
HAL Id: hal-00918126
https://hal.inria.fr/hal-00918126

Submitted on 12 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the Forward Chaining Algorithm for
Conceptual Graphs Rules

Jean-François Baget

To cite this version:
Jean-François Baget. Improving the Forward Chaining Algorithm for Conceptual Graphs Rules. Proc.
9th international conference on principles of knowledge representation and reasoning (KR), Jun 2004,
Whistler, Canada. pp.407-414. �hal-00918126�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49702744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00918126
https://hal.archives-ouvertes.fr

Improving the Forward Chaining Algorithm for Conceptual Gr aphs Rules

Jean-François Baget
INRIA Rhône-Alpes

655, avenue de l’Europe
38334 Saint Isnmier, France

jean-francois.baget@inrialpes.fr

Abstract

Simple Conceptual Graphs (SGs) are used to repre-
sent entities and relations between these entities: they
can be translated into positive, conjunctive, existential
first-order logics, without function symbols. Sound and
complete reasonings w.r.t. associated logic formulas are
obtained through a kind of graph homomorphism called
projection.
Conceptual Graphs Rules (or CG rules) are a standard
extension to SGs, keeping sound and complete reason-
ings w.r.t. associated logic formulas (they have the same
form as tuple generating dependencies in database):
these graphs represent knowledge of the form “IF ...
THEN”.
We present here an optimization of the natural forward
chaining algorithm for CG rules. Generating a graph of
rules dependencies makes the following sequences of
rule applications far more efficient, and the structure of
this graph can be used to obtain new decidability results.

Introduction
Simple Conceptual Graphs (or SGs) have evolved since
Sowa’s reference book (Sowa 1984) as the cornerstone of
a family of knowledge representation languages known as
“Conceptual Graphs”. SGs are used to represent entities as
well as the relations between them. They can be translated
into positive, conjunctive, existential first-order logics for-
mulas, without function symbols. Sowa’s graph-based in-
ference operator has since been reformulated as a labelled
graphs homomorphism called projection (Chein & Mugnier
1992). A projection of a SGH into a SGG means that all
information encoded inH is already present inG; projec-
tion is sound (Sowa 1984) and complete (Mugnier & Chein
1996) w.r.t. the associated logical semantics.

A standard extension, proposed in (Sowa 1984), is ob-
tained by using Conceptual Graphs Rules (or CG rules).
These rules are also represented by graphs (one subgraph
is identified as the hypothesis part, the remaining part being
the conclusion). They represent knowledge of the form “IF
. . . THEN”. Extending the logical semantics to translate CG
rules (the obtained formulas are the same as the tuple gen-
erating dependencies studied in databases), the projection-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

based deduction mechanism of the CG rules model has been
proven sound and complete w.r.t. deduction of the associ-
ated logic formulas (Salvat & Mugnier 1996).

An efficient backward chaining has been presented by
(Salvat 1998), and its comparison with Prolog proved its
efficiency (Coulondre & Salvat 1998). However, this algo-
rithm does not cope well with some extensions built upon
CG rules, and particularly the more expressive languages
from theSG family (Baget & Mugnier 2002). In these mod-
els, algorithms used for deduction rely on forward chaining
of rule applications.

In this paper, we present an optimization of the natural
forward chaining algorithm that is highly adaptable to these
extensions of CG rules. An initial treatment of a library of
CG rules is used to generate thegraph of rules dependencies.
Using this graph makes the subsequent rule applications far
more efficient, and its structure can be used to obtain new
decidability results, extending those presented in (Baget&
Mugnier 2002).

This paper is organized as follows: we first briefly recall
basic definitions on SGs, and we present CG rules. To help
readers unfamiliar with the CG formalisms, we recall their
translation into first-order logics. After detailed motivations,
we introduce the graph of rule dependencies, and discuss its
efficiency (for optimization purpose as well as for extending
existing decidable cases).

Simple Conceptual Graphs
The vocabulary available is encoded in a structure called the
support.

Definition 1 (Support) We call support a tuple S =
(M, TC , T1, . . . , Tk) of pairwise disjoint partially ordered
sets:M is the set ofmarkers, TC is the set ofconcept types,
andTi, 1 ≤ i ≤ k is the set ofrelation typesof arity i.

The set of markerM contains a distinct element: the
generic marker∗, used to represent unnamed entities. The
other markers (calledindividual) represent named entities.
Individual markers are pairwise non comparable, and are
more specific than the generic one. No assumption is needed
on the partial orders encoding the types hierarchies. These
partial orders will be denoted by≤. These sets do not need
to be finite, but we assume that the comparison of two ele-
ments can be computed in constant time.

To simplify definitions, we present here SGs as multiple
directed hypergraphs1 whose nodes (representing entities)
are labelled by a concept type and a marker ofM and hy-
perarcs (non empty tuples of nodes representing relations
between entities) are labelled by a type of corresponding ar-
ity.

Definition 2 (SGs) Let S be a support. Asimple concep-
tual graph(or SG), defined overS, is a tupleG = (V, U, λ)
whereV is the set ofnodes, U ⊆ V + is a multiset2 of hy-
perarcs (we call themrelations), and λ is a mapping that
labels each node by a pair formed by a concept type ofTC

and a marker ofM (a node is saidgenericif labelled by∗,
individualotherwise), and labels each relation of sizei by a
relation type inTi.

We adopt for SGs the following graphical representation:
each node is represented by a rectangle, and each relation
(x1, . . . , xi) by an oval in which the relation type is writ-
ten. For each of its argumentsxp, we draw a line between
the rectangle representingxp and the oval representing the
relation, and write the numberp next to this line. Finally,
we write T : M inside the rectangle representing a node
whose type and individual marker are respectivelyT and
M , and onlyT if the node is generic. The graphH in
Fig. 1 is the drawing of the SGH = (V, U, λ) defined
as follows: V = {X, Y, Z}; U = {(Z, Y), (X, Y, Z)};
and λ(X) = (t1, ∗), λ(Y) = (t2, ∗), λ(Z) = (t3, ∗),
λ((Z, Y)) = r2, λ((X, Y, Z)) = r3 (all nodes are generic).

H

G

t1 t2

t3 r2

r2r2

r3

r3

r3

r3

t1 : a

t1 : b
t1 : c

t2 : d

t2 : e

t3 : f t3 : g

1

1

1

1

1

1
1

2

2

2

2

2

2

2

3

3

3 3

Figure 1: The drawing of two SGsG andH .

The basic inference operator for SGs is a labelled (hy-
per)graphs homomorphism called projection. Existence of a
projection from a SGH into a SGG means that all informa-
tion encoded inH is already present inG.

Definition 3 (Projection) LetH andG be two SGs defined
over the same supportS. A projection fromH into G is
a mappingπ : V (H) → V (G) such that: for each node
x of H , λ(π(x)) ≤ λ(x) (we also denote by≤ the prod-
uct order on the orders onTC andM), and for each re-
lation r = (x1, . . . , xi) in H , there must exist a relation
r′ = (π(x1), . . . , π(xi)) such thatλ(r′) ≤ λ(r).

As an exercise, the reader can check that, assuming all
types are pairwise non comparable in the support, there is

1The usual definition of SGs as bipartite graphs is simply ob-
tained by considering the bipartite of incidence of our hypergraphs.

2There can be many occurences of the same hyperarc, that can
be labelled differently.

exactly 2 projections from the graphH into the graphG,
both represented in Fig. 1. One of them associates the nodes
respectively labelledt1 : c, t2 : d andt3 : g to the nodes re-
spectively labelledt1, t2 andt3. Note however that, contrary
to what this example suggests, projection does not need to
be an injective mapping.

Before defining our basic deduction problem (called, as
in (Baget & Mugnier 2002)SG-DEDUCTION), we must in-
troduce the notion ofnormal form. A SG is said in normal
form if all individual nodes have different markers (the same
entity is represented by an unique node). A SGG is put into
its normal formnf(G) by fusioning all nodes sharing the
same individual marker3.

SG-DEDUCTION
Data: A supportS and two SGsG andH , defined overS.
Question: Can H be deduced from the knowledge base
(S, G), i.e. does there exist a projection fromH into the
normal form ofG ?

Conceptual Graphs Rules
Conceptual graph rules (in short CG rules) express knowl-
edge of the form “IF...THEN”. It is convenient to represent
them as colored SGs.

Definition 4 (CG Rules) A CG rule, defined over a support
S, is a pair R = (G, H) whereG is a SG defined overS,
andH is a partial subgraph ofG4. The SGH is called the
hypothesisof the rule (Hyp(R)), and the other nodes and
relations form itsconclusionCcl(R) (it is not necessarily a
graph, since hyperarcs can lack their elements: we call it a
proto-graph).

CG rules are represented in the same way as SGs, ex-
cepted that we color rectangles and ovals to clearly see the
nodes and relations that belong to the hypothesis or the con-
clusion. Here, elements of the hypothesis will remain in
white, while elements of the conclusion will be shaded in
gray (see Fig. 2).

We must now present the inference mechanism used in
this KR model.

Definition 5 (Rule Application) LetG be a SG andR be a
CG rule, both defined over a supportS. ThenR is saidap-
plicableto G if there exists a projection, sayπ, from Hyp(R)
into nf(G). In that case, we noteα(G, R, π) the graph ob-
tained by applying the ruleR on the graphnf(G) following
the projectionπ. This is done in the following way: con-
sider the proto-graph obtained by making the disjoint union
of a copy ofnf(G) and a copy of Ccl(R). Then for each
(proto)relationr in Ccl(R), for each nodex of the hypoth-
esis ofR that is aith argument ofr, make the copy ofπ(x)
theith argument of the copy ofr.

3We assume that all nodes sharing the same marker also share
the same type, which is the type of the obtained node. Usually,
a conformity relationdefined in the support determines the type
given to an individual node, according to its marker.

4Obtained fromG by eventually removing some of its nodes
and the relations for which one argument has been removed, then
eventually removing some of the remaining relations.

The mechanism of rule application is illustrated in Fig. 2,
where the SGG is already in normal form.

G

a

a

b

b
c c

c

d dd

e ee
G′ = α(G, R, π)

π

R

T T

T

T ′

T ′

T ′

T ′

T ′

T ′

T ′

1

1

1

1

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

3

3

3

Figure 2: Applying a CG ruleR to a SGG.

The deduction problem requires the notion of derivation
of a graph.

Definition 6 (Derivation) LetS be a support,R be a set of
CG rules, andG andG′ be two SGs, all defined overS. We
say thatG′ is R-derivedfrom G if there exists a sequence
(possibly reduced toG) of SGsG = G0, . . . , Gk = G′ such
that, for1 ≤ p ≤ k, there is a ruleR ∈ R and a projection
π of Hyp(R) into Gp−1 with Gp = α(Gp−1, R, π).

We define now the deduction problem in this model using
CG rules (calledSR, as in (?)):
SR-DEDUCTION
Data: A supportS, two SGsG andH , and a set of CG rules
R, all defined overS.
Question: Can H be deduced from the knowledge base
(S, G,R), i.e. does there exist anR-derivation fromG into
a SGG′ such thatH projects into the normal form ofG′ ?

Relationships with FOL
Since (?), semanticsof SGs are usually expressed through a
translation to the positive, conjunctive, existential fragment
of first-order logics (without function symbols); that frag-
ment will be denoted by FOL(∧, ∃). CG rules are translated
to formulas corresponding totuple generating dependencies
in databases, as pointed out in (?). Knowledge expressed in
a supportS, in a SGG or in a set of CG rulesR can be
translated to the formulasΦ(S), Φ(G) andΦ(R), as shown
below. Though logical semantics are not in the scope of this
paper, we think that these translations can help a reader un-
familiar with CGs.

Translating the support To each pair of types(t, t′) of
arity i in the supportS (concept types are considered as rela-
tion types of arity 1), such thatt < t′, we associate a formula
φ(t, t′) = ∀x1 . . .∀xi(t(x1, . . . , xi) → t′(x1, . . . , xi)).
The interpretationΦ(S) of the support is the conjunction
of these formulasφ(t, t′), for all pairs(t, t′) of comparable
types in the support.

Translating SGs A SG G will be translated as follows:
to each nodex we associate the termσ(x): a distinct vari-
able if x is generic, and the constantM to each individual

node having markerM . A nodex typed byt will be in-
terpreted by the formulaφ(x) = t(σ(x)). A relationr =
(x1, . . . , xi) labelled byt will be interpreted by the formula
φ(r) = t1(σ(x1), . . . , σ(xi)) ∧ . . . ∧ tp(σ(x1), . . . , σ(xi)).
The interpretation of the graphG is then the formulaΦ(G)
obtained by making the existential closure of the conjunc-
tion of the formulasφ(r) andφ(x), for all relationsr and all
nodesx in G. By example, the interpretation of the graphH
in Fig. 1 is the formula∃X∃Y ∃Z(t1(X)∧ t2(Y)∧ t3(Z)∧
r2(Z, Y) ∧ r3(X, Y, Z)).

Translating CG rules Let R = (G, H) be a CG rules. As
if translating the SGG, we build the formulasφ(r) inter-
preting each of its nodes and relations. We defineΦH(R)
as the conjunction of allφ(r), for nodes and relationsr ap-
pearing in the hypothesis of the rule, andΦC(R) as the con-
junction of all φ(r), for those appearing in the conclusion
of the rule. The interpretation of a ruleR is the formula
Φ(R) = ∀x1 . . .∀xp(ΦH(R) → (∃y1 . . .∃yqΦC(R))),
where thexi are the variables associated to nodes of the
hypothesis, and theyj are those associated to nodes of the
conclusion. A set of rules is interpreted as the conjunc-
tion of the interpretations of its elements. By example, the
interpretation of the CG ruleR in Fig. 2 is the formula:
Φ(R) = ∀X∀Y (T ′(X, Y) → (∃ZT (X, Z, Y))).

We have now all the tools to express the “soundness and
completeness” results that logically found deduction in the
SG andSR models:

Theorem 1 ((Sowa 1984; Mugnier & Chein 1996))Let
H and G be two SGs defined overS. ThenH can be
deduced from(S, G) if and only if Φ(H) is a logical
consequence ofΦ(S) andΦ(G).

Theorem 2 ((Salvat & Mugnier 1996)) Let R be a set of
CG rules, andH andG be two SGs, all defined over a sup-
port S. ThenH can be deduced from(S, G,R) if and only
if Φ(H) is a logical consequence ofΦ(S), Φ(R) andΦ(G).

Complexity and decidability
Let us now recall complexity and decidability results about
these two deduction problems:

Theorem 3 (Complexity) SG-DEDUCTION is an NP-
complete problem.

This theorem has been initially proven in (Chein & Mug-
nier 1992), with a CLIQUE reduction. It can be more conve-
nient to point out thatSG-DEDUCTION is a trivial general-
ization of GRAPH HOMOMORPHISM, itself a well known
generalization of GRAPH K -COLORING: both are well
known NP-complete problems.

Theorem 4 ((Un)Decidability) SR-DEDUCTION is a
semi-decidable (but not decidable) problem.

This was proven by (Coulondre & Salvat 1998), reduc-
ing the problem to IMPLICATION OF TUPLE GENERATING
DEPENDENCIES. (Baget 2001) shows that it is the payback
for expressivity: indeed,SR-DEDUCTION is a computation
model (Turing Machines can be encoded with these rules).

Decidability results exploit the notion of completeness
(no rule application can add new information to the graph)
(Baget & Mugnier 2002), allowing to define a generic cri-
terium (finite expansion sets) for decidability.

Definition 7 (Complete Graph) An SGG is saidcomplete
with respect to a set of rulesR if for every ruleR ∈ R, for
every projectionπ of R into nf(G), the SGα(G, R, π) can
be projected intonf(G).

If we can derive a complete graph, then it is equivalent to
all other complete graphs that can be derived. The irredun-
dant graph (see (Baget & Mugnier 2002)) notedGR is the
smallest representant of this equivalence class.

Definition 8 (Finite Expansion Sets)A set of CG rulesR
is called afinite expansion setif for every SGG, a complete
SG can beR-derived fromG.

If we restrict our knowledge base to some range-restricted
set of rules, thenSR-DEDUCTION becomes a decidable
problem. Two example of finite expansion sets have been
studied in (Baget & Mugnier 2002).Range restricted rules
are rules such that no generic node belong to their con-
clusion (they are named by analogy with Datalog rules in
which all variables of the head must appear in the queue
(Abiteboul, Hull, & Vianu 1995)).Disconnected rulesare
such that no path exists between nodes of the conclusion
and those of the hypothesis. Using any of these restric-
tions makesSR-DEDUCTION an NP-complete problem.
However, considering a set of rules that is the union of
range-restricted rules and disconnected rules leads to a semi-
decidableSR-DEDUCTION.

Motivations
Extensions of theSG endSR composing theSG family
(Baget & Mugnier 2002) have been initially proposed in
(Baget, Genest, & Mugnier 1999) as a convenient way to
model and solve the SISYPHUS I problem proposed by the
Knowledge Acquisition community. But though the lan-
guage proposed enabled an elegant modelization of the prob-
lem, algorithmic efficiency was lacking. Moreover, our first
experiments, using both the naı̈ve forward chaining algo-
rithm (FC) and the efficient backward chaining one (BC)
(Salvat 1998) available on the platform CoGITaNT (Gen-
est & Salvat 1998) to solveSR-DEDUCTION, showed that
FC was much quicker.

Let us explain this result. In theSEC model (an exten-
sion of SR), rules applications can be seen as elementary
evolutions of a world. Also present in the knowledge base
are constraints, that are used to check the integrity of the
world at each step of its evolution. In this model, the deduc-
tion problem asks whether there exists a sequence of rules
applications that generates only graphs satisfying the con-
straints, and where the last one answers to the query. Using
FC, it is possible to cancel a rule application and backtrack
as soon as a constraint violation is observed. No efficient
pruning could be developped for BC: most of the time, a
generated sequence of rules applications leading to the an-
swer was found violating a constraint only when applying it
to the initial graph. Such a problem should be encountered

as soon as an external mechanism is used to forbid some
rules applications sequences.

However, FC, though better than BC, was still an ineffi-
cient algorithm: though SISYPHUS I can be considered as a
“toy example”, the program based upon this algorithm ran
6 long days to enumerate all solutions. We considered three
different ways to optimize this algorithm:

1. Optimize projection itself. Thanks to the close re-
lationship exposed in (Mugnier 2000) betweenSG-
DEDUCTION and CSP (Constraint Satisfaction Network),
it is possible to adapt backtrack enhancements developped
in the CSP community toSG-DEDUCTION (Baget 2003).

2. Reduce the number of projections computed at each step
of FC.

3. Reduce the size of these projections.

The algorithm presented here relies on an initial treatment
of the set of rules to answer these two last points. Moreover,
the structure of the graph of rules dependencies initially gen-
erated can be used to extend the decidable cases when mix-
ing finite expansion sets.

Rules Dependencies
Let us first briefly present a version of the naı̈ve FC. At each
step of its execution, it applies to the normal form of the
current graphnf(Gc) each applicable rule ofR following
each of its projections intonf(Gc). The obtained SG is the
new current graph, and this step is repeated until the query
can be projected into the current graph.

Neutrality Since applying the same rule twice following
the same projection creates only redundant, useless infor-
mation, it is immediate to point out that, at stepi, a rule
application ofR following some projection must use a node
that was added at stepi − 1 to be of any use. It means that
some node in the hypothesis ofR must be projected into a
node added at stepi−1, i.e. a node belonging to the conclu-
sion of a rule inR. Simply put, letR1 andR2 be two rules:
if no nodex2 in the hypothesis ofR2 can be projected into a
nodex1 of the conclusion ofR1, then no application of the
ruleR1 into a graph can create a new application ofR2 into
this graph. Let us formalize and generalize this basic idea.

Definition 9 (Neutral) Let R andR′ be two CG rules de-
fined over a supportS. We say thatR is neutralfor R′ if, for
every graphG that can be defined overS, for every graph
G′ = α(G, R, π), the set of all projections fromR′ into G′

is still the same as the set of all its projections intoG.

Graphs of rules dependencies Let us now build a com-
plete5 directed graphG(R) whose nodes are the rules ofR.
Now let us removesomeof the arcs(R, R′) such thatR
is neutral toR′. We obtain agraph of rules dependencies.
We modify then the algorithm FC in the following way, ob-
taining the algorithm FCD (Forward Chaining with Depen-
dencies). At the first step of the algorithm, all rules ofR

5There is an arc between each pair of nodes, loops included.

are checked for applicability. At subsequent steps, the only
rules that are checked for applicability are the rulesR such
that there exists a ruleR′ applied during the previous step
with (R′, R) being an arc ofG(R). The following prop-
erty, whose proof is immediate, points out the equivalence
between the two algorithms FC and FCD. Note also that if
no arc is removed fromG(R), FCD behaves exactly as FC.

Property 1 For any positive integeri, the SG obtained at
stepi of the algorithm FC is equivalent to the SG obtained
at stepi of the algorithm FCD.

As FC, FCD is thus sound and complete w.r.t.SR-
DEDUCTION. Note that FCD does not require to remove all
arcs corresponding to neutral rules couples, but only those
arcs can be removed or completeness would be lost. The
task is thus to remove only those arcs, but the greater num-
ber possible (eventually all) to achieve a better efficiency.

From a weak to an optimal neutrality condition Let us
formalize the neutrality condition presented as an example
before Def. 9. It is immediate to check that if no label in
the conclusion ofR1 is lesser than a label in the hypothesis
of R2, thenR1 is neutral toR2. However, this is an insuffi-
cient caracterization of neutrality, as shown by the following
rules.

R1 IF [A : ∗] THEN [B : ∗]

R2 IF [B : ∗] → (r) → [C : ∗] THEN . . .

The above criterium does not considerR1 as a neutral to
R2 (the node typedB in Hyp(R2) can be projected into the
node of Ccl(R2) with the same label), even if the hypothesis
of R2 cannot be projected into the SG restricted to the node
typedB. This is the basic idea behind the main theorem: it is
not sufficient to project a node into an other, its neighbours
must also be projected. However, the following caracteri-
zation of neutrals does not take normal form into account.
Indeed, it detects too much neutrals if SGs are put into their
normal form, as it should be, between rule applications. This
issue will be discussed in the next section.

Theorem 5 Let R and T be two CG rules. ThenR is a
neutral forT unless there exists:

• a projectionπ from a non empty subgraphH of Hyp(T)
into Ccl(R) (we note thenN(H) the relations of Hyp(T)
that are not inH but are incident to its nodes),

• a partition⊕N = {N1, . . . , Nk} of relations ofN(H),

• a partition⊕F = {F1, . . . , Fk+1} of relations of thefron-
tier6 F of R,

answering the following conditions:

1. For each nodeh of H being theith argument of a relation
n of N(H), let Nj ∈ ⊕N such thatn ∈ Nj. Thenπ(h) is
theith argument of a relationf of Fj in R.

6Thefrontier is composed of relations of the conclusion that are
incident to a node in the hypothesis.

2. For eachNj ∈ ⊕N , the supportS allows to create a
relation sj whose type is more specific than the types of
relations inNj andFj .

Intuitively, projectionπ expresses that a part of Hyp(T)
must be projected in a part of the SG that has been added
when applyingR, while the partitions show that relations in
Nj and those inFj should be able to project into a relation
of G.
Proof: Intuitivement, la projectionπ exprime qu’une par-
tie de l’hypoth̀ese deT devra se rajouter dans la par-
tie d’un graphe correspondant̀a ce qui aét́e rajout́e par
l’application deR, tandis que les partitions indiquent que
les sommets appartenantà Nj et les sommets appartenantà
Fj pourront se projeter dans un m̂eme sommet du grapheG.

Nous prouverons tout d’abord que, si on se donne de tels
objetsπ, ⊕N et ⊕F entre deux r̀eglesR et T , alors R est
un d́eclencheur possible deT . La preuve de cette partie
de l’équivalence (⇒) se fera en construisant un grapheG
tel qu’une certaine application deR crée une nouvelle ap-
plication deT .Cette partie de la preuve est illustrée dans la
FIG ??. La deuxìeme partie de l’́equivalence (⇐) supposera
l’existence d’un graphe quelconqueG tel que l’application
de R crée une nouvelle application deT . Nous constru-
irons alors la projectionπ, et les partitions⊕N et ⊕F , et
vérifierons que les crit̀eres 1. et 2. sont respectés.

(⇒) Supposons qu’il existe une telle projectionπ et de
telles partitions⊕N et⊕F entreR etT . Nous construisons
le graphe initialG et le grapheG′ obtenu par une applica-
tion deR surG de la façon suivante:

1. nous partons de l’hypothèse deR pour d́efinir le graphe
G;

2. pour chaqueNj ∈ ⊕N , les sommets deFj dans la
frontière deR sont fusionńes, et l’́etiquettesj du sommet
résultant est plus spécifique que celle de chacun des som-
mets deFj (ce qui est exiǵe par l’opérateur de fusion),
mais aussi que celle de chacun des sommets deNj (cette
étiquette desj existe gr̂ace au crit̀ere 2. du th́eor̀eme);

3. nous faisons l’union disjointe du graphe ainsi obtenu avec
le sous-grapheH ′ de l’hypoth̀ese deT qui contient tous
les sommets qui ne sont ni dansH , ni dansN(H);

4. pour chaque ar̂eteétiquet́ee pari entre un sommete de
H ′ et un sommetn deN(H) (nous supposonsn ∈ Nj)
dansT , nous rajoutons une arêteétiquet́ee pari entre le
sommet correspondantà e et le sommetsj ;

Nous exhibons tout d’abord une projectionπ1 de
l’hypothèse deR dans ce grapheG (il peut y en avoir
d’autres, mais seule celle-ci nous intéresse). Le sous-graphe
deG obtenuà l’ étape 2. correspond̀a une fusion de certains
des sommets de l’hypothèse deR, qui sṕecialise davan-
tage lesétiquettes des sommets fusionnés. Cette oṕeration
conserve donc une projection de l’hypothèse deR dansG,
définie par:

• si x ∈ Fj (pour1 ≤ j ≤ k), alorsπ1(x) = sj ;

• sinon,π1(x) = Id(x).

Cette projectionπ1 nous permet de construire le graphe
G′, obtenu par l’application deR à G suivantπ1. Nous

montrerons qu’il existe une applicationπ2 de l’hypoth̀ese de
T dansG′, qui est bien une projection, et qui ne correspond
pasà une projection de l’hypoth̀ese deT dansG. Soitπ2

l’application associant aux sommets de l’hypothèse deR2

des sommets deG′ définie par:
• si x ∈ H , alorsπ2(x) = π(x) (plus pŕeciśement, il s’agit

du sommet deG′ rajouté par l’application deR qui cor-
respondà π(x));

• si x ∈ N(H), alors soitNj/x ∈ Nj , alorsπ2(x) = sj ;

• si x ∈ H ′, alors π2(x) = Id(x) (plus pŕeciśement, il
s’agit du sommet correspondantà x qui a ét́e rajout́e à
l’ étape 3.).

Si cette application est une projection, alors il s’agit bien
d’une projection qui n’est pas entièrement dansG (puisque
H est non vide, il existe au moins un sommet qui a pour
image un sommet rajouté par l’application deR). Il reste
doncà prouver queπ2 est une projection.

Tout d’abord, nous pouvons voir que la restriction deπ2

au sous-graphe engendré par les sommets deH et les som-
mets deH ′ est bien une projection. En effet,π est une pro-
jection deH dans la partie deG′ rajoutée par l’application
deR et Id est bien une projection deH ′ dans la partie deG′

qui lui correspond. Comme il n’y a aucune arête entreH et
H ′ (sinon le sommet deH ′ voisin d’un sommet deH devrait
appartenir, par hypoth̀ese,à N(H)), ces deux projections
définissent bien une projection du sous graphe engendré par
les sommets deH et deH ′ dansG′.

Resteà étendre cette projection aux sommets deN(H).
Nous voyons tout d’abord queπ2 associèa tout sommet de
N(H) un sommet qui lui est compatible: ceci est assuré par
la définition des sommetssj à l’ étape 2. de la construction
deG′. Pour prouver queπ2 est un homomorphisme, il nous
resteà prouver que pour toute arêtexy, étiquet́ee pari, in-
cidenteà un sommetx deN(H) (nous supposonsx ∈ Nj),
il existe une ar̂eteétiquet́ee pari entreπ2(x) = sj etπ2(y).
La partition de l’hypoth̀ese deT nous impose un des trois
cas suivants:

1. Soity ∈ N(H): ceci est impossible. En effet, un sommet
qui est dans la frontìere d’une r̀egle est ńecessairement
un sommet concept (une conséquence imḿediate de la
définition des r̀egles). La compatibilit́e des sommets de
N(H) avec des sommets de la frontière impose donc̀a
ces sommets d’être des sommets concept. Comme nos
graphes sont bipartis, il n’y a aucune arête entre ces som-
mets.

2. Soity ∈ H : alors, par hypoth̀ese (il s’agit du crit̀ere
1. dans le th́eor̀eme), il existe une arête étiquet́ee pari
entre π(y) (dans la conclusion deR) et un sommet de
Fj (dans la frontìere deR). Comme les sommets deFj

ont ét́e projet́es parπ1 danssj = π2(x), cette ar̂ete est
nécessairement rajoutée entresj et π2(y) dansG′ (c’est
le mécanisme d’application de règles).

3. Soit y ∈ H ′: dans ce cas, la pŕesence d’une arête
étiquet́ee pari entre Id(y) et sj est assuŕee par l’́etape
4. de la construction deG.

Doncπ2 est bien une projection deT dansG′ qui n’est
pas une projection dansG. L’existence d’un tel grapheG

prouve queR n’est pas neutre pourT : R est un d́eclencheur
possible deT . ✸

(⇐) Nous supposons maintenant queR est un
déclencheur possible deT . Alors il existe un grapheG, tel
que, pourG′ obtenu en appliquantR à G suivant une pro-
jectionπ1, il existe une projectionπ2 de l’hypoth̀ese deT
dansG′ qui n’est pas entìerement contenue dansG. Nous
allons en d́eduire une projectionπ et deux partitions⊕N et
⊕F qui satisfont les deux critères du th́eor̀eme.

Nous notonsH le sous-graphe de l’hypothèse deT dont
les images parπ2 sont les sommets deG′ rajoutés par
l’application (suivantπ1 deR à G. Nous remarquons queH
est non vide (sinon la projectionπ2 serait entìerement dans
G), et que la restriction deπ2 à H définit bien une projec-
tion de ce sous-graphe non videH de l’hypoth̀ese deT dans
la conclusion deR. Soitπ cette projection.

Nous consid́erons maintenantGf le sous-graphe deG en-
gendŕe par les images parπ1 de la rontìere deR1. Nous al-
lons tout d’abord prouver queπ−1

1 (Gf) induit une partition
des sommets de la frontière deR1 (immédiat, puisque, par
définition d’une application, un sommet ne peut avoir deux
images), et queπ−1

2 (Gf) induit une partition des sommets
deN(H).

Soit N(H) le voisinage deH . Nous remarquons tout
d’abord que, six est un sommet deN(H), alors π2(x) est
un sommet deG′ (et m̂eme deG) sur lequel ont́et́e projet́es
(par π1) des sommetsy1, . . . , yp de la frontìere deR1. En
effet, puisquex est voisin d’un sommety deH , etπ2(y) ap-
partientà la partie deG′ rajoutée par l’application deR1,
alors π2(x) est un voisin deπ2(y) dansG (sinonx appar-
tiendrait à H). Et l’application deR1 suivantπ1 n’a pu ra-
jouter une ar̂ete entre un sommetπ2(y) de la partie rajout́ee
et un sommetπ2(x) dansG que siπ1 a projet́e au moins un
sommet de la frontière deR1 dansG (c’est le ḿecanisme
d’application d’une r̀egle). Nous choisissons donc arbi-
trairement un sommet parmi les sommetsy1, . . . , yp de la
frontière, et d́efinissonsφ(x) = y1.

Nous avons donc construit une projectionπ d’un sous-
grapheH non vide de l’hypoth̀ese deR2 dans la conclusion
deR1, et une applicationφ de N(H) dans la frontìere de
R1. Il ne nous reste plus qu’à vérifier que ces deux appli-
cations respectent bien les critères 1. et 2. du th́eor̀eme.
✷

An important consequence of this theorem is that it allows
us to give the complexity of this problem.

SR-NEUTRALITY
Data: Two CG rulesR andR′.
Question: Is R neutral forR′ ?

Theorem 6 (Complexity) SR-NEUTRALITY is a co-NP-
complete problem.

The proof is direct. The projectionπ as well as the two
partitions is a polynomial certificate thatR is not neutral for
T . When the CG rules are disconnected,R is not neutral
for T if and only if there is a projection from Hyp(T) into
Ccl(R), hence the completeness.SR-NON-NEUTRALITY
being NP-complete,SR-NEUTRALITY is co-NP-complete.

Using the graph of rules dependencies
Strengths We have presented an algorithm, FCD, that im-
proves the standard Forward Checking as long as enough
neutrals are found. Not only does it reduce the number of
projection checks at each step of the algorithm, but it is also
possible to store in the arcs of the graph of rules dependen-
cies the partial projections from the hypothesis of the desti-
nation to the conclusion of the origin. This reduces the size
of computed projections.

The initial cost of FCD can be high: there is|R|2 NP-
hard problems to compute. First, the huge overhead cost
induced by building the rules dependencies graph is quickly
compensated: if Forward Chaining execution is longer than
two steps, the overhead cost is compensated. Using our al-
gorithm to solve the SISYPHUS I problem, we managed to
generate all solutions in less than 2 hours. Then, if we con-
sider a set of rules as a library, the rules dependencies graph
should only been built once. Its cost is thus divided between
all “users” of that library.

Second, structural arguments on the rules dependencies
graph can be used to obtain new decidability results, or to
extend existing ones, as shown by the two following theo-
rems.

Theorem 7 If the rules dependencies graph has no circuits
(note that a loop is considered as a circuit), thenSR-
DEDUCTION is decidable.

Theorem 8 If each strongly connected component is formed
of a finite expansion set, thenSR-DEDUCTION is decidable.

Moreover, the questionH can be seen as a CG rule with
an empty conclusion, and the SGG as a CG rule with an
empty hypothesis. They can thus be integrated in the rules
dependencies graph. See that rules that are not on a path
from G to G will be of no use to solve the deduction prob-
lem. Removing these rules from the graph may modify its
structure, and can lead to a decidable case.

Weaknesses The main problem with FCD is that using the
optimal neutrality condition leads to loose completeness as
soon as SGs are put into their normal form during the deriva-
tion. Three solutions can be adopted:

• drop this “optimal” criterium and use the weaker one, safe
w.r.t. normalization;

• restrict ourselves to rules that never require any normal-
ization after their application, they are exactly the rules
that have one or more individual nodes in their conclu-
sion;

• it is possible to keep the optimum criterium without any
restriction on rules used. Let us observe that a rule hav-
ing an individual node in its conclusion is exactly equiva-
lent (in the sense that their application generates the same
graphs), as soon as a node with the same marker is present
in the current graph, to a rule where this node belongs to
the conclusion. Then as soon as an individual marker ap-
pears in the current graphs, rules where this marker ap-
pears in conclusion must be modified, and then the arcs
for this rule must be computed again in the graph of rules

dependencies. Though this work could be prepared at
compile time, we must point out that a rule withk differ-
ent individual markers in its conclusion can be replaced
by 2k different rules.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995.Foundations
of Databases. Addison-Wesley.
Baget, J.-F., and Mugnier, M.-L. 2002. Extensions of
Simple Conceptual Graphs: the Complexity of Rules and
Constraints. Journal of Artificial Intelligence Research
16:425 – 465.http://www.cs.washington.edu/
research/jair/contents/v16.html.

Baget, J.-F.; Genest, D.; and Mugnier, M.-L. 1999. Knowl-
edge Acquisition with a Pure Graph-Based Knowledge
Representation Model – Application to the SISYPHUS-I
Case Study. In Gaines, B. R.; Musen, M. A.; and Kremer,
R. C., eds.,Twelfth Workshop on Knowledge Acquisition,
Modeling and Management, Banff, Alberta, Canada, Octo-
ber 16–21, 1999. Online proceedings athttp://sern.
ucalgary.ca/KSI/KAW/KAW99/papers.html.

Baget, J.-F. 2001. Repŕesenter des connaissances et
raisonner avec des hypergraphes: de la projectionà la
dérivation sous contraintes. Ph.D. Dissertation, Université
de Montpellier II.
Baget, J.-F. 2003. Simple conceptual graphs revisited: Hy-
pergraphs and conjunctive tupes for efficient projection al-
gorithms. In de Moor, A.; Lex, W.; and Ganter, B., eds.,
Conceptual Structures for Knowledge Creation and Com-
munication, 11th International Conference on Conceptual
Structures, ICCS 2003, Dresden, Germany, July 21–25,
2003, Proceedings, volume 2746 ofLecture Notes in Ar-
tificial Intelligence, 229 – 242. Springer.

Chein, M., and Mugnier, M.-L. 1992. Conceptual
Graphs: fundamental notions.Revue d’Intelligence Arti-
ficielle6(4):365–406.

Coulondre, S., and Salvat,́Eric. 1998. Piece Resolu-
tion: Towards Larger Perspectives. In Mugnier and Chein
(1998), 179 – 193.
Genest, D., and Salvat,Éric. 1998. A Platform Allowing
Typed Nested Graphs: How CoGITo Became CoGITaNT.
In Mugnier and Chein (1998), 154 – 161.
Mugnier, M.-L., and Chein, M. 1996. Représenter
des connaissances et raisonner avec des graphes.Revue
d’Intelligence Artificielle (nuḿero sṕecial ”Graphes Con-
ceptuels”)10(1).

Mugnier, M.-L., and Chein, M., eds. 1998. volume 1453
of Lecture Notes in Computer Science. Springer.

Mugnier, M.-L. 2000. Knowledge Representation and
Reasonings Based on Graph Homomorphism. In Ganter,
B., and Mineau, G. W., eds.,Conceptual Structures: Log-
ical, Linguistic, and Computational Issues, 8th Interna-
tional Conference on Conceptual Structures, ICCS 2000,
Darmstadt, Germany, August 14–18, 2000, Proceedings,
volume 1867 ofLecture Notes in Computer Science, 172 –
192. Springer.

Salvat,Éric., and Mugnier, M.-L. 1996. Sound and Com-
plete Forward and Backward Chainings of Graphs Rules.
In Eklund, P. W.; Ellis, G.; and Mann, G., eds.,Conceptual
Structures: Knowledge Representation as Interlingua, 4th
International Conference on Conceptual Structures, ICCS
’96, Sydney, Australia, August 19-22, 1996, Proceedings,
volume 1115 ofLecture Notes in Computer Science, 248 –
262. Springer.

Salvat,Éric. 1998. Theorem Proving Using Graph Oper-
ations in the Conceptual Graph Formalism. In Prade, H.,
ed., 13th European Conference on Artificial Intelligence,
Brighton, UK, August 23-28 1998, Proceedings, 356 – 360.
John Wiley and Sons.
Sowa, J. F. 1984.Conceptual Structures: Information Pro-
cessing in Mind and Machine. Reading, MA: Addison-
Wesley.

