
HAL Id: hal-00916746
https://hal.inria.fr/hal-00916746

Submitted on 22 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey on Teaching of Software Product Lines
Mathieu Acher, Roberto Erick Lopez-Herrejon, Rick Rabiser

To cite this version:
Mathieu Acher, Roberto Erick Lopez-Herrejon, Rick Rabiser. A Survey on Teaching of Software
Product Lines. Eight International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS’14), Jan 2014, Nice, France. pp.1-8, �10.1145/2556624.2556629�. �hal-00916746�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49703982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00916746
https://hal.archives-ouvertes.fr


A Survey on Teaching of Software Product Lines

Mathieu Acher
University of Rennes 1, Inria

Rennes, France
mathieu.acher@irisa.fr

Roberto E.
Lopez-Herrejon

Johannes Kepler University
Linz, Austria

roberto.lopez@jku.at

Rick Rabiser
CDL MEVSS, Johannes
Kepler University Linz

Linz, Austria
rick.rabiser@jku.at

ABSTRACT

With around two decades of existence, the community of
Software Product Line (SPL) researchers and practitioners is
thriving as can be attested by the extensive research output
and the numerous successful industrial projects. Education
has a key role to support the next generation of engineers
to build highly complex SPLs. Yet, it is unclear how SPLs
are taught, what are the possible missing gaps and difficul-
ties faced, what are the benefits, or what is the material
available. In this paper, we carry out a survey with over 30
respondents with the purpose of capturing a snapshot of the
state of teaching in our community. We report and discuss
quantitative as well as qualitative results of the survey. We
build upon them and sketch six concrete actions to continue
improving the state of practice of SPL teaching.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer Science Education; D.2.9 [Software Engineer-

ing]: Management—Life cycle

Keywords

Software Product Lines, Software Engineering Teaching

1. INTRODUCTION
Virtually any system – hardware systems, operating sys-

tems, user interfaces, or a source code base – faces the need
to be available in multiple variants. Software Product Line
(SPL) engineering has emerged as the means to efficiently
produce and maintain multiple similar software variants, ex-
ploiting their common properties and managing their differ-
ences [7, 15, 16, 22, 32, 34, 36]. With around two decades of
existence, SPL is now well-established in research and in-
dustry [10]. The body of knowledge collected and organized
by the SPL research community is still growing. Also, the
scope of the community continuously broadens to other ar-
eas such as software ecosystems [12] and dynamic adaptive
systems [9, 23, 31]. The long-term goal of the community is
to provide systematic engineering methods, languages, and
tools to assist practitioners in building well-structured and
customizable systems.

However, without any effort for disseminating this knowl-
edge, engineers of tomorrow are unlikely to be aware of the
issues faced when engineering SPLs (or configurable sys-
tems) – up to the point they will not recognize this kind
of systems. In turn, they will not use appropriate tech-

niques and face problems such as scalability that the SPL
community perhaps already studied or solved.

We believe education has a key role to play. The teaching
of SPLs can enable the next generation of engineers to build
highly complex, adaptive, and configurable software systems
more frequently reported in the industry [10, 19, 35] or ob-
served in the open source community [11,29]. Also, research
can benefit from teaching: students can be involved in con-
trolled experiments and researchers involved in teaching can
identify potential missing gaps of SPL engineering tools and
techniques.

Teaching SPLs is challenging. Software engineering it-
self is a relatively young discipline: it is still challenging
to find good teaching methods and the correct place in a
rather large and evolving curriculum [21]. Moreover, SPL
engineering encompasses a variety of topics, including re-
quirements analysis, design, implementation, testing, and
evolution. Another related challenge is to prepare teach-
ing material – based on existing books, tools, and research
papers – suitable for attracting students.

To the best of our knowledge, there is no published re-
search work related to the teaching of SPLs. Dedicated
venues exist for addressing the challenges, techniques, and
best practices of software engineering teaching (e.g., SEET
at ICSE, the CSEE&T conference, or the Educators Sym-
posium at MODELS). However, the specificity of teaching
SPLs and variability has not been discussed so far. Em-
pirical studies and systematic reviews of both research and
industrial practices of SPLs have been performed [5, 6, 8,
10, 14, 17, 18, 20, 24–26, 33], but none of them addresses the
teaching aspect of SPL engineering.

Currently, it is unclear how SPLs are taught, what are
the possible gaps and difficulties faced, what are the bene-
fits, or what is the material available. To address this gap,
we conducted an online survey with the purpose of captur-
ing a snapshot of the state of teaching in our community.
Our goal was to identify common threads, interests, and
problems and build upon them to further understand and
hopefully strengthen this important need in our community.
This paper reports, analyzes, and discusses 34 responses of
people involved in SPL teaching. The remainder of the pa-
per is structured as follows. Section 2 describes the research
method. Section 3 performs a qualitative and quantita-
tive analysis of the answers. Section 4 highlights important
points that need to be addressed in the future. We discuss
threats to validity in Section 5 and conlude the paper in
Section 6.



2. SURVEY DESCRIPTION
The goal of our survey is to qualitatively and quantita-

tively analyze the state of practice of SPL teaching.
Obviously, survey participants should be aware of SPL

engineering and, hopefully, have experience in teaching. We
considered that a public dissemination of the survey (e.g.,
on general mailing lists) can reach a large audience but also
can have counter effects. Irrelevant or incomplete answers
can be obtained since the participants are not concerned at
all with SPLs or teaching. Also, relevant respondents (i.e.,
those teaching SPLs) may not be reachable by this medium.

We thus decided to directly contact potential participants
of the survey based on our own networks and searching SPL
courses online. We first selected a pool of SPL researchers
we already know who teach SPLs and then added additional
people found by searching for SPL courses online. This led
to a list of 41 contacts.

To further extend this list, we reviewed the list of authors
and co-authors of last years’ accepted SPLC and VaMoS
papers and selected people not yet in our list. Eventually,
we augmented the original list with 51 more contacts. The
final list contained 92 contacts, from which we were confi-
dent they are involved in SPL teaching. We ignored, at this
step, if the contacts teach SPLs as a self-contained course
or as part of another lecture such as courses on Software
Engineering in general. Furthermore, when sending out the
survey, we asked recipients to forward the survey to their
own contacts, who also teach SPLs.

We set up the survey as an on-line questionnaire (it can
be found at: http://www.surveygizmo.com/s3/1342346/

Teaching-Software-Product-Lines). Before sending the
link to our 92 contacts, we created a first draft of the ques-
tionnaire and informally presented it to diverse colleagues
having experience in SPL teaching, e.g., at SPLC in August
2013 in Tokyo. Based on colleagues’ remarks, we refined
some of the questions, mainly to make them more precise.

The resulting questionnaire comprised 13 questions in-
tended to collect quantitative results about the context of
teaching SPLs, i.e., country, institution, department, expe-
rience of the instructors, targeted audience, length of the
course, primary literature used, tools used, and parts of the
SPL lifecycle covered. For each quantitative question, we
provided a set of possible answers to select from and – for
most of these questions – we allowed survey participants
to select ’other’ and specify a more accurate or additional
answer themselves. The questionnaire, however, also com-
prised five open questions to encourage more qualitative and
constructive remarks about the experience of SPL teaching.
More specifically, we asked participants what the most chal-
lenging part of teaching SPLs is, what suggestions they have
to improve the state of teaching SPLs, how SPL teaching
can impact SPL research and industrial practice, and if they
have any other comments, concerns, or remarks relevant to
teaching SPLs or the survey.

From the 92 people we directly approached via mail, ask-
ing them to fill out the survey, we received 34 complete re-
sponses (with all questions of the survey completed) and 15
partial responses (only some questions completed). We de-
cided to only take complete responses into account in our
quantitative analyses but double checked partial responses
to find additional qualitative suggestions.

For the 13 quantitative questions, we defined five cate-
gories to present the results in an aggregated manner. More

Figure 1: Respondents’ locations.

specifically, the category ’respondents and their institu-

tions’ aggregates the answers to the five questions on the
name and country of the respondents’ institution, the type of
institution, the department, and the experience of respon-
dents in SPL research and teaching. Category ’primary

literature used’ presents respondents’ answers on what pri-
mary literature they use in their course and category ’tools

used’ what tools respondents mentioned. Category ’course

length, audience, and practical time’ aggregates the an-
swers to five questions on the context (self-contained course
vs. part of another course), the audience, the total lecture
time, the total practical time, and the length of the course.
The last category ’parts of the SPL lifecycle covered’

reports what parts of the SPL lifecycle respondents cover in
their courses.

3. SURVEY RESULTS
In this section we summarize the results gathered in our

survey and highlight some of the important findings.

3.1 Respondents and their institutions
Figure 1 shows the 14 different countries represented by

our 34 survey respondents. Not surprisingly, these countries
are also key players in SPL research. Respondents’ experi-
ence in SPL research is on average over 10 years (median: 8;
min: 0; max: 37) while their experience in SPL teaching is
on average over 6 years (median: 5; min: 1; max: 20). Sur-
prisingly, almost half of all respondents said they have the
same experience in research as in teaching SPLs. A possible
interpretation is that SPL teaching is probably performed
concurrently with research and thus it might not always be
the result of mature research experience.

Regarding the types of institutions: Most (15) are research-
focused or (9) teaching-focused (colleges), seven have both
focuses, and three are industrial institutions. SPL is mainly
taught at computer science (13 responses) or software engi-
neering departments (9 responses) and less in information
technology departments (2 responses). Other departments
(10 responses) mentioned by respondents were: software sci-
ence and technologies, computer science and computer en-
gineering, industrial and management systems engineering,
information systems, mathematics and informatics, systems
and computing engineering, informatics, as well as comput-

http://www.surveygizmo.com/s3/1342346/Teaching-Software-Product-Lines
http://www.surveygizmo.com/s3/1342346/Teaching-Software-Product-Lines


Figure 2: Primary literature (books) used in teaching SPLs.

ing and information systems.
About half (16) of the respondents hold full and self-

contained SPL courses while the other half (18) teach SPL
topics as part of other courses, among them are: software en-
gineering (8), requirements engineering (4), automated soft-
ware design (1), principles of software construction (1), do-
main engineering (1), software architecture (1), and factory
development of software (1). Given the relative novelty of
the topic, it is not surprising that over half of respondents
teach SPL topics as part of other courses.

3.2 Primary literature used
Figure 2 shows the key primary literature (text books)

used in teaching SPLs in alphabetical order, i.e., Apel et
al. [7], Clements and Northrop [15], Czarnecki and Eise-
necker [16], Gomaa [22], Pohl et al. [32], van der Linden et
al. [34], and Weiss and Lai [36]. Most (28) survey respon-
dents use these books, many (25) use research papers, and
only about a third (12) use case studies. The respondents
mentioned case studies by van der Linden et al. 2007 [34]
(two respondents); BigLever case studies (one respondent);
Renault, STAGO, LINUX, and SPLOT models (one respon-
dent); and own case studies (one respondent). Several re-
search papers were also listed by some survey respondents;
however, only one paper was mentioned more than once, i.e.,
the original FODA report by Kang et al. [27]. The other
papers seem to be selected based on teachers’ personal pref-
erences and their topics covered.

While using text books and some research papers for teach-
ing is pretty much standard in computer science, using case
studies is also essential, especially for teaching SPLs. Why
only about a third of respondents use case studies to teach
SPLs should be further investigated (cf. Section 3.6).

3.3 Tools used
Adequate tooling support is essential for the success in

applying SPL techniques. Thus, we were interested in find-
ing the tools used in the courses: Most (26) respondents
said they use SPL tools while only about a quarter (8) said
they don’t use any. Table 1 shows an overview of the tools
mentioned. When compared with the survey by Berger et
al. [10], we see a similar trend. Industry-strength tools such
as BigLever’s GEARS and Pure Systems’s pure::variants are
used more commonly, while the rest of the tools seem to be
spread across research groups, each using its own research
prototypes. However, FeatureIDE is more widespread than
other research prototypes.

SPL Tool #
uses

None 8
FeatureIDE 6
BigLever’s GEARS 4
FeatureHouse 3
pure system’s pure::variants 3
AHEAD 2
CIDE 2
CVL 2
Feature Modelling Plug-in (FMP) 2
DOPLER 1
EasyProducer 1
FaMa 1
Familiar 1
FeatureMapper 1
Munge 1
SPLAR 1
SPLOT 1
VARIAMOS 1
Varmod 1
C++, Metaprogramming, Software Generators,
Xtext, MPS

1

Different tools for creating feature diagrams and
UML-based models

1

Feature modeling UML tools extended for SPL 1
Haskell-Embedded Variation DSL 1
Own research prototypes 1

Table 1: SPL Tools used for teaching SPLs.

3.4 Course length, audience, practical time
Most courses are held over a semester (26), followed by

those offered ’on demand’ (i.e., depending on number of reg-
istrations) (3), and week-long courses (2), quarter (1), 1-2
days seminars (1), and with a flexible schedule, i.e., held one
week (blocked) or over a whole semester (1). The average
course length (for a course held for one semester) is 24 hours
(min: 1 hour; max: 120 hours).

Figure 3 depicts the audience of SPL courses and shows
a tendency, i.e., most courses are held for graduates and/or
industry people. This is also reflected by the relation of
practical time to overall course time (i.e., exercises, working
on a concrete project), which is 65%. This means almost two
thirds of course time is spent in practical exercises and work.
One respondent even specified 2.5 times more practical time
than lecture time. However, there also are eight courses
where no practical time is allotted.

3.5 Parts of the SPL lifecycle covered
Table 2 depicts the parts of the SPL development lifecycle

covered in SPL courses as specified by survey respondents.
More specifically, modeling, requirements engineering, and
implementation are the main focus of teaching SPLs. Pro-
cesses and Maintenance & Evolution are also essential. Re-
verse Engineering and Adoption along with Testing are top-
ics not as frequently covered, despite the extensive research
and results on both areas. Other parts of the SPL develop-
ment lifecycle commented by respondents as being covered
in their courses are: business and organizational founda-
tions (4), verification (2), architecture and design (2), de-
cision models (1), measurement and analysis (2), tools (1),



Figure 3: Audience of SPL courses.

Topic
Department Total

CS SE OT
Requirements engineering 7 4 12 23
Testing 3 1 4 8
Modelling 9 8 13 30
Implementation 9 8 8 25
Maintenance & Evolution 9 3 5 17
Reverse engineering & SPL
Adoption

7 2 1 10

Processes 5 6 8 19
Other 5 2 3 10

CS: Computer Science, SE: Software Engineering,

OT: Other departments.

Table 2: Parts of the SPL development lifecycle covered in
SPL courses.

scoping (1).
Furthermore we divide the topics by departments – com-

puter science, software engineering and other – and highlight
for each topic the department that got the highest count. We
found a clear and even split between computer science and
other departments each of which got the highest count in half
of the topics. This find may suggest a trend in the courses
taught at computer science departments towards implemen-
tation, maintenance and evolution, reverse engineering and
adoption, and other miscellaneous topics that may include
more advanced research. In contrast, the courses offered at
other departments seem to lean towards requirements engi-
neering, modelling and processes. It would be interesting
to corroborate or disprove these trends and their potential
causes in the future work.

3.6 Challenges of teaching SPL
In our survey we posed the open question ’What is the

most challenging part for teaching SPL? (e.g., administra-
tive delays, acceptance in the curriculum, lack of material)’.
Only four respondents said that they see no challenges at
all, the rest at least mentioned one challenge. Analyzing and
categorizing respondents’ answers resulted in the following
key challenges for teaching SPL:

Lack of and availability of SPL tools. Five respon-
dents said that a key challenge is that many SPL tools are
not freely available via an open source license and those that
are available are often poorly documented research proto-
types. Also, two respondents pointed out that there is a

lack of integrated tooling to show a complete toolchain, i.e.,
SPL tools often focus only on one part of the SPL develop-
ment lifecycle such as feature modeling.

Lack of and availability of well-documented real-

world examples and case studies suitable for teach-

ing . Almost half of the respondents named the lack of
and availability of examples and case studies as a key chal-
lenge for teaching SPLs. Some responded that they would
require good textbook examples, i.e., small, plausible, yet
non-trivial examples to entice students. Others said that
large-scale industrial case studies would be better. Agree-
ment among respondents was that good, well-documented
examples and case studies are hard to find despite the many
available SPL textbooks and research papers describing case
studies. Most available examples and case studies have not
been developed and described for the purpose of teaching
SPLs but rather to report interesting findings in the research
community. Available material should be restructured, pre-
pared and organized for teaching.

Complexity of the subject and required background

knowledge. Nine respondents said that SPL is a complex
topic including many aspects (in addition to software engi-
neering) making it hard to teach to computer science stu-
dents and requires students to have a strong background
knowledge. One respondent summarized the challenge quite
nicely: even software engineering can be hard to teach as
developing large-scale systems does not connect to students
hands-on experience of developing rather small solutions.
Teaching SPL means SE for many systems, this does even
less relate to students’ experiences. Respondents reported
that their students have a hard time understanding how to
develop large-scale systems and usually have not much ex-
perience with big projects. They require background knowl-
edge in diverse areas such as model-driven architectures or
constraint programming.

Acceptance on the curriculum and opening the mind

of students for the topic. Two respondents said they
had difficulties getting the course accepted in their curric-
ula. This might be related with the former challenge, i.e.,
complexity of the subject and required previous knowledge.
Other two respondents also said that it can be quite tricky
to open the mind of students for SPLs and make them in-
terested.

3.7 How to improve the state of teaching SPL
We also asked people ’What is missing to make SPL main-

stream, what would you suggest to improve the state of teach-
ing SPLs?’. From respondents’ answers (29/34 provided at
least a small comment) we extracted and categorized the
following suggestions:

Better tools for students. Seven respondents said that
teaching SPLs could be improved with ’better tools’, i.e.,
mature, stable, and ’industry-ready’ tools that students can
use without days of training. Respondents also seem to be
in favor of having a standardized tool recognized by a large
community based on a common technological basis, e.g., re-
garding variability mechanisms and derivation technologies.
They doubt the usefulness of research prototypes for teach-
ing SPLs. Research efforts along the lines of the Common
Variability Language (CVL) [2] could be candidates to fill
this gap.

Improved textbook examples and case studies. 13 re-
spondents see the need to improve (textbook) examples and



(industrial) case studies to support teaching SPL. They iden-
tify a key issue here, i.e., that the material – be it textbook
examples or case studies – is simply not designed specifically
for students. Good examples and case studies should be a
showcase for how and why SPLs are introduced in industry
and not make the subject look like a pure research endeavor.
Also – as commented by one respondent – we must work on
joining theory from the books with the tools used in practice,
i.e., better map theoretical concepts and practical solutions.

Broaden the focus of teaching SPLs. Three respon-
dents also suggested to broaden the focus of teaching SPLs,
i.e., to somehow ’grow out of the software engineering realm’
and also teach and use similar approaches like component-
based systems and/or service-oriented architectures to moti-
vate SPLs. A particular suggestion was to move away from
feature models as putting the focus only on these models
hinders progress and instead to encourage the use of domain-
specific languages. In summary, respondents said that fea-
ture models should be part of teaching SPL but it is also
important to show other approaches.

Is SPL already mainstream? Two respondents said
that in their experience SPL is already mainstream in in-
dustry and this information should be conveyed to students.
However, industry does not make use of very special tech-
niques and approaches but often develop their own custom
solutions [28] to support reuse and variability management
based on whatever works for them. This means, when teach-
ing SPLs the focus should not be put on teaching too ’exotic’
SPL approaches. On the other hand, these approaches might
some day become mainstream. Respondents commented
that a balance between industry-strength methods/tools and
emerging research ideas should be found by instructors.

Other ideas. An original idea by one respondent was
to collect videos of experts that can be shown to students
to motivate SPLs and explain key concepts and ideas. An-
other idea was to incorporate the notions and terminology
of SPLs more in other courses, which is something scholars
who teach SPLs presumably already do. Developing a stan-
dard curriculum and evaluation scheme for teaching SPLs,
as suggested by one respondent, would also be a very impor-
tant achievement towards making SPLs really mainstream.

3.8 Impact of teaching on research
Another open question we asked was ’How can teaching

improve/impact research on SPLs?’. We received comments
by 29 of 34 respondents, which we analyzed and grouped as
follows.

Student participation in research evaluations. 11 re-
spondents commented that they find students useful par-
ticipants in evaluating their research, either in experiments
or in case studies. However, as commented by two other re-
spondents, this can be a tricky issue because most likely only
small, (quasi-)experiments can typically be done (depending
on factors such as class size, course duration, experience level
of students), which in turn do not provide a lot of empirical
evidence. In the end, however, performing experiments with
students is a good experience for both students and scholars.
Even if the results might not be very useful or directly us-
able when writing a research paper, they can provide initial
evidence and direct further studies; in other words, students
can be very useful in performing pilot studies.

Feedback on and discussion about tools, examples,

and case studies. Six respondents also commented that

students are a very useful audience when it comes to simply
discussing SPL research results and developed tools. Stu-
dents can provide researchers with useful feedback on im-
proving their work (even if only improving the presentation
of their work). Also, students can help in tool development
as well as elaborating and trying out examples and case stud-
ies that could be used later as teaching materials.

Finding research personnel . Eight respondents com-
mented that they find teaching SPLs useful in finding per-
sonnel, being it research students or candidates for master
and PhD theses. Also, the general benefit of attracting stu-
dents to the area must not be underestimated, whether stu-
dents end up in research or industry.

Connecting with industry . Five respondents also com-
mented on the fact that some students in SPL courses either
are already working in industry or will be working in indus-
try soon. This allows connections with industry early on,
i.e., to trigger future industry-academia collaborations or
simply to increase awareness in industry.

Discussion of open research issues with students.

Two respondents said they like to discuss research issues and
challenges with students because getting a different view is
always helpful to drive research, even if its ’only’ from a
student. Another comment was that missing teaching mate-
rial is also sometimes an indicator for missing research (i.e.
research venues that should be pursued).

3.9 Impact of teaching on industrial practice
Another open question in our survey asked ’How can teach-

ing SPL impact industrial practice of SPL?’. Here, 30 of 34
respondents provided us with comments, all similar or over-
lapping. Thus, we do not categorize comments.

Over a fifth of respondents commented that teaching SPLs
makes students aware of the topic and students eventually
end up in industry or even are already working in industry.
Thus, teaching SPLs increases awareness of the field in in-
dustry and trains future practitioners. It can even open the
door to companies, which have not been previously exposed
to SPLs. 13 respondents went one step further and com-
mented that teaching SPLs is already the preparation of the
introduction of SPL engineering in industry, i.e., students
will be the future drivers of the adoption of SPL engineer-
ing in industry. Some students already work in industry
while they are being taught and thus might start triggering
a paradigm shift almost right away. Furthermore, as com-
mented by two respondents, teaching SPLs can be the start
of industry-academia collaboration projects.

3.10 Other comments
Finally, we asked an open question for any other com-

ments and concerns for teaching SPLs. We received com-
ments from less than a third of respondents. We only discuss
those not already covered in this section.

One respondent commented that they teach SPLs together
with model-driven development and find the interplay of
both approaches very interesting from a teaching perspec-
tive. Another respondent commented that having a com-
mon, clearly defined basis of terminology and concepts that
is taught at the majority of the institutions would help a lot.
Three respondents made a very similar comment, i.e., that
real-world SPL engineering is very different from research in
many aspects. For instance, while variability models seem
to be the key topic in research, in practice it often is just one



technique for some roles. Industry often manages variability
without dedicated models and still are successful with their
product lines. This should be reflected in teaching. Finally,
we received one comment that our survey was not a perfect
fit for SPL consultants and trainers in industry. This is true
and we have to address this in our future work. Here, we
focused more on scholars teaching SPLs.

4. PESPECTIVES
In this section we build upon qualitative and quantitative

results of previous sections and put forward six concrete ac-
tions to address some of the issues raised in the survey:

1. Tool and artifact recognition. Even though there are
many tool options (see Section 3.3), the responses re-
garding challenges of teaching SPLs (cf. Section 3.6)
and improvement of SPL teaching (cf. Section 3.7)
point out the need for adequate SPL tools. We pro-
pose that conference or workshop events give recogni-
tion – maybe even an award – to artifacts, tools, as
well as papers, that are made available and can be
used for replicated studies and as teaching material.
This will address the need of more robust and bet-
ter documented SPL tools. The artifact recognition
awards have become a staple of the ACM SIGSOFT
Symposium on the Foundations of Software Engineer-
ing (FSE) in recent years.

2. Create a virtual meeting place for the community. Well-
documented examples and case studies suitable for teach-
ing are missing (see Section 3.6 and Section 3.7). Most
available examples and case studies have not been de-
veloped and described for the purpose of teaching SPLs,
but rather to report interesting findings in the research
community. Available material should be restructured,
prepared and organized for teaching. We propose to
set up a community wiki (possibly independent of ed-
itorials, books, universities) where teaching materials
and tools can be collected and shared. Additionally,
dedicated web communities in social networks such as
LinkedIn, ResearchGate, or Mendeley can be created.
Examples of such virtual communities are the Repos-
itory for Model Driven Development (ReMoDD) [4],
the Center of Excellence for Software Traceability [1],
and the initiative of the Empirical Research in Soft-
ware Engineering community behind the organization
of the International Conference on Predictive Models
in Software Engineering (PROMISE) who promotes
and encourages replication of experiments and stud-
ies by sharing all data and software artifacts [30].

3. Strive for teaching benchmarks. Some of the respon-
dents state that issues faced by the industry are the key
to motivating the SPL course (see Section 3.9). Like
other communities, we propose to create classroom-
ready case studies that cover realistic scenarios faced
in industry, which are engaging, realistic, and challeng-
ing for the students.

4. Involve industry in teaching. As mentioned by sev-
eral respondents, the key benefits of SPLs can only be
demonstrated using realistic examples (see Section 3.6).
Another proposition is to invite industry experts to

give talks within SPL lectures. It will hopefully in-
crease students interest and improve the overall teach-
ing experience.

5. Create a teaching track at conference venues. Our sur-
vey aims at providing a first overview of the state of
practice of SPL teaching. Detailed experience reports
and more advanced discussions would be beneficial and
complement our effort. If there is enough interest and
momentum, we plan to propose teaching tracks or ded-
icated workshops for SPL teaching at SPLC or related
conferences/workshops. A role model for this point is
the Educator’s Symposium that takes place at the In-
ternational Conference on Model Driven Engineering
Languages and Systems (MODELS) [3].

6. Develop a baseline curriculum and evaluation scheme.
It seems unrealistic to create one standard curriculum
for teaching SPLs worldwide. For instance, no respon-
dent reported on a full curriculum based on SPL en-
gineering. Yet, having a baseline for creating curric-
ula and performing student evaluations would still be
helpful for the community. An inspiring example is a
curriculum proposal on Data Mining put forward by
the respective research community [13].

5. THREATS TO VALIDITY
Like any empirical study, our survey exhibits a number of

threats to validity.
First of all, the survey was designed by just three re-

searchers, based on their experience in research and teaching
SPLs. To address this threat, we asked colleagues for feed-
back and refined the survey to incorporate their feedback
before sending it out. Nevertheless, other researchers might
have asked differend questions and, particularly, might have
provided different selectable answers for certain questions.

A further threat to the internal validity of our results is
that participants misunderstood questions. We mitigated
this threat by test-driving the questionnaire with a range of
colleagues with experience in teaching SPLs during its de-
velopment. Also, the open question at the end of the survey
allowed participants to raise concerns and ask for clarifi-
cation. Two participants even contacted us directly before
completing the survey with some clarification questions. We
discussed among authors what to respond to them to not
bias them with our response.

An external threat is that, perhaps, we did not contact a
representative pool of SPL educators. In addition to select-
ing teachers we know, we also performed a web search for
SPL courses and we reviewed the list of authors of SPLC
and VaMoS papers to mitigate this threat. As commented
by one respondent, the survey was not a perfect fit for SPL
consultants and trainers in industry, which is something we
have to address in our future work. To mitigate this threat
we compared responses by industry people with responses by
academics to check whether the answers are too divergent
(they were not).

Our possibly wrong interpretation of the answers to open
questions is a further important threat. We are confident,
however, that we could capture the essence of these answers
in our interpretations, especially, as for most answers we
could find more than one similar instance.



6. CONCLUSIONS AND FUTURE WORK
We presented the results of a survey we conducted to as-

sess the state of practice of teaching SPLs. 34 responses
allowed us to report quantitative as well as qualitative re-
sults, i.e., about the context of teaching SPLs (country, insti-
tution, department, experience of the instructors, targeted
audience, length of the course, primary literature used, tools
used, and parts of the SPL development lifecycle covered) as
well as about the experience of SPL teaching (challenges of
teaching SPLs, suggestions to improve the state of teaching
SPLs, impact on SPL research and industrial practice).

We sketched six conrete actions to continue improving
teaching SPLs, i.e., tool and artifact recognition, creating a
virtual meeting place for the community, striving for teach-
ing benchmarks, involving industry in teaching, creating a
teaching track at conference venues, and developing a base-
line curriculum and evaluation scheme. Our next steps will
be to evaluate the interest within the SPL community to
participate in these actions as well as to collect additional
suggestions for further steps.

Acknowledgements. First and foremost we would like
to thank the participants of the survey and the colleagues
that provided us with valuable feedback on earlier drafts.
This research is partially funded by the Austrian Science
Fund (FWF) Lise Meitner Fellowship M1421-N15. The re-
search is also partially supported by Siemens VAI Metals
Technologies and the Christian Doppler Forschungsgesell-
schaft, Austria. Acher’s work was partially supported by
the French BGLE Project CONNEXION.

7. REFERENCES
[1] Center of excellence for software traceability.

http://www.coest.org/.

[2] Common variability language (cvl). http://www.
omgwiki.org/variability/doku.php?id=start.

[3] International conference on model driven engineering
languages and systems.
http://modelsconference.org/.

[4] Repository for model driven development (remodd).
http://www.cs.colostate.edu/remodd/v1/.

[5] E. K. Abbasi, A. Hubaux, M. Acher, Q. Boucher, and
P. Heymans. The anatomy of a sales configurator: An
empirical study of 111 cases. In CAiSE’13, volume
7908 of Lecture Notes in Computer Science, pages
162–177. Springer, 2013.

[6] V. Alves, N. Niu, C. Alves, and G. Valenca.
Requirements engineering for software product lines:
A systematic literature review. Information and
Software Technology, 52(8):806–820, 2010.

[7] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-Oriented Software Product Lines. Springer,
2013.

[8] D. Benavides, S. Segura, and A. R. Cortés.
Automated analysis of feature models 20 years later:
A literature review. Inf. Syst., 35(6):615–636, 2010.

[9] N. Bencomo, S. O. Hallsteinsen, and E. S. de Almeida.
A view of the dynamic software product line
landscape. IEEE Computer, 45(10):36–41, 2012.

[10] T. Berger, R. Rublack, D. Nair, J. Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of
variability modeling in industrial practice. In Seventh
International Workshop on Variability Modelling for

Software-Intensive Systems (VaMoSŠ’13), pages 7–14,
Pisa, Italy, 2013. ACM.

[11] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. A study of variability models and
languages in the systems software domain. IEEE
Transactions on Software Engineering,
99(PrePrints):1, 2013.

[12] J. Bosch and P. Bosch-Sijtsema. From integration to
composition: On the impact of software product lines,
global development and ecosystems. Journal of
Systems and Software, 83(1):67–76, 2010.

[13] S. Chakrabarti, M. Ester, U. Fayyad, J. Gehrke,
J. Han, S. Morishita, G. Piatetsky-Shapiro, and
W. Wang. Data mining curriculum: A proposal
(version 1.0), April 2006.

[14] L. Chen and M. Ali Babar. A systematic review of
evaluation of variability management approaches in
software product lines. Information and Software
Technology, 53(4):344–362, 2011.

[15] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software
Engineering, Addison-Wesley, 2001.

[16] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Techniques, and Applications.
Addison-Wesley, 2000.

[17] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid,
and A. Wasowski. Cool features and tough decisions:
A comparison of variability modeling approaches. In
6th International Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS 2012), pages
173–182, Leipzig, Germany, 2012. ACM.

[18] P. A. da Mota Silveira Neto, I. do Carmo Machado,
J. D. McGregor, E. S. de Almeida, and S. R.
de Lemos Meira. A systematic mapping study of
software product lines testing. Information and
Software Technology, 53(5):407–423, 2011.

[19] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An exploratory study of
cloning in industrial software product lines. 2011 15th
European Conference on Software Maintenance and
Reengineering, 0:25–34, 2013.

[20] E. Engström and P. Runeson. Software product line
testing – a systematic mapping study. Information
and Software Technology, 53(1):2–13, 2011.

[21] C. Ghezzi and D. Mandrioli. The challenges of
software engineering education. In Software
Engineering Education in the Modern Age, pages
115–127. Springer, 2006.

[22] H. Gomaa. Designing Software Product Lines with
UML. Addison-Wesley, 2005.

[23] M. Hinchey, S. Park, and K. Schmid. Building
dynamic software product lines. Computer,
45(10):22–26, 2012.

[24] G. Holl, P. Grünbacher, and R. Rabiser. A systematic
review and an expert survey on capabilities supporting
multi product lines. Information and Software
Technology, 54(8):828–852, 2012.

[25] A. Hubaux, A. Classen, M. Mendonça, and
P. Heymans. A preliminary review on the application
of feature diagrams in practice. In Proceedings of the
4th International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS’10), pages

http://www.coest.org/
http://www.omgwiki.org/variability/doku.php?id=start
http://www.omgwiki.org/variability/doku.php?id=start
http://modelsconference.org/
http://www.cs.colostate.edu/remodd/v1/


53–59, Linz, Austria, 2010. Universität
Duisburg-Essen.

[26] M. F. Johansen, Ø. Haugen, and F. Fleurey. A survey
of empirics of strategies for software product line
testing. In Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing,
Verification and Validation Workshops, ICSTW ’11,
pages 266–269. IEEE, 2011.

[27] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, Technical Report
CMU/SEI-90TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA,
1990.

[28] D. Lettner, M. Petruzelka, R. Rabiser, F. Angerer,
H. Prähofer, and P. Grünbacher. Custom-developed
vs. model-based configuration tools: Experiences from
an industrial automation ecosystem. In
MAPLE/SCALE 2013, Workshop at the 17th
International Software Product Line Conference
(SPLC 2013), pages 52–58, Tokyo, Japan, 2013. ACM.

[29] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In ICSE’10,
pages 105–114, 2010.

[30] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli,
J. Krall, F. Peters, and B. Turhan. The promise
repository of empirical software engineering data.

http://promisedata.googlecode.com, June 2012.

[31] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and
A. Solberg. Models@ run.time to support dynamic
adaptation. IEEE Computer, 42(10):44–51, 2009.

[32] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[33] R. Rabiser, P. Grünbacher, and D. Dhungana.
Requirements for product derivation support: Results
from a systematic literature review and an expert
survey. Information and Software Technology,
52(3):324–346, 2010.

[34] F. van der Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action - The Best
Industrial Practice in Product Line Engineering.
Springer Berlin Heidelberg, 2007.

[35] M. Vierhauser, R. Rabiser, P. Grünbacher, C. Danner,
and S. Wallner. Evolving systems of systems:
Industrial challenges and research perspectives. In 1st
International Workshop on Software Engineering of
Systems-of-Systems (SESoS), in conjunction with the
27th ECOOP edition, the 9th ECMFA edition and the
7th ECSA edition (ECMFA, ECOOP and ECSA
2013), pages 1–4, Montepellier, France, 2013. ACM.

[36] D. Weiss and C. Lai. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison Wesley Professional, 1999.

http://promisedata.googlecode.com

	Introduction
	Survey Description
	Survey Results
	Respondents and their institutions
	Primary literature used
	Tools used
	Course length, audience, practical time
	Parts of the SPL lifecycle covered
	Challenges of teaching SPL
	How to improve the state of teaching SPL
	Impact of teaching on research
	Impact of teaching on industrial practice
	Other comments

	Pespectives
	Threats to Validity
	Conclusions and Future Work
	References

