δL i,s

12









= ∑
i

M i,s δqi (16)

where each line ofM i,s has the same form as the equation
(15).

By substituting equation (16) into equation (4) and then
dividing by δq one obtains the internal force to be applied
on a frame:

f =
∫

Ω
M t{S}dΩ (17)

However, equation (17) is given for the continuous case,
meaning that this integral should be evaluated on the whole
domain covered by the object. To enable the computation of
internal forces, this equation has to be converted into a dis-
crete form. To do so, samples will be used, as they discretize
the object’s volume. Thus, the discrete expression of the in-
ternal force to be applied at a framei is given by:

f i =−∑
s

[

M i,s
]t
{Ss}vs (18)

wherevs is the volume associated to the samples andSs in
Voigt notation, is its stress tensor. The volume of the sam-
ples should be chosen so that the sum of the samples vol-
umes equals the total volume of the object. The model used
for stress computation is an hyperelastic model known as
theSaint Venant - Kirchhoffmodel. This model generalizes
theHooke’s lawto large deformations. However, our formu-
lation is compatible with more advanced constitutive laws.
The expression of the PK2 stress tensor is given by:

S= λ tr(L)I +2µL (19)

whereλ andµ are the Lamé coefficients which depend on
the material to be simulated.

2.2.2. Implicit integration

Solving force equation is a non-linear problem which re-
quires the tangent matrix linearization in order to be solved.
Once it is linearized, the problem is reduced to multiple
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linear problems. These linear problems are then solved us-
ing aconjugate gradientsolver which is aNewton-Raphson
like method. Thanks to the implicit time integration, larger
time steps can be used while keeping a stable simulation.
The linearization of internal forces means that they have
to be differentiated with respect to the frame’s degrees of
freedom. This amounts to expressing the variation of the
force according to an infinitesimal variation of stress. From
[BLM00](§6.4.2) the internal force derivative can be sepa-
rated in two parts:

δf int = δfmat+δfgeo (20)

whereδfmat is thematerial tangent stiffnessandδfgeo is the
geometric stiffness. The expression of the material tangent
stiffness is given by:

δfmat =

∫
Ω

M t{δS}dΩ (21)

with {δS} being the stress tensor derivative in Voigt nota-
tion:

{δS}= C{δL} (22)

whereC is the matrix associated to the Hooke’s law. As in
the previous section, this equation has to be discretized tobe
integrated, resulting in:

δfmat
i =−∑

s
M i,s ∆Ssvs (23)

with:

∆Ss = ∑
i

CM i,s δqi (24)

According to the standard product differentiation rule, the
expression of the geometric stiffness is given by:

δfgeo=
∫

Ω
δM t {S}dΩ (25)

or in the discrete case:

δfgeo
i = −∑

s

[

δM i,s
]t {

Ss}vs (26)

with δM = ∂M/∂q.

By looking at equation (26), one can notice that the ma-
trix M has to be differentiated with respect toq. To better
illustrate the process of this differentiation, we can examine
the last component of the geometric stiffness (i.e. δfgeo) as
an example:

fgeo
i6

=−∑
s

[

δM i,s
],6

·
{

Ss}vs (27)

In other words, the 6th component of the geometric stiffness
is the dot product of the 6th column ofδM by S. Without loss
of generality, theith component of the geometric stiffness is
the dot product of theith column ofδM andS. Developing

equation (27) leads to:

fgeo
i6

=−∑
s

[
Ss

1(δF11B16+F11δB1,6+ · · ·

+ Ss
6(· · · + δF31B86+F31δB86)

]
vs ·δqi

(28)

with δBi j = ∂Bi j /∂q. One can notice that equation (28) in-
volves the deformation gradient derivatives, which are al-
ready known by evaluating equation (11), but also the deriva-
tives of theB matrix coefficients. LetδB16 = [δBx

16 δBr
16],

the concatenation of two 3-dimensional vectors. Since the
derivative of all the coefficients of the right half ofB have
the same form, we can differentiateδBr

16 as an example:

δBr
16 =−

∂w
∂x

δ
(

Ri l̄ is
)

y
−wδ

(
Ri [R̄

t
i ]
,x)

y (29)

where(Ri l̄
i
s)x is thex component of the vectorRi l̄ is. Pro-

ceeding with the differentiation results in:

δB16 =−
∂w
∂x

[

−R[l̄ i ∧s ]
]2,

−w
[
−Ri

[
[R̄t

i ]
,x ∧

]]2,

=
∂w
∂x

[

R[l̄ i ∧s ]
]2,

+w
[
Ri

[
[R̄t

i ]
,x ∧

]]2,
(30)

andδBx
16 is a null 3-dimensional vector.

The differentiation all the coefficients of the left half of the
B matrix results in a null vector. Moreover, on the right half,
the differentiation of nine coefficients results in a null vector.
Because the right half of theB is built using antisymmetric
matrices (see appendix), some of the coefficients on that half
are merely the opposite of one another (for instance,δB16 =
−δB74). As a result, the right half only includes nine unique
derivatives.

3. GPU implementation

The GPU implementation of this method is achieved using
CUDA. Before the simulation is run, during the initializa-
tion step, the shape function values are precomputed thanks
to the total Lagrangian formulation. Indeed, forces are com-
puted with respect to the rest configuration, thus, so are the
shape functions. These data are stored in structures, which
are described in the next subsection.

In this section, the data structures needed by computations
are first introduced. Then we describe force and force deriva-
tive computations. At last, we discuss some concepts of this
implementation.

3.1. Data structures

Expressing the problem using a total Lagrangian formulation
allows us to precompute the values of shape functions. These
values are stored in a table containing the following data: the
value and the gradient of the shape function at each neigh-
boring frame as well as their index. In the same manner, a
reverse table is built. This second structure, shown on figure
(1) is an indirection table presenting, for a given frame, the
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Neighboring samples 

start indices
0 3 5 nn-3

Sample's indices

Frame's indices 0 1 2 n-1

Figure 1: Reverse indirection table.

number of neighboring samples (i.e. interacting samples) it
has, as well as their indices. The aim of this second table is
to enable the summation of the forces produced by the stress
experienced by the neighboring samples.

3.2. Force and force derivative computation

Forces and force derivatives are computed in a similar man-
ner. In the first part of the algorithm, we generate a set of
partial forces (as well as partial force derivatives) contribu-
tions. In other words, we compute forces and force deriva-
tives individually for each interacting sample/frame pair: as
a sample experiences a stress, it produces a force on each of
its neighboring frames. In the second part of the algorithm,
we sum all these contributions to produce one force (force
derivative) vector per frame.

In this method, there are two entities on which computa-
tions have to be performed: samples and frames. In the first
part of this implementation, the parallelization is done onthe
sample level. By this, we mean that all the computations on
the samples are done in parallel.

During the force computation step, we assign one thread
per sample. The deformation gradient is first computed and
then stored in registers as well as the Saint Venant-Kirchhoff
stress tensor. Then for each frame the sample interacts with,
a partial force is computed by multiplying the transpose of
theM matrix with the stress tensor. However, the implemen-
tation relies on a matrix-free approach: neither theB nor the
M matrix is explicitly built in the device global memory
(VRAM). Instead, the result of the multiplication is evalu-
ated row by row so that we only need one matrix row at
a time. Thus, due to its small size, this matrix row can be
stored in registers. The resulting partial force vector is stored
in shared memory and then transferred to a temporary buffer
contained in the device global memory.

The computation of the force derivative is based on the
same approach as that of the force computations. However,
in order to evaluate these derivatives, the computation of
the stress tensor derivative of equation (24) is required. For
each sample treated in parallel, the stress tensor derivative is
computed by iterating sequentially through its neighboring
frames. The force derivative computation is also done in a
matrix-free way. The resulting force derivative is stored in
shared memory and then transferred to the global memory.

The first part of both forces and forces derivatives com-

putation produces a buffer of partial force (derivative) con-
tributions made of 6-dimensional vectors. In order to com-
pute the total force (derivative) on each frame individually,
these partial contributions have to be summed. The second
part of this implementation relies on a segmented inclusive
scan [SHZO07]. This time, computations are parallelized on
the frame level,i.e. each frame is treated in parallel. We as-
sign 6 threads to each frame (one per vector component), in
groups of 96 threads. Using the reverse indirection table, par-
tial force (derivative) contributions of the neighboring sam-
ples are stored in shared memory and summed using a par-
allel scan operation. When this is done, the resulting force
(derivative) vector is transferred to global memory.

The whole algorithm is depicted on figure (2). The first
kernel is dedicated to partial forces (derivatives) computa-
tions. Each thread treats one sample and produces a partial
contribution for each of its neighboring frame. In the sec-
ond kernel, one frame is treated by 6 thread which use the
indirection table to pick and sum the partial contributionsof
each neighboring samples.

3.3. Details of the implementation

The parallelization of the computations on the sample level
has several advantages. First, because there are more sam-
ples than frames, we are able to provide with the GPU more
work to parallelize, increasing its occupancy and thus its ef-
ficiency. Then, many of the computations have to be done on
the samples, as shown in table (1). By doing so, we are able
to compute these quantities only once. Since each computa-
tion on a sample is independent from other samples, there is
no need for synchronization barriers. On the other hand, be-
cause frames are influenced by multiple samples, the compu-
tation of frames forces would result in concurrent write con-
flicts. Using atomic operations is not a viable option since it
reduces significantly the efficiency because writes are serial-
ized. Besides, atomic operations on floats are not supported
on older hardware. Thus the computation of frames forces
as a set of partial contributions is required. Using this ap-
proach computations with only two kernels – one for the
partial contributions computations and a second dedicated
to the summation of the later – can be performed. By hav-
ing only two kernels per computation, we limit the effect of
kernel launching overhead.

A great attention has been given to memory manage-
ment. First, the use of a matrix-free approach is of ma-
jor importance in our problem. Certain quantities like the
B and M matrices have to be computed for each interact-
ing frame/sample pair. Storing all these matrices would re-
quire a substantial amount of memory. Since global mem-
ory access is one of the main bottlenecks in GPU comput-
ing, this would degrade the performance. Thus, a matrix-
free approach makes it possible to reduce the memory con-
sumption and the memory access overhead. Hence, storing
partial contributions in shared memory before storing them
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Samples F, L , S, ∆S, δF
Frames f, δf

Sample/Frame pairs B, M

Table 1: Quantities that have to be computed and the entities
that rely on

in global memory allows us to perform coalesced memory
writes. On graphic hardware, the memory is divided in seg-
ments. If all threads in a group access addresses that fall
into the same segment (i.e. accesses are coalesced), mem-
ory operations can be performed in one transaction, limiting
memory access overhead. However, because of the limited
amount of shared memory available on GPUs, our imple-
mentation is restricted to use at most 16 neighboring frames
per sample. Though, this limitation is not a major concern
since 16 neighbors per samples are enough for most appli-
cations. Indeed, when used with a mesh based scheme, our
method needs either 4 neighbors (for tetrahedral linear inter-
polation) or 8 neighbors (hexahedral trilinear interpolation).
With a meshfree scheme, this restriction is not really a lim-
iting factor since our models are sparse.

The summation of partial we assign 6 threads per frame
and choose a group size of 96 threads. We choose this group
size because it is a multiple of the warp size (32 threads)
which is the number of threads running concurrently on a
GPU multiprocessor. By doing so, we ensure that there are
no inactive threads in a group (except in the last one).

4. Results

4.1. Convergence

In order to assess the accuracy of the mechanical model, we
made a comparative test involving the cantilever beam. We
choose to compare the behavior of two beams simulated with
our method using tetrahedral linear and hexahedral trilinear
interpolation on one side, with two beams simulated with the
standard finite element method on the other. The first one is
modeled using tetrahedra whereas the second is modeled us-
ing hexahedra. These two beams are simulated using a coro-
tational formulation included in the SOFA framework. This
analysis is focused on the number of degrees of freedom re-
quired to converge toward the solution. The simulated beam
is anchored at one end and the only external force experi-
enced is due to its own weight. Its dimensions are 16×1×1
meters, its weight is 5 kg, its Young modulus is 40000 Pa
and its Poisson ratio is 0.3. We voluntarily choose a highly
deformable beam in order to study the convergence in the
case of large deformations.

For convergence analysis, multiple simulations have been
performed with different resolutions. The chart presentedon
figure (3) shows the deflection of the free end of the beam, at
equilibrium, varying with respect to the number of degrees
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Figure 2: GPU algorithm. The first pass is done on the sam-
ples and produces a set of partial contributions (kernel 1).
The second pass is done on the frames to sum partial contri-
butions.

of freedom for each method. It clearly demonstrates that the
frame method converges faster than finite element method.
By this, we mean that the frame method needs fewer de-
grees of freedom to converge toward the same solution. For
example, a beam which length and section are respectively
discretized with 20 and 9 frames gives the same results as
a beam modeled with 64× 4× 4 hexahedra. These results
allow us to highlight some advantages of this method. First,
since it requires less degrees of freedom, the final system is
faster to solve. In addition, it seems that the frame method
– using tetrahedral linear, or hexahedral trilinear shape func-
tions – is less sensitive to the element conditioning. Indeed, it
is possible to use much elongated tetrahedra and hexahedra,
whereas classical finite element method requires tetrahedra
or hexahedra which are as regular as possible.

Figure (4) shows the result of two beams simulated with
the frame method (right) and with the hexahedral finite el-
ement method (left). The beam modeled with frames needs
fewer frame nodes to provide similar results.

4.2. Coupling

The proposed method enables mechanical coupling thanks
to its ability to share its degrees of freedom (i.e. the frames)
with another mechanical model simulated with different
methods also using 6 degrees of freedom per node. Among
these methods, we can find the beams elements [DCLN06]
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Figure 3: Convergence analysis of the frame method.

Figure 4: A beam modeled the the frame method (left) and
with hexahedra (right). The error is below 2%.

or shells elements [CDC10] that can be used to model hollow
organs like stomach or bladder. Rigid bodies also use 6 de-
grees of freedom per node and can be used to simulate bones
and articulations. Thanks to our technique, it is possible to
quickly model connective tissues between organs or other
anatomical structures in two steps. First, the region corre-
sponding to the connective tissues has to be defined by plac-
ing frames and samples inside. Then the frames that should
be shared between the connective tissues and the connected
organs have to be defined. Figure (5) illustrates this mech-
anism: connective tissues (yellow) have been sampled with
frames (red) and samples. The surfaces of the top and bot-
tom organs (pink) have been modeled with frames (blue).
The organs and connective tissues frames inside the green
area are coupled and considered as one mechanical object,
allowing for propagation of boundary conditions. Coupling
with a rigid object is slightly different, as rigid bodies donot
have frames on their surface, but only one frame located at
their center of mass. To do so, the frames of the connective
tissues of the interface (i.e which lie on the rigid surface)
have a rigid motion w.r.t. to the rigid body. Figure (6) illus-
trates the ability of the presented method to couple multi-
ple objects. In these two simulations, the frames of the front
and rear edges of the topmost surface are fixed, all the other
frames are able to move freely.

Figure 5: Mechanical coupling between two organs. The
frames of the lower and the upper surface (blue) inside the
green area are shared with the frames of the connective tis-
sues (red).

Figure 6: Coupling between multiple objects.

Simulations of mechanical coupling using more complex
models have also been realized. Figure (7) shows the result
of a simulation in which an uterus is linked to a bladder using
connective tissues. The top of the uterus surface is fixed. The
bladder and the uterus are simulated using shell elements.
The connective tissues are discretized with 22 frames and
827 samples.

When using a meshless shape function, the method makes
the coupling of objects of different resolutions easier, thanks
to the unstructured property of meshless shape functions. In-
deed, the number of neighboring frames, in contrast with a
mesh based method, is not limited and is generally influ-
enced by the radius of influence of the shape function. More-
over, a meshless scheme is interesting in the case of connec-
tive tissues with thin parts in that it avoids meshing.

4.3. Performance

Table (2) shows the timings obtained during the tests of the
non-threaded CPU implementation. The computer used for
these tests is equipped with a 2.67 GHz Intel Xeon W3520
CPU. The following parameters have been observed: the
number of frames, the number of samples, as well as the
number of neighboring frames per sample. It clearly high-
lights that samples and frames counts are the parameters
that affects the performance the most. It also shows that the
method rapidly becomes unusable for real-time applications
as the number of samples increase.

Table (3) presents the results of a comparative perfor-
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Figure 7: Simulation of the pelvic system. The uterus (top)
is linked to the bladder (bottom) by a layer of fasciae.

Test Frame Samples Neighbors Time (ms).
Beam 72 400 4 32,65
Beam 72 400 8 45,42
Beam 72 400 6 55,15
Beam 72 400 10 69,56

Beam 72 500 4 39,18
Beam 72 864 4 43,42
Beam 72 1470 4 114,3
Beam 72 2340 4 160,53

Beam 144 750 4 54,49
Beam 288 750 4 56,64
Beam 500 750 4 58,5
Beam 792 750 4 69,12

Coupling 160 400 4 53,22

Table 2: CPU timings.

mance test between CPU and GPU implementation. Those
tests were achieved using a conjugate gradient solver per-
forming exactly 60 iterations per time step. Each sample
has 4 neighboring frames. However, it should be empha-
sized that CG converge with a number of iterations that de-
pends linearly on the number of degrees of freedom. More-
over CGs may converge slowly in some cases (heteroge-
neous material for example). To overcome this problem, it is
possible to use some preconditioning techniques to improve
the convergence rate. The device used during these tests is a
Nvidia GTX 570 with 1280 Mb of global memory. The data
gathered in this table are: the number of samples, the time
elapsed for a single time step with the CPU and the GPU im-
plementations, and the acceleration factor. The timings are
given for a full time step which includes internal/external
forces computations and system solving. Visual rendering is
not taken into consideration. The result shows an interest-
ing performance gain even for a relatively small number of
samples. They also show that beyond 2600 samples, the im-
plementation scales well with the number of samples. With

the GPU implementation more complex models can be sim-
ulated at interactive frame rates.

Samples. Time (CPU) Time (GPU) Accel.
800 78,42 15,25 5,14
2600 251,77 17,11 14,72
6070 595,77 23,39 25,47
12700 1228,8 32,29 38,07
16210 1561,8 39,29 39,75
19990 1990,06 43,12 46,15
26750 2675,47 53,09 50,39
34610 3468,54 66,1 52,47

Table 3: Comparison between CPU and GPU performance
(timing are in ms).

5. Conclusion and future work

We presented a method for the simulation of connective tis-
sues that can be either mesh based or meshfree. Our method
is able to simulate volumetric, but also very thin objects and
relies on a total Lagrangian formulation. The implicit tempo-
ral integration allows for stable simulation, even with larger
time steps. The frame method on GPU is appropriate for
connective tissues simulation in that it combines the need
for fewer degrees of freedom, which speeds-up the compu-
tation, and the performance of the GPU implementation. As
a result, we are able to propose simulations with interactive
frame rate which both enables the simulation of complex in-
teractions between the organs and other anatomical struc-
tures, and leaves enough computational resources for organs
simulation. This work can be improved on several ways.
First, by using standard shape functions commonly encoun-
tered in mesh based or meshfree methods, we made the as-
sumption that connective tissues are a continuous volume
of matter, which does not reflect the true nature of these tis-
sues. To improve the realism of our model, we have to model
their discontinuities. This could be done by using more ad-
vanced shape functions like the ones used in theextended
finite element method(XFEM). Then, one of the most in-
teresting prospects is a solver based on domain decompo-
sition. Currently the connected organs and connective tis-
sues are merged into one system of equations. With the do-
main decomposition we could simulate each connected or-
gans and connective tissues independently in a first phase,
and compute interactions between them in a second phase.
As far as performance is concerned, the GPU implementa-
tion may also be improved. Considering it is impossible to
perform only coalesced access, improvements in the data lo-
cality could limit the loss of performance due to uncoalesced
accesses, by taking advantage of the cache of the last gener-
ation of GPUs.
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Appendices

A. B matrix

For a framei and a samples, theB matrix is given by:
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