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Abstract

Simple Conceptual Graphs (SGs) are used to repre-
sent entities and relations between these entities: they
can be translated into positive, conjunctive, existential
first-order logics, without function symbols. Sound and
complete reasonings w.r.t. associated logic formulas are
obtained through a kind of graph homomorphism called
projection.

Conceptual Graphs Rules (or CG rules) are a standard
extension to SGs, keeping sound and complete reason-
ings w.r.t. associated logic formulas (they have the same
form as tuple generating dependencies in database):
these graphs represent knowledge of the form “IF ...
THEN”.

We present here an optimization of the natural forward
chaining algorithm for CG rules. Generating a graph of
rules dependencies makes the following sequences of
rule applications far more efficient, and the structure of
this graph can be used to obtain new decidability results.

Introduction

Simple Conceptual Graphs (or SGs) have evolved since
Sowa’s reference book (Sowa 1984) as the cornerstone of
a family of knowledge representation languages known as
“Conceptual Graphs”. SGs are used to represent entities as
well as the relations between them. They can be translated
into positive, conjunctive, existential first-order logitor-
mulas, without function symbols. Sowa’s graph-based in-
ference operator has since been reformulated as a labelled
graphs homomaorphism called projection (Chein & Mugnier
1992). A projection of a SG into a SGG means that all
information encoded irf{ is already present itr; projec-

tion is sound (Sowa 1984) and complete (Mugnier & Chein
1996) w.r.t. the associated logical semantics.

A standard extension, proposed in (Sowa 1984), is ob-
tained by using Conceptual Graphs Rules (or CG rules).
These rules are also represented by graphs (one subgrap
is identified as the hypothesis part, the remaining partgein
the conclusion). They represent knowledge of the form “IF
... THEN". Extending the logical semantics to translate CG
rules (the obtained formulas are the same as the tuple gen-
erating dependencies studied in databases), the prajectio
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based deduction mechanism of the CG rules model has been
proven sound and complete w.r.t. deduction of the associ-
ated logic formulas (Salvat & Mugnier 1996).

An efficient backward chaining has been presented by
(Salvat 1998), and its comparison with Prolog proved its
efficiency (Coulondre & Salvat 1998). However, this algo-
rithm does not cope well with some extensions built upon
CG rules, and particularly the more expressive languages
from theSG family (Baget & Mugnier 2002). In these mod-
els, algorithms used for deduction rely on forward chaining
of rule applications.

In this paper, we present an optimization of the natural
forward chaining algorithm that is highly adaptable to thes
extensions of CG rules. An initial treatment of a library of
CGrules is used to generate tiraph of rules dependencies
Using this graph makes the subsequent rule applications far
more efficient, and its structure can be used to obtain new
decidability results, extending those presented in (B&get
Mugnier 2002).

This paper is organized as follows: we first briefly recall
basic definitions on SGs, and we present CG rules. To help
readers unfamiliar with the CG formalisms, we recall their
translation into first-order logics. After detailed motiems,
we introduce the graph of rule dependencies, and discuss its
efficiency (for optimization purpose as well as for extergdin
existing decidable cases).

Simple Conceptual Graphs

The vocabulary available is encoded in a structure called th
support

Definition 1 (Support) We call support a tuple S
(M, T¢,Th, ..., Ty) of pairwise disjoint partially ordered
sets: M is the set oimarkers7¢ is the set oiconcept types
andT;, 1 < i < k is the set ofrelation typef arity 7.

The set of markerM contains a distinct element: the

rbeneric markerx, used to represent unnamed entities. The

other markers (callethdividual) represent named entities.
Individual markers are pairwise non comparable, and are
more specific than the generic one. No assumption is needed
on the partial orders encoding the types hierarchies. These
partial orders will be denoted by. These sets do not need

to be finite, but we assume that the comparison of two ele-
ments can be computed in constant time.



To simplify definitions, we present here SGs as multiple
directed hypergraphsvhose nodes (representing entities)
are labelled by a concept type and a markepdfand hy-

exactly 2 projections from the grapH into the graphG,
both represented in Fig. 1. One of them associates the nodes
respectively labelled; : ¢, t2 : d andts : g to the nodes re-

perarcs (non empty tuples of nodes representing relations spectively labelled;, ¢, and¢s. Note however that, contrary

between entities) are labelled by a type of corresponding ar
ity.

Definition 2 (SGs) Let S be a support. Asimple concep-
tual graph(or SG), defined oveS, is a tupleG = (V, U, \)
whereV is the set ofnodes U C V7 is a multiset of hy-
perarcs (we call thenmelationg, and X is a mapping that
labels each node by a pair formed by a concept typ&cof
and a marker ofM (a node is saidyenericif labelled bysx,
individual otherwise), and labels each relation of siday a
relation type in7;.

to what this example suggests, projection does not need to
be an injective mapping.

Before defining our basic deduction problem (called, as
in (Baget & Mugnier 20025G-DEDUCTION), we must in-
troduce the notion ofiormal form A SG is said in hormal
form if all individual nodes have different markers (the gam
entity is represented by an unique node). AG@ put into
its normal formn f(G) by fusioning all nodes sharing the
same individual markér

SG-DEDUCTION
Data: A supportS and two SG<~ andH, defined oves.

We adopt for SGs the following graphical representation: Question: Can H be deduced from the knowledge base
each node is represented by a rectangle, and each relatlon(& @), i.e. does there exist a projection frof into the

(z1,...,2;) by an oval in which the relation type is writ-
ten. For each of its arguments, we draw a line between
the rectangle representing and the oval representing the
relation, and write the number next to this line. Finally,
we write T' : M inside the rectangle representing a node
whose type and individual marker are respectivélyand
M, and onlyT if the node is generic. The grapH in
Fig. 1 is the drawing of the SG7 = (V,U, \) defined
as follows: V = {X,Y,Z};U = {(Z,Y),(X,Y,2)};
and \(X) = (ty,+), A(Y) = (ta,%), A(2) = (t5.%),
M(Z,Y)) =712, M(X,Y, Z)) = r3 (all nodes are generic).

H
[t 2 fto]
@

3 2
ts]-1-D

Figure 1: The drawing of two SGS andH..

The basic inference operator for SGs is a labelled (hy-
per)graphs homomorphism called projection. Existence of a
projection from a S@ into a SGG means that all informa-
tion encoded ir is already present ity

Definition 3 (Projection) Let H andG be two SGs defined
over the same suppod. A projection fromH into G is
a mappingr : V(H) — V/(G) such that: for each node
x of H, \(w(z)) < A(x) (we also denote by the prod-
uct order on the orders ofi and M), and for each re-
lation r = (z1,...,x;) in H, there must exist a relation
' = (w(x1),...,7(x;)) such that\(r') < A(r).

As an exercise, the reader can check that, assuming all

normal form ofG ?

Conceptual Graphs Rules

Conceptual graph rules (in short CG rules) express knowl-
edge of the form “IF...THEN?". It is convenient to represent
them as colored SGs.

Definition 4 (CG Rules) A CG rule defined over a support
S,isapairR = (G, H) whereG is a SG defined ove§,
and H is a partial subgraph of74. The SGH is called the
hypothesisof the rule (HygR)), and the other nodes and
relations form itsconclusionCcl(R) (it is not necessarily a
graph, since hyperarcs can lack their elements: we call it a
proto-graph.

CG rules are represented in the same way as SGs, ex-
cepted that we color rectangles and ovals to clearly see the
nodes and relations that belong to the hypothesis or the con-
clusion. Here, elements of the hypothesis will remain in
white, while elements of the conclusion will be shaded in
gray (see Fig. 2).

We must now present the inference mechanism used in
this KR model.

Definition 5 (Rule Application) LetG be a SG and? be a
CG rule, both defined over a suppdtt ThenR is saidap-
plicableto G if there exists a projection, say, from Hyg R)
intonf(G). In that case, we note(G, R, w) the graph ob-
tained by applying the rul® on the graph f (G) following
the projectionsr. This is done in the following way: con-
sider the proto-graph obtained by making the disjoint union
of a copy ofnf(G) and a copy of C¢IR). Then for each
(proto)relationr in Ccl(R), for each noder of the hypoth-
esis ofR that is aith argument of-, make the copy af(z)
theith argument of the copy of

3We assume that all nodes sharing the same marker also share

types are pairwise non comparable in the support, there is the same type, which is the type of the obtained node. Usually

The usual definition of SGs as bipartite graphs is simply ob-
tained by considering the bipartite of incidence of our hgpephs.

a conformity relationdefined in the support determines the type
given to an individual node, according to its marker.
4Obtained fromG by eventually removing some of its nodes

2There can be many occurences of the same hyperarc, that canand the relations for which one argument has been removed, th

be labelled differently.

eventually removing some of the remaining relations.



The mechanism of rule application is illustrated in Fig. 2,
where the SG7 is already in normal form.

Figure 2: Applying a CG rulé? to a SGG.

The deduction problem requires the notion of derivatio
of a graph.

Definition 6 (Derivation) LetS be a supportR be a set of
CG rules, and7 and G’ be two SGs, all defined ovér We
say thatG’ is R-derivedfrom G if there exists a sequence
(possibly reduced t67) of SGSG = Gy, ..., Gr = G’ such
that, for1 < p < k, there is a ruleR € R and a projection
7 of Hyp(R) into G,_1 with G, = a(Gp_1, R, 7).

We define now the deduction problem in this model using
CG rules (calledSR, as in @)):
SR-DEDUCTION
Data: A supportS, two SGsGG andH, and a set of CG rules
R, all defined ovesS.
Question: Can H be deduced from the knowledge base
(S,G,R), i.e. does there exist @R-derivation fromG into
a SGG’ such thatH projects into the normal form a&’ ?

n

Relationships with FOL

Since @), semanticef SGs are usually expressed through a
translation to the positive, conjunctive, existentiabirent

of first-order logics (without function symbols); that frag
ment will be denoted by FOl, 3). CG rules are translated
to formulas corresponding taple generating dependencies
in databases, as pointed out #).(Knowledge expressed in

a supportS, in a SGG or in a set of CG rulefR can be
translated to the formulaB(S), ®(G) and®(R), as shown
below. Though logical semantics are not in the scope of this
paper, we think that these translations can help a reader un-
familiar with CGs.

Translating the support To each pair of types$t,¢’) of
arity 7 in the suppors (concepttypes are considered as rela-
tion types of arity 1), such that< ¢, we associate a formula
ot ') = Ver.. Vo (t(z, ..., x) — t(z1,...,25)).
The interpretation?(S) of the support is the conjunction
of these formulag(t, t'), for all pairs(¢,¢’) of comparable
types in the support.

Translating SGs A SG G will be translated as follows:
to each node: we associate the term(z): a distinct vari-
able if x is generic, and the constafhf to each individual

node having marker. A nodex typed byt will be in-
terpreted by the formula(z) = t(o(z)). A relationr =
(x1,...,2;) labelled byt will be interpreted by the formula
o(r) =ti(o(z1),...,0(@)) A... Atp(o(zr),...,0(zs)).
The interpretation of the graph is then the formulab(G)
obtained by making the existential closure of the conjunc-
tion of the formulass(r) and¢(z), for all relations- and all
nodest in G. By example, the interpretation of the grafih

in Fig. 1is the formuladX3Y3Z (¢, (X) A t2(Y) Ats(Z) A
TQ(Zv Y) A T3(X7 Y7 Z))

Translating CGrules LetR = (G, H) be a CGrules. As

if translating the SG&, we build the formulasg)(r) inter-
preting each of its nodes and relations. We defing(R)

as the conjunction of ath(r), for nodes and relationsap-
pearing in the hypothesis of the rule, abd(R) as the con-
junction of all ¢(r), for those appearing in the conclusion
of the rule. The interpretation of a rulg is the formula
®(R) = Vz1...Vz,(®r(R) — (Fy1...3y,Pc(R))),
where thex; are the variables associated to nodes of the
hypothesis, and thg; are those associated to nodes of the
conclusion. A set of rules is interpreted as the conjunc-
tion of the interpretations of its elements. By example, the
interpretation of the CG rulg? in Fig. 2 is the formula:
®(R) = VXVY (T'(X,Y) — (3ZT(X, Z,Y))).

We have now all the tools to express the “soundness and
completeness” results that logically found deduction i th
SG andSR models:

Theorem 1 ((Sowa 1984; Mugnier & Chein 1996))Let
H and G be two SGs defined ove. ThenH can be
deduced from(S,G) if and only if ®(H) is a logical
consequence @ (S) and®(G).

Theorem 2 ((Salvat & Mugnier 1996)) Let R be a set of
CG rules, andH andG be two SGs, all defined over a sup-
portS. ThenH can be deduced froifS, G, R) if and only

if ®(H) is a logical consequence @f(S), ®(R) and®(G).

Complexity and decidability

Let us now recall complexity and decidability results about
these two deduction problems:

Theorem 3 (Complexity) SG-DEDUCTION is an NP-

complete problem.

This theorem has been initially proven in (Chein & Mug-
nier 1992), with a €IQUE reduction. It can be more conve-
nient to point out thalSG-DEDUCTION is a trivial general-
ization of GRAPH HOMOMORPHISM, itself a well known
generalization of @APH K-COLORING. both are well
known NP-complete problems.

Theorem 4 ((Un)Decidability) SR-DEDUCTION
semi-decidable (but not decidable) problem.

is a
This was proven by (Coulondre & Salvat 1998), reduc-
ing the problem to MPLICATION OF TUPLE GENERATING
DEPENDENCIES (Baget 2001) shows that it is the payback
for expressivity: indeedSR-DEDUCTION is a computation
model (Turing Machines can be encoded with these rules).



Decidability results exploit the notion of completeness
(no rule application can add new information to the graph)
(Baget & Mugnier 2002), allowing to define a generic cri-
terium (finite expansion sets) for decidability.

Definition 7 (Complete Graph) An SGG is saidcomplete
with respect to a set of ruleR if for every ruleR € R, for
every projectionr of R into nf(G), the SGa(G, R, 7) can
be projected intov f (G).

If we can derive a complete graph, then it is equivalent to
all other complete graphs that can be derived. The irredun-
dant graph (see (Baget & Mugnier 2002)) notgd is the
smallest representant of this equivalence class.

Definition 8 (Finite Expansion Sets) A set of CG rulesk
is called afinite expansion sef for every SG&, a complete
SG can béR-derived fromG.

If we restrict our knowledge base to some range-restricted
set of rules, therSR-DEDUCTION becomes a decidable
problem. Two example of finite expansion sets have been
studied in (Baget & Mugnier 2002Range restricted rules
are rules such that no generic node belong to their con-
clusion (they are named by analogy with Datalog rules in
which all variables of the head must appear in the queue
(Abiteboul, Hull, & Vianu 1995)).Disconnected ruleare

1. Optimize projection itself.

as soon as an external mechanism is used to forbid some
rules applications sequences.

However, FC, though better than BC, was still an ineffi-
cient algorithm: though SYPHUS| can be considered as a
“toy example”, the program based upon this algorithm ran
6 long days to enumerate all solutions. We considered three
different ways to optimize this algorithm:

Thanks to the close re-
lationship exposed in (Mugnier 2000) betwedy; -
DebucTioN and CSP (Constraint Satisfaction Network),

it is possible to adapt backtrack enhancements developped
in the CSP community t6G-DEDUCTION (Baget 2003).

2. Reduce the number of projections computed at each step

of FC.

3. Reduce the size of these projections.

The algorithm presented here relies on an initial treatment
of the set of rules to answer these two last points. Moreover,
the structure of the graph of rules dependencies initiadly-g
erated can be used to extend the decidable cases when mix-
ing finite expansion sets.

Rules Dependencies
Let us first briefly present a version of the naive FC. At each

such that no path exists between nodes of the conclusion step of its execution, it applies to the normal form of the

and those of the hypothesis. Using any of these restric-
tions makesSR-DEDUCTION an NP-complete problem.
However, considering a set of rules that is the union of
range-restricted rules and disconnected rules leads toia se
decidableSR-DEDUCTION.

Motivations

Extensions of theSG end SR composing theSG family
(Baget & Mugnier 2002) have been initially proposed in
(Baget, Genest, & Mugnier 1999) as a convenient way to
model and solve thelSypPHUS | problem proposed by the
Knowledge Acquisition community. But though the lan-

current graph f(G..) each applicable rule oR following
each of its projections inta f (G.). The obtained SG is the
new current graph, and this step is repeated until the query
can be projected into the current graph.

Neutrality Since applying the same rule twice following
the same projection creates only redundant, useless infor-
mation, it is immediate to point out that, at stgpa rule
application ofR following some projection must use a node
that was added at stép- 1 to be of any use. It means that
some node in the hypothesis Bfmust be projected into a
node added at stgp- 1, i.e. a node belonging to the conclu-

guage proposed enabled an elegant modelization of the prob-gjgn of a rule inR. Simply put, letR; and R, be two rules:

lem, algorithmic efficiency was lacking. Moreover, our first
experiments, using both the naive forward chaining algo-
rithm (FC) and the efficient backward chaining one (BC)
(Salvat 1998) available on the platform CoGITaNT (Gen-
est & Salvat 1998) to solvER-DEDUCTION, showed that
FC was much quicker.

Let us explain this result. In th6EC model (an exten-
sion of SR), rules applications can be seen as elementary
evolutions of a world. Also present in the knowledge base
are constraints, that are used to check the integrity of the
world at each step of its evolution. In this model, the deduc-

if no nodex. in the hypothesis oR?; can be projected into a
nodez; of the conclusion of?;, then no application of the
rule R, into a graph can create a new applicatiorRafinto
this graph. Let us formalize and generalize this basic idea.

Definition 9 (Neutral) Let R and R’ be two CG rules de-
fined over a suppoif. We say thaR is neutralfor R’ if, for
every graphG that can be defined ovet, for every graph
G' = oG, R, ), the set of all projections fron®’ into G’
is still the same as the set of all its projections iGto

tion problem asks whether there exists a sequence of rules Graphs of rules dependencies Let us now build a com-

applications that generates only graphs satisfying the con

plete directed graplt:(R) whose nodes are the rules®f

straints, and where the last one answers to the query. Using Now let us removesomeof the arcs(R, R') such thatR

FC, it is possible to cancel a rule application and backtrack
as soon as a constraint violation is observed. No efficient
pruning could be developped for BC: most of the time, a

generated sequence of rules applications leading to the an-

swer was found violating a constraint only when applying it
to the initial graph. Such a problem should be encountered

is neutral toR’. We obtain agraph of rules dependencies
We modify then the algorithm FC in the following way, ob-
taining the algorithm FCD (Forward Chaining with Depen-
dencies). At the first step of the algorithm, all rules7f

5There is an arc between each pair of nodes, loops included.



are checked for applicability. At subsequent steps, thg onl 2. For eachN; € @, the supportS allows to create a

rules that are checked for applicability are the rulesuch
that there exists a rul®’ applied during the previous step
with (R’, R) being an arc ofZ(R). The following prop-
erty, whose proof is immediate, points out the equivalence
between the two algorithms FC and FCD. Note also that if
no arc is removed fror*(R ), FCD behaves exactly as FC.

Property 1 For any positive integet, the SG obtained at
step: of the algorithm FC is equivalent to the SG obtained
at stepi of the algorithm FCD.

As FC, FCD is thus sound and complete w.r&R-
DeDucTION. Note that FCD does not require to remove all
arcs corresponding to neutral rules couples, but only those
arcs can be removed or completeness would be lost. The
task is thus to remove only those arcs, but the greater num-
ber possible (eventually all) to achieve a better efficiency

From a weak to an optimal neutrality condition Let us
formalize the neutrality condition presented as an example
before Def. 9. It is immediate to check that if no label in
the conclusion of?, is lesser than a label in the hypothesis
of Ry, thenR; is neutral toR,. However, this is an insuffi-
cient caracterization of neutrality, as shown by the folluyv
rules.

F[A: %
—(r) = [C: 4

Ry
Ry

I THEN [B : ]

IF [B: ] THEN ...

The above criterium does not consider as a neutral to
R> (the node typed in Hyp(R2) can be projected into the
node of Cc{R,) with the same label), even if the hypothesis
of Ry cannot be projected into the SG restricted to the node
typedB. This is the basic idea behind the main theorem: itis
not sufficient to project a node into an other, its neighbours
must also be projected. However, the following caracteri-
zation of neutrals does not take normal form into account.
Indeed, it detects too much neutrals if SGs are put into their
normal form, as it should be, between rule applicationss Thi
issue will be discussed in the next section.

Theorem 5 Let R and T" be two CG rules. TheR is a
neutral forT" unless there exists:

e a projectiont from a non empty subgrapt of Hyp(T")
into Ccl(R) (we note therV(H) the relations of Hy@I")
that are not inH but are incident to its nodes),

e apartition®y = {Ny,..., Ny} of relations of N (H),

e apartiion®p = {F1, ..., Fr41} of relations of théron-
tier® F of R,

answering the following conditions:

1. For each nodé of H being theith argument of a relation
nof N(H), letN; € @y suchthat, € N;. Thenr(h) is
theith argument of a relatiorf of F; in R.

®Thefrontier is composed of relations of the conclusion that are
incident to a node in the hypothesis.

relation s; whose type is more specific than the types of
relations inN; and Fj.

Intuitively, projectionm expresses that a part of Hyp)
must be projected in a part of the SG that has been added
when applyingR, while the partitions show that relations in
N; and those irF}; should be able to project into a relation
of G.

Proof: Intuitivement, la projectionr exprime qu’une par-
tie de I'hypotlese deT devra se rajouter dans la par-
tie d’'un graphe correspondarit ce qui aéte rajouge par
I'application de R, tandis que les partitions indiquent que
les sommets appartenantV; et les sommets appartenant
F}; pourront se projeter dans un@me sommet du graplie

Nous prouverons tout d’abord que, si on se donne de tels
objetsw, ®y et ®p entre deux eéglesRk et T, alors R est
un céclencheur possible d€. La preuve de cette partie
de I'équivalence) se fera en construisant un graplié
tel qu'une certaine application d& crée une nouvelle ap-
plication deT'.Cette partie de la preuve est illuée dans la
FiG ??. La deuxéme partie de Bquivalence<€) supposera
I'existence d’'un graphe quelconqugtel que I'application
de R crée une nouvelle application dB. Nous constru-
irons alors la projectionr, et les partitionspy et $p, et
vérifierons que les critres 1. et 2. sont respést

(=) Supposons qu'il existe une telle projectioret de
telles partitionsd y et@r entre R etT. Nous construisons
le graphe initial G et le graphe&’ obtenu par une applica-
tion deR sur G de la fagon suivante:

1. nous partons de I'hypoéise deR pour céfinir le graphe
G,

2. pour chaqueN; € @y, les sommets dé; dans la
frontiére deR sont fusion@s, et |etiquettes; du sommet
résultant est plus geifique que celle de chacun des som-
mets del; (ce qui est exig par 'opérateur de fusion),
mais aussi que celle de chacun des sommefs dEette
étiquette des; existe géce au criere 2. du tleoreme);

nous faisons 'union disjointe du graphe ainsi obtenwcave
le sous-graphed’ de I'hypotlese del’ qui contient tous
les sommets qui ne sont ni daHs ni dansN (H);

. pour chaque ate étique€e pari entre un sommet de
H' et un sommet de N(H) (nous supposons € N;)
dansT, nous rajoutons une &teétiqueée pari entre le
sommet correspondaate et le sommet;;

Nous exhibons tout d'abord une projectiom; de
I'hypothese deR dans ce graph&r (il peut y en avoir
d’autres, mais seule celle-ci nousénésse). Le sous-graphe
deG obtenua I'étape 2. corresponalune fusion de certains
des sommets de I'hypdtbe deR, qui specialise davan-
tage lesétiquettes des sommets fusiéan Cette opration
conserve donc une projection de I'hypesie deR dansaG,
définie par:

e siz e F; (pourl < j <k), alorsm(x) = s;;
e sinon,m (z) = ld(z).

Cette projectionr; nous permet de construire le graphe
G’, obtenu par I'application deR a G suivantm;. Nous

3.



montrerons qu’il existe une application de I'hypottese de prouve queR n'est pas neutre pouf’: R estun éclencheur

T dansG’, qui est bien une projection, et qui ne correspond possible deT". O
pasa une projection de I'hypo#se del’ dansG. Soitms («<) Nous supposons maintenant quB est un
I'application associant aux sommets de I'hypesk deR, declencheur possible dB. Alors il existe un graphé, tel
des sommets d&’ définie par: que, pourG’ obtenu en appliquank & G suivant une pro-
o siz € H, alorsmy(z) = m(x) (plus peciment, il s'agit jectiony, il existe une projectionr, de I'hypottese deT’
du sommet dé€ rajouté par I'application deR qui cor- dansG’ qui n'est pas endirement contenue daids. Nous
respondd 7 (x)); allons en @duire une projectiomr et deux partitionsp y et

@r qui satisfont les deux cétes du tkoréme.

Nous notondd le sous-graphe de I'hypotise del” dont
s’agit du sommet correspondaatr qui a ét rajoug a les Images parr; sont les \sommets de’ rajoutes par

I'etape 3.) I'application (suivantr; de R & G. Nous remarquons qué

_ EA o ) o est non vide (sinon la projectior, serait enterement dans
Si cette application est une projection, alors il s'agitiie ) et que la restriction der, & H définit bien une projec-
d’une projection qui n’est pas egtiement dans- (puisque tion de ce sous-graphe non videde I'hypottese del’ dans
H est non vide, il existe au moins un sommet qui a pour |3 conclusion deR. Soitr cette projection.
image un sommet rajoéitpar I'application deR). Il reste Nous consiérons maintenar, le sous-graphe dé en-
donca pr'ouver quer, est une projection. - gendg par les images part; de la rontére deR;. Nous al-

Tout d'abord, nous pouvons voir que la restrictiondg lons tout d’abord prouver que; ' (G'¢) induit une partition
au sous-graphe engerdpar les sommets dé etles som- g sommets de la frodte deR; (immeédiat, puisque, par
mets def!” est bien une projection. En effetestune pro-  yeinition d'une application, un sommet ne peut avoir deux

jection deH dans la partie de&~’ rajoutée par I'application ; -1 PR -
de R etld est bien une projection d€’ dans la partie de=’ gr;f?gzel?),.et quer, " (Gy) induit une partition des sommets

qui lui correspond. Comme il n'y a aucuneé&e entreH et
H’ (sinon le sommet d&’ voisin d’'un sommet d& devrait
appartenir, par hypothse,a N(H)), ces deux projections
définissent bien une projection du sous graphe engepdr
les sommets dH et deH’ dansG’.

Restea étendre cette projection aux sommetsNEH ).
Nous voyons tout d’abord que associea tout sommet de
N (H) un sommet qui lui est compatible: ceci est agpar
la définition des sommets a I'étape 2. de la construction
deG’. Pour prouver quer, est un homomorphisme, il nous
restea prouver que pour toute atexy, étiqueée pari, in-
cidentea un sommei de N (H) (nous supposons € N;),

il existe une agteétiqueée pari entrems(z) = s; etma(y).
La partition de I'hypotlese del’ nous impose un des trois
cas suivants:

1. Soity € N(H): ceci estimpossible. En effet, un sommet
qui est dans la fronéire d'une Bgle est Bcessairement
un sommet concept (une céqgsience imédiate de la
définition des egles). La compatibilé des sommets de
N(H) avec des sommets de la fraémg impose doné
ces sommets @tre des sommets concept. Comme nos
graphes sont bipartis, il N’y a aucunegte entre ces som-

e siz € N(H), alors soitN,/z € N;, alorsma(z) = s;;
e sixz € H', alorsmy(x) = Id(x) (plus pecigement, il

Soit N(H) le voisinage deH. Nous remarquons tout
d’abord que, six est un sommet d& (H), alors () est
un sommet dé&’ (et méme de7) sur lequel onéte projegés
(par 1) des sommetg,, ..., y, de la frontere deR;. En
effet, puisque: est voisin d’'un sommetde H, et (y) ap-
partienta la partie deG’ rajoutée par I'application deR;,
alors w2 () est un voisin derz(y) dansG (sinonz appar-
tiendraita H). Et I'application deR; suivantr; n'a pu ra-
jouter une aete entre un sommet (y) de la partie rajouée
et un sommet,(z) dansG que sir; a proje au moins un
sommet de la frontre deR; dansG (c’est le nécanisme
d’application d'une &gle). Nous choisissons donc arbi-
trairement un sommet parmi les sommgis. . ., y, de la
frontiére, et @finissons)(z) = ;.

Nous avons donc construit une projectiond’un sous-
grapheH non vide de I'hypotbse deR; dans la conclusion
de R;, et une application) de N(H) dans la frontére de
R;. Il ne nous reste plus ga'verifier que ces deux appli-
cations respectent bien les @&ies 1. et 2. du #oreme.
m|

An important consequence of this theorem is that it allows
us to give the complexity of this problem.

mets.
2. Soity € H: alors, par hypotlese (il s’agit du criere SR-NEUTRALITY /
1. dans le teorgme), il existe une ate étiqueée pari Data: Two CG rulesi andR'.

entre 7(y) (dans la conclusion de?) et un sommet de ~ Question: Is R neutral fork’ ?

F}; (dans la frontere deR). Comme les sommets d& ] .

ontéte projees parm, danss; = my(z), cette agte est ~ Theorem 6 (Complexity) SR-NEUTRALITY is & co-NP-
nécessairement rajoée entres; et (y) dansG’ (c'est complete problem.

le mecanisme d'application dexgles). The proof is direct. The projection as well as the two

3. Soity € H": dans ce cas, la fsence d'une &te partitions is a polynomial certificate th&tis not neutral for
etiqueée pari entreld(y) et s; est assuge par letape T. When the CG rules are disconnectétljs not neutral
4. de la construction dé'. for T if and only if there is a projection from Hyf@') into
Donc s est bien une projection d€ dansG’ qui n'est Ccl(R), hence the completenes§R-NON-NEUTRALITY

pas une projection dan&. L'existence d’'un tel graphé& being NP-complete§R-NEUTRALITY is co-NP-complete.



Using the graph of rules dependencies

Strengths We have presented an algorithm, FCD, that im-
proves the standard Forward Checking as long as enough
neutrals are found. Not only does it reduce the number of
projection checks at each step of the algorithm, but it is als
possible to store in the arcs of the graph of rules dependen-
cies the partial projections from the hypothesis of theidest
nation to the conclusion of the origin. This reduces the size
of computed projections.

The initial cost of FCD can be high: there [R|?> NP-
hard problems to compute. First, the huge overhead cost
induced by building the rules dependencies graph is quickly
compensated: if Forward Chaining execution is longer than
two steps, the overhead cost is compensated. Using our al-
gorithm to solve the SYPHUS | problem, we managed to
generate all solutions in less than 2 hours. Then, if we con-
sider a set of rules as a library, the rules dependenciefigrap
should only been built once. Its cost is thus divided between
all “users” of that library.

Second, structural arguments on the rules dependencies
graph can be used to obtain new decidability results, or to
extend existing ones, as shown by the two following theo-
rems.

Theorem 7 If the rules dependencies graph has no circuits
(note that a loop is considered as a circuit), théfiR-
DEeDuUcCTION s decidable.

Theorem 8 If each strongly connected componentis formed
of a finite expansion set, th&liR-DEDUCTIONs decidable.

Moreover, the questiofl can be seen as a CG rule with
an empty conclusion, and the S&as a CG rule with an
empty hypothesis. They can thus be integrated in the rules

dependencies. Though this work could be prepared at
compile time, we must point out that a rule wittdiffer-

ent individual markers in its conclusion can be replaced
by 2% different rules.
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