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Abstract—Performance of a delay tolerant network has strong
dependence on the nodes participating in data transportation.

Such networks often face several resource constraints especially
related to energy. Energy is consumed not only in data trans-

mission but also in listening and in several signaling activities.
On one hand these activities enhance the system’s performance
while on the other hand, they consume significant amount of

energy even when they do not involve actual node transmission.
Accordingly, in order to use energy efficiently, one may have to
limit not only the amount of transmissions but also the amount

of nodes that are active at each time. Therefore we study two
coupled problems: i) the activation problem which determines
when a mobile will turn on in order to receive packets, and

ii) the problem of regulating the beaconing. We derive optimal
energy management strategies by formulating the problem as an

optimal control one, which we then explicitly solve.
We also validate our findings through extensive simulations

which are based on contact traces.

Index Terms—Optimal control, fluid models, delay tolerant
networks, threshold policies

I. INTRODUCTION

During the last few years, there has been a growing interest

in Delay Tolerant Networks (DTNs) [1], [2]. In such networks,

no continuous connectivity guarantee can be given [3], [4].

Nevertheless, messages can still arrive at their destination

thanks to the mobility of some subset of nodes that carry

copies of the message. One central problem in DTNs is the

routing of packets towards the intended destination, since mo-

bile nodes rarely possess a priori information on the encounter

pattern. This is also known as the zero knowledge scenario [5],

[6]. One intuitive solution is to disseminate multiple copies of

the message in the network, thereby increasing the probability

that at least one of them will reach the destination node within

a given time window [4].

The above scheme is referred to as epidemic-style forward-

ing [7], which is similar to the spread of infectious diseases.

Each time a message-carrying node encounters an uninfected

node, it infects this node by passing on the message. Finally,

the destination receives the message when it meets an infected

node. In this paper, we refer to a more efficient variant of the

plain epidemic routing, namely the two hop routing protocol.

The source transmits copies of its message to all mobiles

it encounters, but the latter relay the message only if they

meet the destination [8]. In this framework, we study the

problem of optimal control of both routing and activation of

relays; our objective is to maximize the probability of message

delivery to the destination before a given deadline expires

while satisfying specific energy constraints. Henceforth, our

focus here is solely on two hop routing protocol.

In particular, being mostly composed of battery operated

mobile terminals, the functioning of a mobile DTN depends

on its overall energy budget. Such energy budget has to

accommodate the cost of energy expended on two major

operations, namely, message forwarding and node beaconing1.

Typically, a finite energy cost accrues every time a message

is transmitted and received. Furthermore, in DTNs, due to

the need of continuous node discovery, relay nodes spend

substantial energy for periodic beaconing.

Thus the energy budget has to be controlled in order to cope

with two distinct trade-offs:

i The higher the number of message copies, the smaller

the message delay. This gain comes at the price of a

higher energy expenditure, because of forwarding more

messages.

ii Since when a relay performs beaconing it depletes its

battery charge over time, it is possible to make relays

active, i.e. to start their beaconing operations at different

points in time, in order to better schedule the use of their

battery charge. This can be done, e.g., using wake-up

timers.

To overcome these difficulties, previous research in context of

sensor network have discussed the benefit of optimal activation

times of deployed sensor nodes [9]–[11]. Given a finite DTN

energy budget, a natural way to optimize the network perfor-

mance is to control a number of DTN parameters; we focus

here on two such parameters. The first one is the beaconing

rate, which controls the power by which relay nodes operate

their transceivers; this has an effect on the so called inter-

meeting rate [3], [4]. The second one is the time when relay

nodes are activated.

1A periodic signaling for node discovery prior to message reception.
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Symbol Meaning

ξ inter-meeting intensity
µ active nodes death rate
T timeout value
X(t) fraction of nodes having the message at time t (excluding the

destination) in a controlled dynamics

X(t) fraction of nodes having the message at time t in an uncon-

trolled dynamics (U(t)=1)
Y (t) fraction of the active nodes not having the message at time t
E(t) energy expenditure by the whole network in [0, t ]
U(t) energy control at time t, U(t) ∈ [u, 1], u ≥ 0
V (t) activation rate at time t
K(t) upper bound of the activation rate: 0 ≤ V (t) ≤ K(t)
x maximum number of message copies due to energy constraint
z :=X(0)
D(t) CDF of the message delay
ℓ optimal activation threshold
h∗ optimal energy control threshold

TABLE I: Main notation used throughout the paper

Our goal here is to obtain jointly optimal transmission and

activation control policies that maximize the probability of

successful delivery of the message by some time T , given
the total energy budget and a bound on the activation rate

of the relay nodes. As such, this appears to be the first

study that addresses a combined modeling and optimization

of beaconing, activation and routing for mobile ad hoc DTNs.

We leverage fluid approximations of the system dynamics,

and use tools from optimal control theory to obtain a closed-

form dynamic optimal policy. As we will see later, this turns

out to be a two-dimensional threshold type policy. We validate

the model and the results using extensive simulations.

The remainder of the paper is structured as follows: we

introduce the model and problem in section II, which we solve

in sections III- IV. In section V, we extend the model to allow

for unbounded activation rates. In section VI, we validate

the model via numerical investigation and discuss the results

with real world traces. Section VII briefly surveys the related

literature, followed by concluding remarks of section VIII.

Main contributions

Compared with the existing literature, this paper makes the

following two main contributions:

1) Our model explicitly accounts for the maximum allowed

energy expenditure, the delivery probability within a given

deadline, and the activation of relays. It also accounts for

the impact of beaconing on the battery depletion of activated

relays, a quite important aspect for mobile DTNs where

network operations heavily depend on node discovery.

2) We provide a formulation rooted in optimization, which

entails joint optimization of the activation control and the

transmission control in order to maximize the time-constrained

delivery probability. This is a non-standard dynamic optimiza-

tion problem formulated with coupled controls. Once solved,

interesting properties of the optimal solution and the special

role of the control on the relay activation have emerged.

II. SYSTEM MODEL

For ease of reading, we collect all the main symbols used in

the paper in Table I. We consider a network of N +1 mobile
nodes, where one of them, the source, has a message to send

to a destination node. We adopt the two hop routing relay

policy, so that the source relays to mobiles which do not have

the message but a relay transfers the message if and only if

it meets the destination node. This relay strategy is monotone

[12] because the number of copies of the message increases

over time.

The time between contacts of any two nodes is assumed

to be exponentially distributed with parameter ξN (dependent

on number of nodes). The validity of such a model has

been discussed in [13], and its accuracy has been shown

for a number of mobility models (Random Walker, Random

Direction, Random Waypoint). The contact rate ξN is known

to converge ξ when the number of nodes grows large, under
the fluid approximations (see [14]–[16]). We explain fluid

approximations in more detail later in this section. We assume

that the message that is transmitted is relevant for some time

T . We do not assume any feedback that allows the source
or other mobiles to know whether the message has made it

successfully to the destination within the allotted time T .
Each mobile sends periodically beacons to inform the source

that they are in radio range. The source can transfer the

message according to its forwarding policy. A relay node may

already have a copy of the message: for such a node beaconing

is not required, which may save considerable amount of

energy. In what follows, we assume, that relays beacon until

they get a message copy from the source. However, some

nodes can switch to inactive state to save energy.

Accordingly, we define the state of a tagged node as falling

into one of the three categories:

i. inactive: the tagged node does not take part in any

communication;

ii. activated: the tagged node does not have a message

copy, it keeps beaconing until it receives a message

copy;

iii. infected: a node with a message is active but it does not

send beacons.

We assume that once a node becomes infected, it preserves

energy for the last transmission of the message to the desti-

nation node, in case it meets destination before time T .
Notice that the average lifetime of a mobile may be consid-

erably shorter than the bound T . This limited lifetime is due
to constraints on the total energy consumed: two hop routing

is particularly convenient since a relay does not use much

energy in transmission; however, the impact of beaconing

is substantial in comparison to transmission energy. In this

respect we model the lifetime of an activated mobile as an

exponential random variable with average value µdU : this
model captures the fact that the battery empties with rate

µdU if it uses power level U(t). To this respect µ > 0 is
the maximum battery consumption rate.

A. The Control

There are two parameters that are controlled:

a. activation rate control: inactive mobiles do not con-

tribute to communications in the DTN and do not use

energy. By activating fewer/more mobiles per unit of

time, one can use resources when needed. The activation

rate at time t is denoted by V (t).
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b. transmission control (U(t)): the beaconing transmission
power is controlled in order to mitigate the battery dis-

charge of active relay nodes. The transmission control

at time t is denoted by U(t).

Let {Tn} be the sequence of instants where some event
occurs: either an encounter takes place between two mobiles,

or an activation of a mobile. Only at these times the Markov

chain representing the state (X̃N , ỸN ) may change, where X̃N

is the process that represents the number of nodes (out of N

total nodes) that have the message, and where ỸN represents

the number of active mobiles (out of N total nodes) at time t.
Next, we introduce the fluid model used in the rest of the

paper. Approximation of Markov chains through differential

equations is a well known technique; see for example [17] for

a survey. The use of fluid approximations is a standard tool in

modeling epidemic forwarding [14]–[16]. The approximation

is known to be tight as the population of nodes grow; more

precisely, if one increases the rate of events by a factor N ,

then the sample paths of the Markov chain (X̃N , ỸN ), scaled
by a factor of 1/N , are known to converge in probability to
the solution of the limiting differential equation (under the so

called regime of vanishing intensities [18], which holds indeed

in the case of uniform mobility under constant node density).

This differential equation, which we introduce below, is the

starting point in our analysis.2

Fluid Approximations

Let X(t) be the fraction of the mobile nodes that have at
time t a copy of the message. Let Y (t) denote the fraction
of active mobiles at time t which do not have a copy of the
message. V (t) denotes the activation rate at time t and U(t)
denotes the transmission control. (X(t), Y (t)) grows at a rate
given by the following pair of coupled differential equations:

Ẋ(t) = U(t)Y (t)ξ (1)

Ẏ (t) = −U(t)Y (t)(ξ + µ) + V (t) (2)

The term U(t)Y (t)ξ above represents the increase in the

number of mobiles with copies of the message: it is due to

encounters between the source with active mobiles without

messages where each of these encounters has rate ξ. Clearly,
at time t = 0 no active nodes exist: by continuity, Y (0) = 0.

We also assume that U(t) ∈ [u, 1] for some u ≥ 0, and the
activation rate V is bounded as 0 ≤ V (t) ≤ K(t), 0 ≤ t ≤
T, where K(t) is a piecewise continuous function. Without

loss of generality, we further assume that
∫ T

0 V (t)dt = 1,

i.e., we assume that horizon T is long enough to activate all

nodes. Let the set of functions V : {V (·)} satisfying these two
constraints (non-negativity and upper bounds, and unit area).

We note that from the control formulation point of view,

one can find some earlier work (e.g. [12], [19]) where mul-

tiplicative control has been used in the context of delay

2This mean field limit is not only an approximation but turns out to be the

exact expected value of the Markov chain. This property is due to the fact

that the forwarding policy is the two-hop routing, so that the total intensity

of the contact process of the source with relays is linear in N , and one can

then use the argument in [18].

tolerant networks. To our knowledge, this is the first paper

to include both an additive control (activation control V (.))
and a multiplicative one (U(.)).

Delivery Delay Distribution

The probability distribution of delay Td, denoted byD(t) :=
P (Td < t) is given by (see [20, Appendix A]),

D̃N (t) = 1− (1− z)E

[
exp

(
− ξN

∫ t

s=0

X̃N(s)ds
)]

. (3)

In the mean field limit this gives

D(t) = 1− (1− z) exp
(
− ξ

∫ t

s=0

X(s)ds
)
, (4)

(where D(t) = limN→∞ D̃N (t), ξ = limN→∞ ξN (t), and

X(t) = limN→∞ X̃N (t)/N .) Note that because of mono-
tonicity, maximizing D(t) in (4) is equivalent to maximizing∫ t

s=0
X(s)ds. We note also that since the mean field limit

is simply the expectation of the Markov chain, i.e. X(t) =

E[X̃(t)], then we have by Jensen’s inequality D̃N ≤ D. Thus

D(t) is not only the mean field limit of the probability of
successful delivery as N grows, but it is also a bound for the

successful delivery probability (for every N ).

Energy Consumption

In what follows, we will consider the case when the total

energy consumed by the network is bounded. Let ǫ > 0
be the energy consumed by the network for transmission

and reception of a single copy of the message (rescaled by

N ). Thus, the total energy consumed by the network for
transmission and reception of message copies during [0, T ]
is ǫ(X(T )−X(0)).
Also, we need to account for the energy expenditure due to

beaconing: the beaconing power used at time t by active relays
is proportional to U(t)Y (t)ξ so that the energy expenditure in
[0, T ] due to beaconing is

µ

∫ T

0

U(s)Y (s)ds =
µ

ξ
(X(T )−X(0)) (5)

Hence, it follows that the total energy consumed in time T is

E(T ) = (ǫ+ µ
ξ )(X(T )−X(0)).3

Remark 2.1: Observe that the linearity of the cost of bea-

coning in the number of generated copies is a feature of two

hop routing; it is not a general property that applies to other

protocols, such as epidemic routing.

B. The Optimization Problem

Our goal is to obtain joint optimal policies for the activation

V (t) and the transmission control U(t), with U(t) ∈ [u, 1],
and V (·) satisfying the additional upper-bound and integral
constraints introduced earlier, that solve

max
{V (·)∈V,U(·)}

D(T ), s.t. X(T ) ≤ x,X(0) = z , (6)

3In the fluid limit approximation, the constraint forces the energy ex-

pended in the network to scale sub-linearly with the number of nodes, i.e.,

limN→∞

1

N
E(T) < ∞.



4

where x and z (x > z) are specified. Recall that maximizing

D(T ) is equivalent to maximizing
∫ T

0
X(t)dt.

III. OPTIMAL CONTROL

The solution to the problem will be shown to consist

of policies involving two thresholds, one beyond which we

stop activating mobile terminals, and the other beyond which

we stop transmitting beacons. Various methodologies have

been developed to establish the threshold structure of optimal

transmission policies in DTNs: one based on the Pontryagin

maximum principle [12], another based on some sample path

comparisons [21], some on stochastic ordering, etc. These

approaches, developed in the context of DTNs with one type of

population, are not applicable to our problem since the model

is no longer scalar. Accordingly, we develop a new approach

that establishes the optimality of a threshold type policy for

the activation control, following which we use Pontryagin’s

maximum principle [22].

To obtain the optimal solution we first hold U(t) ∈ [u, 1]
fixed, carry out optimization with respect to V (·), and then we
substitute the optimal V (·), V ∗(·), into the objective function
and carry out a further maximization with respect to U(·). For
the first step, it is convenient to write the integral of X(·)
explicitly as a function V (·), which turns out to be linear :∫ T

0

X(t)dt = ξ

∫ T

0

m(t)V (t)dt , (7)

where m(·) is some appropriate function, an expression for
which is provided in the next subsection.

A. Optimal Activation Control

With U(t) ∈ [u, 1] fixed, we now first justify the equivalence
(7), with an explicit expression for m(·), and then show that

m(·) is non-increasing. This will allow us to conclude that the
optimum choice for V (·) is of threshold form.
Lemma 3.1: Equivalence in (7) holds, with the expression

for m(·) given by eq. (11) in the proof below.
Proof. To derive the equivalent form, we solve the coupled

equations (1)-(2) in terms of V (·) and U(·) with zero initial
conditions. Let

Φ(t, T ) = exp

(
−(ξ + µ)

∫ t

T

U(s)ds

)
. (8)

Plugging (8) in (2) with zero initial conditions, we obtain

Y (t) =

∫ t

0

Φ(t, s)V (s)ds = Φ(t, 0)

∫ t

0

Φ(0, s)V (s)ds (9)

Again, using (9) in (1) we obtain

X(t) = ξ

∫ t

0

dσU(σ)Φ(σ, 0)

∫ σ

0

Φ(0, s)V (s)ds (10)

Letting dW := U(σ)Φ(σ, 0)dσ, and then integrating by parts,
we obtain

X(t) = ξ

∫ t

0

dW (σ)

∫ σ

0

Φ(0, s)V (s)ds

= ξW (t)

∫ t

0

Φ(0, s)V (s)ds− ξ

∫ t

0

W (σ)Φ(0, σ)V (σ)dσ

Using the above equation, we can express the original

objective function as follows:∫ T

0

X(t)dt = ξ
[ ∫ T

0

W (t)

∫ t

0

Φ(0, t)V (t)dt

−

∫ T

0

∫ t

0

W (σ)Φ(0, σ)V (σ)dσ
]

Notice that we can simplify it further by integration by parts.

Defining Z through dZ = W (t)dt, we have
∫ T

0

X(t)dt =

ξ
[
Z(T )

∫ T

0

Φ(0, t)V (t)dt −

∫ T

0

Z(t)Φ(0, t)V (t)dt

−T

∫ T

0

W (t)Φ(0, t)V (t)dt+

∫ T

0

W (t)Φ(0, t)V (t)dt
]

which implies (7) where m(t) is given by

m(t) = Z(T )Φ(0, t)− Z(t)Φ(0, t)

−TW (t)Φ(0, t) + tW (t)Φ(0, t) (11)

which concludes the proof. ⋄
Lemma 3.2: m(t) is non-increasing in t for all U(·) ≥ 0,

and is monotonically decreasing for U(t) > 0. Moreover,
the expression for m(·), as given in (11), can equivalently
be written as

m(t) =

∫ T

t

(T − s)U(s)Φ(s, 0)dsΦ(0, t) (12)

where
Φ(s, 0) = exp

(
−

∫ s

0

U(s)ds
)

Proof. The expression for m(t) in (11) can first be simplified

using W (s) =
∫ s

0 dσU(σ)Φ(σ, 0) and deriving

Z(t) = tW (t)−

∫ t

0

sU(s)Φ(s, 0)ds

The expression for m(t) in (12) now follows from direct

calculations.

Using the fact that Φ(t, 0)Φ(0, t) = 1, and

d

dt
Φ(0, t) = (ξ + µ)U(t)Φ(0, t) ,

we obtain
dm(t)

dt
= −(T − t)U(t)− (ξ + µ)U(t)m(t) ,

which is non-positive for all t ∈ [0, T ] since m(t) is non-
negative, and is strictly negative whenever U(t) > 0. ⋄
Let us define

ℓ := inf

{
t ∈ (0, T ] :

∫ t

0

K(s)ds = 1

}
. (13)

In view of the results of Lemma 3.1 and Lemma 3.2, we have

the following.

Theorem 3.1: The optimal policy V ∗ exists and is given by

V ∗(t) =

{
K(t) if 0 ≤ t ≤ ℓ,
0 otherwise .

(14)
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Note that due to threshold policy the nodes are activated till

time l. By definition (13), l denotes the time till all nodes are
activated (within time T ) for optimal activation policy.

Proof : Any activation policy V can be viewed as a probability

measure over [0, T ]; let us call Q∗ andQ two random variables

having densities V ∗ and V respectively, where V ∗ is defined

by eq. (14), and where V is some other arbitrary policy. By

construction, P [Q > t] ≥ P [Q∗ > t]. Since m is continuous,

for t ∈ I = m([0, T ]) we can define t = min(m−1(t)) so that

P [m(Q∗) > t] = P [Q∗ ≤ t] ≥ P [Q ≤ t] = P [m(Q) > t]

which concludes the proof since m(Q∗) ≥ m(Q). ⋄
In the rest of the development, we will assume that V (s),

seen as a measure, is non-degenerate, i.e., when it is applied

at time t, nodes are activate with positive probability from t
onwards. Formally, we will employ the following

Corollary 3.1: Let
∫ δ

0
V (s)ds > 0 for any δ > 0. Then,

Y (t) > 0, ∀t > 0 (15)

Also, X(t) is a non-decreasing function for all t > 0, and is a
monotone increasing function when U(t) is strictly positive.
Remark 3.1: (Turnpike property) We note from Theorem

3.1 that for all T large enough (in fact for all T that satisfy∫ T

0 K(s)ds ≥ 1), the optimal threshold ℓ is the same.

B. Optimal Transmission Control

In the previous subsection we characterized the optimal

activation policy. We now proceed to derive the optimal

transmission policy. From Corollary 3.1, X(t) is a monotonic
increasing function. Furthermore we notice that similarly to

what was shown in [12], the controlled dynamics X with

U(t) can be interpreted as a slower version of the uncontrolled
dynamics of X , i.e., the dynamics obtained when U(t) = 1. In
this subsection, we first derive the uncontrolled dynamics for

a general activation policy. This will then enable us to derive

the optimal control policy in closed form.

1) Uncontrolled Dynamics: Let X(t) denote the uncon-

trolled dynamics of the system: it is the fraction of infected

mobiles when U(t) = 1 for 0 ≤ t ≤ T .
Proposition 3.1: For a given activation policy V , the frac-

tion of infected nodes under U(t) = 1 and X(0) = z is

X(t) =
ξ

ξ + µ

∫ t

0

(1− e−(ξ+µ)(t−s))V (s)ds+ z (16)

Proof : From (1) and (2) we have

Ẋ(t) +
ξ

ξ + µ
Ẏ (t) =

ξ

ξ + µ
V (t)

⇒ X(t) + Y (t)
ξ

ξ + µ
=

ξ

ξ + µ

∫ t

0

V (s)ds+ z

⇒ Y (t) = (f(t)−X(t))
ξ + µ

ξ
(17)

where we have introduced f(t) := ξ
ξ+µ

∫ t

0 V (s)ds+ z , which

depends only on the activation control. The uncontrolled ver-

sion X(t) is obtained by substituting (17) in (1) for U(t) = 1,

which leads to: Ẋ + (ξ + µ)X = (ξ + µ)f . The solution is :

X(t) = e−(ξ+µ)t

∫ t

0

e(ξ+µ)sξ

∫ s

0

V (r)drds + z. (18)

Further, by integration by parts we obtain (16). ⋄
Remark 3.2: For any given activation policy V : we substi-

tute (17) into (1) to obtain a single differential equation, which

is equivalent to the original system (1)-(2), i.e.,

Ẋ = U(t)ξg(X, t), (19)

where g(X, t) := (f(t)−X(t)) ξ+µ
ξ .

Remark 3.3: Considering (16), if we let W (r) = ξ
ξ+µ (1−

e−(ξ+µ)r) {r≥0} , the uncontrolled trajectory appears as the

convolution X = W ∗ V , i.e., it can be seen as the linear
transformation of the basic two hop dynamics via the kernel V
imposed by the activation policy. In fact, since we can interpret

V as a measure with total mass 1, in the singular case, i.e.,

when µ = 0 and V = δ(t), we obtain X(t) = (1− e−ξt) + z,
i.e., the case of plain two hop routing, as expected.

We observe also that in case U(t) = c, t ∈ [0, T ], u ≤ c ≤ 1
is a constant energy control policy, a simple time-rescaling

argument offers

X(t) =
ξ

ξ + µ

∫ t

0

(1 − e−c(ξ+µ)(t−s))V (s)ds+ z = X(c t).

(20)

In the following, using the uncontrolled dynamics of the

system, we can obtain the explicit form of the optimal trans-

mission control using the maximum principle [23].

2) Optimal Control:

Definition 3.1: A policy U restricted to take values in [u, 1]
is called a threshold policy with parameter h if U(t) = 1 for
t ≤ h a.e. and U(t) = u for t > h a.e..
Theorem 3.2: Consider the problem of maximizing D(T )

with respect to U(·) subject to the constraint X(T ) ≤ z + x,
under the activation control V .

i. If X(T ) ≤ x+ z, then the optimal policy is U(t) = 1.

ii. If X(uT ) > x+ z, then there is no feasible solution.

iii. If X(T ) > x+z > X(uT ), then there exists a threshold
policy. An optimal policy is necessarily a threshold one

in the form

U∗(t) =

{
1 if t ≤ h∗

u if t > h∗ (21)

Proof : Parts (i) and (ii) follow immediately from the fact that

X is monotonically non-decreasing. We thus proceed with part

(iii), working under the assumption X(T ) > x > X(uT ). Fix
any activation policy V ; then from the Remark 3.2 we need

to solve

max
U(·)∈[u,1]

∫ T

0

X(t)dt, s.t. Ẋ(t) = U(t) ξ g(X(t), t)

We use the maximum principle to solve this problem.

Introduce the Hamiltonian

H(X, p, U) = X(t) + (ξ + µ)U(t)p(t) (f(t)−X(t)) ,

where p(·) is the co-state variable. Since H is linear in U , the
optimal control takes the extreme values u and 1 depending
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on whether H is positive or negative (it will be clear from

the arguments below that the case H = 0 occurs on a set
of Lebesgue measure zero). From (17), we know that f(t)−
X(t) > 0 for all t. Hence the sign of H depends solely on

that of p. Thus we arrive at the simple optimality condition:

U(t) =

{
1, if p > 0
u, if p < 0

(22)

The co-state variable is generated by

ṗ(t) = −
dH

dX
= −[1− (ξ + µ)U(t)p(t)]

= −1 + (ξ + µ)U(t)p(t) (23)

Notice that we already know (based on linearity) that there

must be at least one switch; in fact, if there is no switch, the

only viable control would be either U(t) = u or U(t) = 1 for
all t ∈ [0, T ], which is not possible because cases (i) and (ii)
are excluded by assumption.

We now prove that the optimal policy is of the threshold

type by showing that there can be only one switch. There are

three cases to consider based on the sign of p(0) in (23).
Let us first consider the case p(0) < 0: from (23) then

U(0) = u and further from this we can say that ṗ(0) < 0.

This means that p(0+) < p(0) < 0. Hence p(t) will never
change sign, which contradicts the switching condition.

Let us next consider the case p(0) > 0 and −1 +
p(t)U(t)(ξ + µ) > 0. This implies U(0) = 1 and ṗ(0) > 0,

i.e., p(0+) > p(0) > 0. Hence the sign of p(t) always remains
positive and optimal control remains at U = 1. This again
contradicts our assumptions.

Hence the only remaining possibility is that p(0) > 0 but
−1+p(t)U(t)(ξ+µ) < 0. This implies U(0) = 1 but ṗ(0) <

0, i.e., p(0+) < p(0). Notice that the sign of ṗ(t) remains
negative as long as p(t) is decreasing until time h when value

p(h) = 0 is attained. Furthermore, p(h+) < 0 and ṗ(h+) < 0,
and the same reasoning of the previous case applies.

We see that the optimal control starts at U(0) = 1 but
switches to U(h) = u and never returns back. This satisfies
the switching condition and guarantees that optimal control

has exactly one switch. The optimal control is then given by

U(t) =

{
u, if t > h∗

1, if t ≤ h∗ (24)

where h∗ can be computed using the procedure above. ⋄

IV. JOINT OPTIMAL CONTROL

The analysis above have clearly led to the complete solution

of the optimization problem (6), which is captured below.

Theorem 4.1: For the optimization problem (6), the solution

is given by the optimal activation control V ∗(t) applied
jointly with the corresponding threshold policy (as optimal

transmission control) given in Thm. 3.2.

Proof : The joint optimization problem, given by (6), can be

equivalently expressed by

max
{V (·)∈V,U(·)}

∫ T

0

X(t), s.t. X(T ) ≤ x,X(0) = z, (25)

where x and z (x > z) are specified.
It is direct from Lemma 3.1, the joint optimal control is

equivalent to step wise optimal control of V (.) for any U(.)
and the optimal control of U(.). Therefore, the proof is direct
using Thm. 3.1 and Thm. 3.2. ⋄

A. Activation and Transmission Thresholds

We have seen that the optimal policies are characterized by

two scalar quantities, ℓ and h∗, taking values in (0, T ). One
interesting question now is whether one should wait for all

the nodes to be activated before switching off the transmission

control or not, i.e., whether it should be h∗ ≤ ℓ or h∗ > ℓ.
If h∗ ≤ ℓ, it is then possible to activate a smaller number of
relays with consequent energy savings; thus it is of interest to

know the relative order of the thresholds h∗ and ℓ.
For ease of following the development below, let us intro-

duce X as the optimal dynamics for t ≥ h∗: from (1)-(2)

and fixing the control U(t) = u for t ∈ [h∗, T ], with initial

condition X(0) = X(h), we have

Ẋ(t) + u(ξ + µ)X(t) = u(ξ + µ)f

Hence, the optimal dynamics for t ≥ h∗ is of the form

X(t) = e−u(ξ+µ)(t−h)

∫ t

0

eu(ξ+µ)s(ξ + µ)uf(s+ h)ds

+X(h)e−(ξ+µ)(t−h), t > h.

Notice that X(T ) = X(T ) = x. Without loss of generality
we assume z = 0 in the rest of the paper unless specified, for
the sake of simplicity.

Theorem 4.2: If T > max{h∗, ℓ}, then the following rela-
tion holds for the bound x and the threshold h∗:

h∗ > ℓ, if x > X(ℓ) + ∆X(ℓ, T ),
h∗ ≤ ℓ, otherwise ,

(26)

where

X(ℓ) =
ξ

ξ + µ

∫ ℓ

0

(1− e−(ξ+µ)(ℓ−s))V (s)ds,

∆X(ℓ, T ) =
( ξ

ξ + µ
−X(ℓ)

)(
1− e−u(ξ+µ)(T−ℓ)

)
.

X(ℓ) denotes the uncontrolled growth of X in t = (0, ℓ] and
∆X(ℓ, T ) refers to the increment in X in (ℓ, T ] under the
controlled dynamics (with U = u ).

Proof : We first consider the case when h∗ > ℓ and show
that for large values of the threshold h∗, X(T ) is also large.
Further we consider the case when h∗ ≤ ℓ and show that still
the behavior holds true. Consequently we can conclude that

the result holds.

When h∗ > ℓ, X(T ) = x can be expressed as a summation
of three terms as follows:

x = ∆X(0, ℓ) + ∆X(ℓ, h∗) + ∆X(h∗, T ) (27)

where ∆X(t1, t2) = X(t2)−X(t1). The following dynamics
will be valid over the corresponding intervals:
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Ẋ(t) + (ξ + µ)X(t) = (ξ + µ)f(t), 0 < t ≤ ℓ (28)

Ẋ(t) + (ξ + µ)X(t) = (ξ + µ)f(ℓ), ℓ < t ≤ h∗ (29)

Ẋ(t) + u(ξ + µ)X(t) = u(ξ + µ)f(ℓ), h∗ < t ≤ T(30)

The first term ∆X(0, ℓ) is given by (16):

∆X(0, ℓ) =
ξ

ξ + µ

∫ ℓ

0

(1− e−(ξ+µ)(ℓ−s))V (s)ds

Similarly ∆X(ℓ, h∗) is obtained from (29) with initial condi-

tion X(ℓ), and subsequently∆X(h∗, T ) is obtained from (30)

with initial condition X(h∗). Finally we can express x as,

x =
ξ

(ξ + µ)
+
(
X(ℓ)−

ξ

(ξ + µ)

)
e−(ξ+µ)u(T−ℓ)+∆(1−u)

where ∆ = h∗−ℓ. From the above equation it can be seen that
X(T ) increases with ∆. Hence this concludes the first part.
Following a similar approach, we can also show that X(T )
increases with ∆ when h∗ < ℓ. By substituting h∗ = ℓ, we
obtain the closed-form expression for x = X(T ) as

x = X(T ) = X(ℓ) +
ξ

(ξ + µ)
(1− e−u(ξ+µ)(T−ℓ))

⋄Moreover, when both threshold times coincide, i.e. h∗ = ℓ,
the bound x can be expressed as

x = X(T ) = X(ℓ) +
ξ

ξ + µ
(1 − e−u(ξ+µ)(T−ℓ)).

B. Uniform Activation

Let the node activation be uniformly spread over time, i.e.,

K(s) = K0, where
∫ ℓ

0 K(t)dt =
∫ ℓ

0 K0dt = 1. Let u = 0 for

the sake of simplicity. Since we have X(h, T ) = 0, it follows

directly from Theorem 4.2 that x > X(ℓ) if h∗ > ℓ.
Proposition 4.1: The optimal threshold for constant activa-

tion is given by

h∗ =

{
min(t̂, T ), if x > X(ℓ) (h∗ > ℓ)
min(t̃, T ), if x ≤ X(ℓ) (h∗ ≤ ℓ)

(31)

where

t̂ =
1

ξ + µ
log

ξ(e(ξ+µ)ℓ − 1)

(ξ + µ)2ℓ(x− ξ
ξ+µ )

,

t̃ =
L(−e−(xℓ(ξ+µ)2+ξ)/ξ)ξ + xℓ(ξ + µ)2 + ξ

ξ(ξ + µ)
.

Here L(·) denotes the Lambert function,4 which is real-valued
on the interval [− exp(−1), 0] and always below −1.

Proof : Let us first consider when h∗ > l, the total number
of infected nodes at time T is given as

x = X(l) + ∆X(h, l) + ∆X(T, h)

Last term vanishes due to the fact that u = 0. Therefore using
(29), we can write

4The Lambert function, satisfies L(x) exp(L(x)) = x. As the equation

y exp(y) = x has an infinite number of solutions y for each (non-zero) value

of x, the function L(x) has an infinite number of branches.

x = X(h) =
ξ

ξ + µ

∫ l

0

(1 − e−(ξ+µ)(h−s))K(s)ds

h =
1

ξ + µ
log

ξ(e(ξ+µ)ℓ − 1)

(ξ + µ)2ℓ(x− ξ
ξ+µ )

.

This concludes the first case. For the second case when h∗ < l,
we can express

x = X(h) + ∆X(l, h) + ∆X(T, l)

Since u = 0, only the first term remains. Therefore, we can

express

x = X(h) =
ξ

ξ + µ

∫ h

0

(1− e−(ξ+µ)(h−s))K(s)ds

x =
ξ

(ξ + µ)2
(e−(ξ+µ)h + (ξ + µ)h− 1)

h =
L(−e−(xℓ(ξ+µ)2+ξ)/ξ)ξ + xℓ(ξ + µ)2 + ξ

ξ(ξ + µ)
.

This concludes the proof for the second case, which together

with the first case concludes the proof. ⋄

Notice from above that h∗ is approximately linear in ℓ.

Uniform activation is also of interest because of the fol-

lowing reason. In a scenario such as energy harvesting, it is

expected to have cyclic kind of activation, e.g. more nodes are

activated during the day exploiting solar energy than are at

night. In Proposition 5.1 in the next section, we show that the

threshold h∗ depends on E[V ]. This allows us to approximate
the uniform activation with appropriate parameters which may

require simpler calculation.

C. Impact of time horizon T

In the earlier sections we showed that the optimal trans-

mission control policy U∗ is a threshold policy for finite

(fixed) time horizon. We now extend our earlier results to

the case when the time horizon T is unbounded, and analyze

asymptotically the impact on optimal policies.

Optimal activation policy V ∗ derived in earlier section

clearly indicates that early activation is optimal (satisfying

the rate constraint K(t)). We also saw that V ∗ is the same

for T above some value ℓ. We next study the impact of T
on U∗. This is summarized in the proposition below. Define

Tm := sup{t : X(t) ≤ x} and Tm := sup{t : X(t) ≤ x}.

Proposition 4.2: Consider maximization of D(T ) subject
to the constraint X(T ) ≤ z + x, under the optimal activation
control V ∗ and transmission control U(t) ∈ [u, 1].

i. For u > 0, there is no feasible policy for any T > Tm.

ii. For u = 0, the optimal transmission policy when T →
∞ is given by,

A∗ =

{
U(t) = 1 if t ≤ Tm

U(t) = 0 if t > Tm.
(32)

Proof : (i) is direct. (ii) follows directly from the fact that the

optimal activation policy V does not depend on T . ⋄
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Fig. 1: a) Dynamics of the number of infected nodes under uniform activation, when ℓ = 0, 5000, 10000, 15000; upper part
(a.I) depicts uncontrolled dynamics, the lower one (a.II) optimal dynamics for x = 0.1 b) Optimal Threshold under constant
activation for two different values of x. c) CDF of the delay for optimal control: the thin solid lines represent the value attained
by the uncontrolled dynamics. The case ℓ = 0 corresponds to plain Two hop routing.

V. EXTENSION TO UNBOUNDED ACTIVATION

In some cases, the activation rate may not be bounded: this

is the case of timer-based activation of batches of relays. Thus,

in this section we extend our model to the case of unbounded

activation, i.e., we assume that, for some τ > 0,∫ t

t−τ

V (s)ds ≤ Ku(t) ≤ 1

where Ku(t) ≥ 0 is a piecewise continuous function. Again,
the activation rate is subject to the normalization condition∫ T

0
V (s)ds = 1; we impose Ku(0) = 0 without loss of

generality. In this case, the optimal activation threshold is

ℓ := τ ·max{k ∈ N|
∑

Ku(kτ) < 1,
∑

Ku((k+1)τ) ≥ 1}

The main difference from the results derived in Section III-A

is related to the explicit form of the optimal activation control.

Also, the related uncontrolled dynamics under the optimal

activation control can be expressed in a very simple form.

The following theorem captures these.

Theorem 5.1: Let the activation rate be bounded in the in-

tegral form. Let tk = kτ , k = 0, . . . , L−1 such that tL−1 < ℓ,
let tL = ℓ and define ak = Ku(tk), k = 0, . . . , L − 1, and
aL = 1−

∑
h<L ah; ak is zero otherwise. Then

i. The optimal activation control is

V ∗(t) =

∞∑

k=0

akδ(t− tk),

where δ is the Dirac distribution
ii. Under the optimal activation control V ∗, the optimal

uncontrolled dynamics are

X(t) =

∞∑

k=0

akW (t− tk)

where W (r) = (1− e−(ξ+µ)r) {r≥0}.

Proof : i. Since the proof of Theorem. 3.1 remains intact,

we can derive the first statement from a direct calculation. In

particular, considering any other activation V , we observe that
(7) in this case becomes

∫ T

0

V ∗(t)m(t)dt =

∫ T

0

L∑

k=0

akδ(t− tk)m(t)dt

=
L∑

k=0

akm(tk) =
L∑

k=0

K(tk)m(tk)

≥

L∑

k=0

∫ tk+1

tk

V (s)m(s)ds =

∫ T

0

V (s)m(s)ds (33)

ii. As from (16), the uncontrolled trajectory is given by the

convolution X − z = W ∗ V , so that

X(t) = W ∗

L∑

k=0

akδ(t− tk) =

L∑

k=0

akW (t− tk)

which concludes the proof ⋄
It is immediate to observe that Corollary 3.1 applies to the

case of unbounded activation rate also, from which it follows

that the proof of Theorem 3.2 can be applied tout court and

as a consequence Corollary 4.1 as well.

Finally, the previous result shows that, apart from the

effect of initial condition z, the uncontrolled dynamics can be
obtained as a linear combination of the sequence of delayed

plain dynamics that would be obtained starting the system at

the activation epochs tk, under an empty system (i.e., under

zero initial conditions). The weights, in turn, are given by the

fraction of nodes activated at times tk.

A. Role of V ∗ in the case h∗ > ℓ

Using the results for unbounded activation, we can provide

more insight on the role of V ∗ on the optimal success

probability. As we will see in the following section, this result

is very well corroborated by numerical studies. In particular,

consider an optimal (bounded) activation policy V ∗ and the

related optimal transmission control. Let us consider u = 0
and z = 0 for the sake of simplicity. Assume h∗ > ℓ, and let

Ŵ = W {0≤u≤h∗−ℓ}, and note

∫ T

0

X(u)du =

∫ h∗−ℓ

0

Ŵ (u)du

∫ h∗

0

V ∗du =

∫ h∗

0

Ŵ (u)

(34)
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where we used the fact that Ŵ (t) = 0 for t < 0, V ∗ has a

finite support, and the integral of the convolution is the product

of the integrals. Now, let τ > 0 and consider the obtained

unbounded activation as a bound Ku(t) =
∫ t

0 V
∗(u)du; we

obtain

h∗ =
1

ξ + µ
log

( ξ

ξ + µ

Ẽ
ξ

ξ+µ − x

)

where Ẽ =
∑L

k=1 ak(τ)e
−kτ . Taking the limit for τ → 0, we

observe that

lim
τ→0

Ẽ =

∫ ℓ

0

e−(ξ+µ)uV ∗(u)du = GXV ∗
(ξ + µ)

where QV ∗ is a random variable having density V ∗, and

GQV ∗
(ξ + µ) is the moment generating function calculated

in ξ + µ. Thus we obtain the following result that holds for
the bounded activation case:

Proposition 5.1: Let the optimal activation policy V ∗ be

such that ℓ > h∗; then

h∗ =
1

ξ + µ
log

( ξ

ξ + µ

GQV ∗
(ξ + µ)

ξ
ξ+µ − x

)
.

Notice that, as a consequence of the above, using the standard

moment series expansion for the moment generating function,

we obtainGQV ∗
(ξ+µ) = 1−(ξ+µ) QV ∗+ 1

4 (ξ+µ)2 Q2
V ∗+

. . ., which leads to GQV ∗
(ξ+µ) = 1−(ξ+µ) QV ∗+o(ℓ2(ξ+

µ)2). Thus, under the assumptions of the proposition above,
and when ℓ ≪ 1/(ξ+µ), we expect the transmission threshold
to be linear in QV ∗ .

Comparing the expression in (34) we obtain a closed form

relation that ties the system parameters and the activation pol-

icy; in particular we realize that in the regime ℓ ≪ 1/(ξ+µ),
D(T ), will be determined mainly by the value QV ∗ .

Ultimately, this means that the system “loses memory” of the

shape of the optimal activation distribution as soon as the

activation of nodes becomes smaller than the typical time scale

of the system, i.e., 1/(ξ + µ).

VI. NUMERICAL VALIDATION

Here we provide a numerical validation of the model. Our

experiments are trace based: message delivery is simulated

by a Matlab R© script receiving as input pre-recorded contact

traces; in our simulations, we assume time is counted from the

time when the source meets the first node, so that z = 1+Pa,

where Pa is the probability that the first node met is active.

Also, the lifetime of active node is an exponential random

variable with parameter µ.
We considered a Random Waypoint (RWP) mobility model

[24]. We registered contact traces using Omnet++ in a scenario

where N nodes move on a squared playground of side 5 Km.
The communication range is R = 15 m, the mobile speed is
v = 4.2 m/s and the system starts in steady-state conditions

in order to avoid transient effects [25]. The time limit is set

to τ = 20000 s. Most graphs refer to the case with N = 200.
With the first set of measurements, we verified the fit of

the activation model for the uncontrolled dynamics, i.e., when

x+z = 1, and using a uniform activation policy. We assumed
that µ = 0 and u = 0. We selected at random pairs of source

and destination nodes and traced the dynamics of the infected

nodes, see Fig. 1a.I); as seen there and in the following figures

the fit with the model is rather tight.

The different curves seen in Fig. 1a.I) are obtained varying

the constraint on the uniform activation policy; in particular

the activation threshold ℓ = 5000, 10000, 15000. We included
also the unbounded activation case when all relays can be

activated at time t = 0; namely for ℓ = 0 and V = δ. As
indicated there, in the case of constant activation a change of

concavity must occur in the dynamics (notice thatX(∞) = 1).
Indeed, for example in [12], plain two hop routing has concave

state dynamics. However, the change of concavity is an effect

of the activation term, since (1)-(2) gives Ẍ = ξ(ξ+µ)Y −K0

which shows a sign switch when ℓ < T .
Also, we depicted in Fig. 1b) the values of the optimal

threshold for the transmission control in the case of uniform

activation policy, at the increase of the activation threshold

ℓ. We considered two energy bounds x + z = 0.1 and

x + z = 0.05. As expected, a slower activation forces the
optimal threshold to increase: as it appears in the figure,

for the chosen activation constraint, the threshold increase is

almost linear with ℓ, showing congruence with (31). Notice
that for the parameters chosen, we have ℓ < h∗. The linear

increase the observation made in Prop. 5.1, since in both cases

QV ∗ = ℓ/2 is linear in ℓ.
We repeated in Fig. 1a.II) the measurements of the dynamics

of infected nodes and collected the CDF of the delay in the

case of the optimal control in Fig. 1c). We can clearly observe

the effect of the threshold policy on the dynamics of the

infected nodes, since the increase of the number of infected

stops at the threshold (u = 0). Conversely, we can observe
that the delay CDF has a slightly lower curve compared to the

uncontrolled case (reported with a thin solid line).

So far, we did not consider the effect of µ on the success
probability D(T ). Fig. 2 depicts the success probability for
increasing values of µ. As expected, the higher the relative
magnitude of µ with respect to ξ, the lower is the success
probability. However, the effect of energy exhaustion due to

beaconing takes over for larger values of µ and causes a much
faster decay in case of looser constraints on energy (x+ z =
0.1) than in the case of tighter ones (x+ z = 0.05).
Finally, we compared the effect of the activation bound

on the success probability D(T ). In particular, we consid-
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Fig. 3: a) Optimal threshold as a function of ℓ b) Corresponding success probability D(T ) c) Success probability for increasing
number of nodes. Different lines refer to the case of uniform (solid), squared sine and truncated exponential activation bounds.

ered three alternative bounds: uniform, squared sine and

exponential. In the case of a squared sine bound, we let

K(t) = 2
ℓ sin

2( 2π
t
ℓ ) {0≤t≤ℓ}. The comparison with the uni-

form activation shows that they result in a similar performance:

as observed in Fig. 3a) the optimal transmission control and

as a consequence the success probability (Fig. 3b) ) as a

function of ℓ are similar. This behavior is due to the fact that
in both cases h∗ ≥ ℓ and the two activation measures have
the same expected value. This confirms what was predicted in

Prop. 5.1: in practice the system loses trace of the shape of

the distribution as soon h∗ ≥ ℓ. We also depicted the behavior
in the case of a bound given by a truncated exponential where

α = −70ξ: as seen in Fig. 3a) and Fig. 3b), the higher
activation rate permits a larger success probability. This effect

becomes dominant at larger values of ℓ and this results in the
slower increase of the transmission threshold which saturates

to a reference value; notice that this is a consequence of the

exponential saturation of QV ∗ with ℓ, as observed already
from Prop. 5.1. We repeated the measurements on the success

probabilityD(T ) for increasing numbers of nodes, as reported
in Fig. 3c). We can see the match of the uniform activation

and the squared sine one. Also, we reported the behavior under

truncated exponential activation in the case of |α| = 70ξ; the
success probability in all these examples is seen to depend

mostly on the expected value of V ∗, as observed earlier.

Remark 6.1: As observed from the Fig. 3c), system per-

formance is predicted by a single target parameter, i.e., the

expected value of the activation distribution.

A. Real world traces
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Fig. 4: Simulation results in the case of real world traces: a)

CN trace b) DieselNet trace

Our model for activation expresses in closed form perfor-

mance of a DTN under the assumption that the system can

be described by a single intermeeting intensity which does

not change over time. In real world contact traces, however,

stationarity and uniformity assumptions on intermeeting inten-

sities may not hold. Even though this realistic scenario is out

of the scope of our model – and no claim of optimality can

be made there with respect to the results derived before – we

would like to draw here some conclusion on the applicability

of our joint activation and control in the case where non-

uniform and non-stationary encounter patterns are present. In

order to do so, we considered two real world traces which

resulted in two very different contexts.

The first trace is part of the DieselNet trace collection, which

was generated by the DieselNet network and is available online

[26], [27]. Those traces resulted from the contacts experienced

by devices where the DTN network is made of IEEE802.11

terminals mounted on buses.

The second real world trace is the CN dataset; it was generated

by a DTN composed of 21 devices carried by employees

within the Create-Net premises. Each of them volunteered to

carry a mobile running a Java application relying on Bluetooth

connectivity and employees were located on different floors

of the same building during a 4-week period. The application
periodically triggered (every 60 seconds) a Bluetooth node
discovery; detected nodes were recorded using the Bluetooth

address, together with the current timestamp on the device.

Thus, the two data sets were generated in two different

frameworks with respect to the mobility of the devices: the

CN trace relates to human indoor mobility and the UMASS

trace relates to the mobility pattern of a fleet of buses.

Fig 4a) and b) show the results of experiments performed

with these data sets. We preliminarily calculated the average

intermeeting rate resulting from the experimental traces. Then,

we performed the simulations calculating the optimal threshold

under a uniform activation profile. We notice from those

figures that the performance of the solution predicted using

the Poisson uniform approximation in real world traces proves

conservative from the standpoint of the number of infected

nodes, i.e., it tends to infect more nodes than predicted by the

model, thus violating the constraint on energy.

A closer look at the traces revealed that in both real

world traces there exists a group of “fast spreaders”: this

group is composed of potential relays which do meet the

source with higher rate compared to the average. Because

of this, the fraction of nodes that belong to that group will
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be infected at a much faster rate. However, the optimal

control is determined based on the average intermeeting

rate of a potential relay: the control is thus driven to

act pessimistically and the overall fraction of infected

nodes turns out to be larger than the fraction issued as a

constraint. In particular, this effect becomes visible since

the fraction of fast spreaders is larger than the constraint itself.

In particular, those results show that the presence of a

wide range in the values taken by the intermeeting intensities

is one critical feature that is not described in the current

version of our model and should be captured by a framework

designed to fit those cases as well. In previous works [28],

[29] it was showed how to extend the control of DTNs [30],

[31] to the case when multiple intermeeting intensities are

present. However, no activation control was applied in those

models, and along those lines, class-dependent activation is a

promising direction to be tackled in future work.

B. Further application of the model

The activation policies that we consider in this paper are

of the monotone type: relays are activated at some point in

time until either batteries are drained or deadline is reached.

However the proposed model can be used to explore the

combined usage of activation with different techniques. For

DTNs, in particular, duty cycling techniques [32] or message-

limiting forwarding policies [12] are proposed in literature in

order to reduce power drainage at relays.

Duty cycling: Our model can incorporate duty cycling

energy saving using a thinning argument. When duty cycles

alternate between sleep and active mode, the intermeeting

intensity of relays with the source node and the destination

is rescaled by the fraction q of time a mobile is in awake
mode, i.e., replacing ξ with qξ and µ with qµ.
Message limiting: Many works in the literature limit the

released copies to reduce the energy expenditure; our model

includes such a case by letting all nodes be activated at

the beginning, i.e., K(t) = Nδ(t), the under unbounded
activation, and optimizing against a target value x only.
Uniform activation: A sub-optimal policy would consider

an optimal forwarding policy to be given, e.g., a uniform

policy Vu(t) independent of the actual activation constraint
K; this greatly simplifies the implementation of the activation
mechanism on board of relays since a random timer would do.

Such suboptimal policies can be incorporated in our model

by interpreting activation control V as a probability density

function of a randomly picked mobile being activated in a

given interval; it amounts to replacing V ∗ with VuV
∗ and

then calculating the optimal forwarding policy accordingly.

For the sake of completeness, we included a sample nu-

merical analysis in Table II, where the actual function K(t)
is a squared sine; using our model it is possible to study the

combined effect of activation, message–limiting policies and

also combine it with duty cycle effects. Observe the thinning

of intermeeting process resulting in performance decay.

Finally, we evaluated the performance attained using blind

uniform activation, which behaves irrespective of the actual

activation constraint; as seen in Table II, lack of information

Policy Ps

Optimal 0.97
Optimal: duty cycle q = 0.2, 0.4, 0.6, 0.8 0.32, 0.56, 0.79, 0.90
Uniform Activation 0.86

TABLE II: Application of the model to duty cycling and sub-

optimal policies; squared sine activation constraint, RWP mo-

bility, 200 nodes, ξ = 6.8211 · 10−6, µ = ξ/10, T = 25000s,
ℓ = 8000s, x = 0.1.

on the actual activation constraint produces a significant drop

of performance, as expected from such a sub-optimal policy.

VII. RELATED LITERATURE

Control of forwarding schemes has been addressed in the

DTNs literature before. For example, [33] describes the rela-

tive performance of different self-limiting strategies. In [6] and

its follow-up [5], the authors optimize network performance

by designing message relays. Some papers related to our work

here are [12], [34], [35]. In [34], the authors consider buffer

constraints and derive buffer scheduling policies in order to

minimize the delivery time. In [12], we have provided a

general framework for the optimal control of a broad class

of monotone relay strategies, rooted in the original result

obtained for epidemic routing in [14]. The more recent paper

[21] employs stochastic approximation to avoid the explicit

estimation of network parameters. The performance of the two

hop forwarding protocol along with the effect of the timers

have been evaluated in [36]; the framework proposed there

allows for performance optimization by choosing the average

timer duration.

Optimal activation of nodes in redundantly deployed sensor

networks has been studied before in [9]–[11]. A threshold-

based activation policy was shown to perform close to the

optimal policy for dynamic node activation in [9]. In [10],

spatial temporal correlation has been exploited to improve

usable lifetime in environmentally powered sensor networks.

Scheduling/controlling the activity nodes to exploit energy

harvesting features has been studied in [11].

Energy efficiency in DTNs has been studied in [37], [32],

[38] and in [39]. In [38], authors study binary spreading

forwarding policy, where each node forwards the packet to

other nodes (when nodes meet) till n nodes are infected using a
token mechanism. Authors study the energy and delay tradeoff

and determine the optimal number of nodes to be infected.

Asynchronous sleep scheduling algorithms are proposed in

[32] to reduce energy consumption during the idle listening

mode. A model related to ours is presented in a parallel work

in [39], which analyzes the tradeoff between transmission

energy consumption and delivery delay. In line with findings

of [12] and [14], authors show that the forwarding policies

are threshold optimal. The optimality is shown via simulation

based performance comparison for the two hop routing and

probabilistic epidemic forwarding.

Compared to existing literature, in this paper we have

proposed an entirely different and new framework that has

not been introduced before: our aim was in fact to include not

only the optimality of resources utilization in terms of released

copies, but also in terms of the energy spent by relays in order
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to signal its presence to the destination, which is a fundamental

functionality required in the context of mobile DTNs.

Finally, we identified relations among a few physical param-

eters of the optimal joint control, the deadline T , the activation
rate bound, and the beaconing rate. A valuable insight that we

obtained is how under optimal joint forwarding and activation,

the system “loses memory” about the shape of the activation

distribution, and only the mean activation instant counts.

VIII. CONCLUDING REMARKS

In this paper, we have considered the joint optimization

problem underlying activation of mobiles and transmission

control in the context of DTNs. Multi-dimensional ordinary

differential equations have been used to describe (using the

fluid limit) the associated system dynamics. Since the previ-

ously used approaches were not applicable to establish the

structure of optimal activation policies, we devised a new

method that is based on identifying the exact weight of the

activation control at each time instant. We further validated our

theoretical results through simulations for various activation

schemes or constraints on activation.

Starting from the proposed framework, there are several

promising directions that are left open as possible extensions

of the model. For instance, we did not account for simultane-

ous multiple sources-destination pairs and for the presence of

heterogeneity in the contact pattern of mobile nodes, due to

either devices heterogeneity or the mobility pattern. One may

also envision the possibility to activate mobiles depending on

the class they belong to, e.g., battery lifetime or transmission

power. We also did not account for the presence of exogenous

traffic that may interfere with DTNs.

Finally, the control problems that we considered were

formulated as maximization of the delivery delay distribution

D(T ) subject to a hard constraint on the energy expended,
i.e., number of copies released. We note that we could have

formulated the problem with soft constraints, instead of hard

constraints, using a weighted sum of throughput and energy

cost. We argue that the optimal joint policy for this soft-

constrained problem is of a double threshold type (i.e., both

u and v have threshold structures). Indeed, the new prob-

lem can be viewed as the maximization of the Lagrangian

that corresponds to the constrained problem. We can thus

associate with the original problem a “relaxed” problem. For

a fixed u, we have already seen that the cost is linear in
v(·). Therefore the Karush-Kuhn-Tucker (KKT) conditions are
necessary and sufficient optimality conditions, which implies

that a threshold-type v is also optimal for the unconstrained
problem. To show that a double threshold policy is optimal for

the relaxed problem, it will be necessary to verify that there

is a unique optimal policy for the constrained problem, which

we leave as future research, which we intend to undertake.
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