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Abstract: We present a generic implementation of dD combinatorial maps and linear cell com-
plexes in Cgal, the Computational Geometry Algorithms Library. A combinatorial map describes
an object subdivided into cells; a linear cell complex describes the linear geometry embedding of
such a subdivision. In this paper, we show how generic programming and new techniques recently
introduced in the C++11 standard allow a fully generic and customizable implementation of these
two data structures, while maintaining optimal memory footprint and direct access to all informa-
tion. We compare our implementation with existing 2D and 3D software, and illustrate its usage
by two applications. To the best of our knowledge, the Cgal software packages presented here
offer the only available generic implementation of combinatorial maps in any dimension.
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Une implantation générique

des cartes combinatoires d-dimensionnelles dans Cgal

Résumé : Nous présentons une implantation générique des cartes combinatoires et des com-
plexes cellulaires linéaires d-dimensionnels dans la bibliothèque Cgal, Computational Geometry

Algorithms Library. Une carte combinatoire décrit un objet subdivisé en cellules ; un complexe
cellulaire linéaire décrit le plongement géométrique linéaire d’une telle subdivision. Dans cet
article, nous montrons comment la programmation générique et les nouvelles techniques récem-
ment introduites dans le standard C++11 permettent une implantation complètement générique
et flexible de ces deux structures de données, tout en maintenant une empreinte en mémoire
optimale et un accès direct à toutes les informations. Nous comparons notre implantation avec
des logiciels 2D et 3D, et illustrons son utilisation par deux applications. À notre connaissance,
les modules Cgal présentés ici offrent la seule implantation générique des cartes combinatoires
en dimension quelconque.

Mots-clés : Carte combinatoire; Complexe cellulaire linéaire; Cgal; Programmation générique;
C++11



dD Combinatorial Maps in Cgal 3

1 Introduction

Data structures describing subdivisions of objects have been extensively studied. They can be
classified in two types: (1) Regular subdivisions, for example using triangles in 2D, tetrahedra
in 3D, or quadrangles in 2D; (2) Irregular subdivisions, where cells can be of different types. For
regular subdivisions, many data structures exist, as it is often enough to store cells of maximal
dimension and to represent adjacency relations between cells by pointers. Such data structures
are often easy to represent in any dimension.

Irregular subdivisions are more complex. In 2D, the well known winged edge data structure
[2, 25] is often used in computer graphics; there are several variants to actually represent this
data structure, among which the halfedge data structure [14, 13] has an implementation in the
Cgal library [24, 9]. However, there are only few generic solutions for irregular subdivisions in
arbitrary dimension. The incidence graph [7] represents each cell as a node, with an arc between
each pair of nodes corresponding to two incident cells whose dimensions differ by one. This
data structure is simple, but it is not capable to represent multi-incidence relations, which often
occur in real applications. Moreover the incidence graph is not ordered, e.g., it does not allow
to iterate through all the vertices of a face in a given order, which leads to complex and non
efficient operations.

Combinatorial maps [17] address these issues by storing all cells of the subdivision and all
incidence relations. They are a generalization of the halfedge data structure. They are based on
a unique basic type of element called dart, together with relations between these darts. Com-
binatorial maps have many advantages: they allow local modifications, they are fully ordered,
they enable the representation of multi-incidence relations, they allow many operations, they are
independent of the geometry, i.e., they can represent curved objects as well as linear objects.

All these properties make combinatorial maps an ideal tool in many applications. Several
software packages were developped to describe 2D and 3D objects as combinatorial maps or
variants [20, 10, 15, 16]. However, to the best of our knowledge, there was no available software
capable of describing and handle subdivided objects in any dimension, more specifically there was
no generic implementation of combinatorial maps in any dimension, before the “Combinatorial
maps” package first release in Cgal in 2011 [5]. The “Linear cell complexes” package, released a
few months later [6], provides users with a geometric embedding. Some of the initial ideas used
in the implementation were inspired by the design of the Cgal halfedge data structure package
[13], which dates back to 1998.

The goal of this paper is to show how new techniques introduced in the C++11 standard lead
to a fully generic implementation, allowing customization by users, while using optimal memory,
i.e., using the minimal number of pointers corresponding to the customization.

In the next two sections, we recall definitions of combinatorial maps and linear cell complexes
and we introduce basic tools used in our implementation. In Section 4 we present the implemen-
tation of these two mathematical models. Then we compare our solution with other software in
Section 5 and we show two use cases in different applications in Section 6. We conclude and give
some perspectives in Section 7.

2 Definitions

A subdivided object1 in dimension d is described as a set of cells from dimension 0 (vertices)
to dimension d, plus relations between these cells (a cell of dimension i is denoted i-cell). Two

1More precisely, we consider quasi-manifolds which are assemblies of n-cells along (n− 1)-cells. See [18] for a
formal definition.
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Figure 1: Examples of subdivisions in 2D (a) and 3D (b) (cells are only partially drawn).

cells c1 and c2 are said to be incident if one is part of the boundary of the other. Two i-cells are
adjacent when their respective boundaries share a common (i− 1)-cell.

Examples of 2D and 3D subdivided objects are given in Fig. 1. The object depicted in
Fig. 1(a) is composed of three faces (2-cells), eight edges (1-cells) and seven vertices (0-cells).
For example, vertex v1 is incident to edges e1 and to face f1, edge e1 is incident to face f1.
Edges e1 and e2 are adjacent (along vertex v1) and faces f1 and f2 are adjacent (along edge
e1). Fig. 1(b) illustrates a three-dimensional object with three volumes (3-cells) vol1, vol2 and
vol3, twelve faces (2-cells), sixteen edges (1-cells), and eight vertices (0-cells). Only one face, f4,
separates the two volumes vol1 and vol2. For example, vertex v2 is incident to edge e4, to face
f4 and to volume vol1, vol2. The two volumes vol1 and vol2 are adjacent along face f4.

Definition 1 below formally defines a d-dimensional combinatorial map, but let us start with an
intuitive introduction. Roughly speaking, a combinatorial map is an edge-based data structure:
A dart is a ‘part’ of an edge (similarly to a halfedge, which is a ‘part’ of an edge in a halfedge
data structure), plus a ‘part’ of all its incident i-cells, i ∈ {0, 2, . . . , d}.

Fig. 2 depicts the combinatorial maps representing the two objects of Fig. 1. In 2D (Fig. 2(a)),
an edge is composed of two darts (for example edge e1 has two darts {7, 8}) except for edges
that belong to the boundary of the object and are incident to only one face (for example edge
e4 has one dart {1}). Each dart belongs to a 0-cell, a 1-cell and a 2-cell. For example dart 3
belongs to vertex v1, edge e2 and face f3. In 3D (Fig. 2(b)), an edge has as many darts as the
number of its incident volumes, and each dart belongs to a 0-cell, a 1-cell, a 2-cell and a 3-cell.
When a dart δ belongs to an i-cell c having no adjacent i-cell along δ, then δ is said to belong
to an i-boundary and in such a case, βi(δ) = ∅. For example in Fig. 2(a), we have β2(1) = ∅.

Let us now give the precise definition. See [17, 4] for a complete presentation.

Definition 1 (d-map [4]) A d-dimensional combinatorial map, or d-map, with 0 ≤ d, is a

(d+ 1)-tuple M = (D,β1, . . . , βd) where:

1. D is a finite set of darts;

2. β1 is a partial permutation2 on D, and we denote β0 = β−1

1 ;

3. ∀i, 2 ≤ i ≤ d: βi is a partial involution3 on D;

2A partial permutation f on D is a map from D∪{∅} to D∪{∅} such that ∀e1 ∈ D, ∀e2 6= e1 ∈ D, f(e1) 6= ∅

and f(e2) 6= ∅ ⇒ f(e1) 6= f(e2).
3A partial involution f on D is a partial permutation on D such that ∀e ∈ D, f(e) 6= ∅ ⇒ f(f(e)) = e.

Inria
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Figure 2: Combinatorial maps describing the two objects of Fig. 1. The 2D combinatorial map
(a) contains 12 darts. The 3D combinatorial map (b) contains 54 darts.

4. ∀i, 0 ≤ i ≤ d− 2, ∀j, 3 ≤ j ≤ d, i+ 2 ≤ j: βi ◦ βj is4 a partial involution.

The last line of the definition expresses the conditions to ensure the validity of the combinatorial
map. Intuitively it ensures that two i-cells are adjacent along an entire (i−1)-cell. This condition
is the combinatorial analog of the manifold property defined for topological spaces.

An i-cell is implicitly represented by the set of all darts describing a part of this cell. We can
retrieve cells using the β maps: indeed, as βi(δ) gives a dart that belongs to the same cells except
for vertices and i-cells, if we use all the β maps except βi we obtain all the darts that belong to
the same i-cell as δ. More formally, cells correspond to orbits,5 as described in definition 2.

Definition 2 (i-cell [4]) Let M = (D,β1, . . . , βd) be a d-map, and δ ∈ D be a dart. For any i,

0 ≤ i ≤ d, the set of darts ci(δ) representing the i-cell containing δ is:

ci(δ) =

{

〈{βj ◦ βk | ∀j, k : 1 ≤ j < k ≤ d}〉(δ) if i = 0,
〈β1, . . . , βi−1, βi+1, . . . , βd〉(δ) otherwise.

Note that there is a special case for vertices as each βi changes not only the i-cell but also
the vertex. Thus by combining two β maps we obtain a dart that belongs to the same vertex as
the initial dart.

As its name says, a combinatorial map describes only the combinatorics of a given object,
i.e. its subdivision into cells and all the incidence and adjacency relations between these cells. It
is often necessary to also store additional information, which can be done using attributes. An
i-attribute is an information associated with an i-cell. As cells are implicit, the link between
an i-cell c and an i-attribute a is done through darts: all the darts in c are linked with a. i-
attributes are said enabled when they are some information associated with i-cells and they are
said disabled otherwise.

It is common in applications to associate a point with each vertex, and no attribute with
cells of other dimentions; this induces a linear geometry for the object. Such an embedded
combinatorial map is called a linear cell complex. Another example of additional information is
color or texture associated with faces of a 3D object.

4βi ◦ βj is the composition of βj and βi, i.e. ∀δ ∈ D, βi ◦ βj(δ) = βi(βj(δ)).
5Let Φ = {f1, . . . , fk} be a finite set of permutations on some domain and 〈Φ〉 be the group generated by Φ.

The orbit of an element δ with respect to Φ is 〈Φ〉(δ) = {φ(δ) | φ ∈ 〈Φ〉}.

RR n° 8427
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3 Tools

The new standard C++11, approved in August 2011, provides many new functionalities [23]. We
use two new features that are particularly interesting for an efficient and generic implementation.

The first one is the variadic template, which is a template having a variable number of
arguments. In the following declaration: template<typename... Args> class Test; class Test

can have any number of template arguments. Test<int,bool,double> t1; and Test<vector<int

>,char*,string,bool,double> t2; are two valid instantiations of the Test class with different
types and numbers of template arguments.

The second feature is the std::tuple object, which allows to hold different elements, possibly
with different types. A tuple uses variadic templates so that it can has any number of elements.
For example, typedef tuple<int,bool,double> tuple1; and typedef tuple<vector <int>,char*,

string,bool,double> tuple2; define two new types based on tuples. We can get the ith type in
a tuple using std::tuple_element: tuple_element<1,tuple1>::type is bool and tuple_element<0,

tuple2>::type is vector<int>. A tuple can be instantiated: e.g. tuple1 t1; tuple2 t2. Each
element of the tuple can be accessed by using the get function: get<1>(t1) returns a reference
to the bool in tuple t1 and get<0>(t2) returns a reference to the vector<int> in tuple t2.

Note that both mechanisms are processed at compile time and thus there is no overhead at
execution time.

We also use a more classic tool to allocate and store elements of type T: containers of type
CGAL::Compact_container<T> [11]. This container has high memory efficiency (it is much more
compact than a linked list) while allowing to insert an element in amortized constant time and
to erase any element in constant time. An element in a Compact_container is accessed through a
handle, which is a kind of pointer, defined as inner type of Compact_container.

4 Generic, Compact, and Efficient Implementation of Com-

binatorial Maps

Implementing a combinatorial map mostly consists in encoding the darts, the β maps, and
the associations between darts and enabled attributes. We aim at an implementation that is:
(1) Generic: Users must be able to customize the types of darts and the enabled attributes;
(2) Compact : Represents associations only for enabled attributes; (3) Efficient : Allows direct
access to each information (β maps and associations to attributes) associated with darts.

To reach these objectives, the key points of our implementation are: (1) An items class

where users can chose the dimension of the combinatorial map, the type of darts, and the type
of enabled attributes; (2) A tuple of handles through the enabled attributes; disabled attributes
have no associated handle; (3) Direct access provided through handles for β maps and tuple of

handles for associations to enabled attributes.

4.1 Main Classes

As mentioned above, the items class defines all types used in the combinatorial map. We present
in listing 1 an example that uses 3D darts with attributes associated with faces and containing
an int. Other attributes are disabled.

struct Combinatorial_map_items_example {

template <class CMap >

struct Dart_wrapper {

typedef Dart <3, CMap > Dart;

Inria



dD Combinatorial Maps in Cgal 7

typedef Cell_attribute <CMap , int > Face_attribute;

typedef std::tuple <void , void , Face_attribute > Attributes;

};

};

Listing 1: Example of items class for a 3-map

The items class must define an inner class called Dart_wrapper having a combinatorial map as
template parameter. This specific construction is required as the Dart class has a combinatorial
map as template parameter (see listing 3 below), so that we can use handles through darts (these
handles are defined in the Combinatorial_map class, see listing 2). In the class Dart_wrapper, users
can define their own type of darts using the Dart type, and their own type of attributes using the
Attributes type. This last type is a tuple of d+ 1 types. The ith element of the tuple gives the
type of the (i − 1)-attributes associated with (i − 1)-cells, and must be either an instantiation
of the class Cell_attribute or void; if it is void, (i − 1)-attributes are disabled, i.e., there is no
information associated with (i− 1)-cells.

The main class of our implementation is the Combinatorial_map class given in listing 2. This
class has two template arguments: first the dimension d of the map, and second an Items class
that defines the types used in the combinatorial map.

template <unsigned int d, typename Items >

class Combinatorial_map {

typedef Combinatorial_map <d, Items > Self;

typedef Items:: Dart_wrapper <Self >::Dart Dart;

typedef Compact_container <Dart > Dart_container;

typedef Dart_container :: iterator Dart_handle;

typedef Transform_to_handles <Items:: Attributes >::type Attribute_handles

;

Dart_container Darts;

Transform_to_containers <Items::Attributes >:: types Attributes;

};

Listing 2: d-map class

This class has two data members. (1) Darts is the container of darts, implemented as
Compact_container<Dart>, where Dart is the type of darts defined in the Items class. (2) Attributes
is the tuple of containers for all the enabled attributes. This tuple is defined by the Transform_to_containers

tool class (given in appendix), which transforms the tuple of attributes Items::Attributes into
a tuple of compact containers, only for non-void types. For the attributes defined in listing 1,
Transform_to_containers defines std::tuple<Compact_container<Face_attribute> >.

We use a similar technique to transform the Attributes tuple into Attribute_handles, a tuple
of handle through all the non-void attributes, by using the Transform_to_handles tool class. For
the attributes defined in listing 1, Transform_to_handles defines std::tuple <Face_attribute_handle
>.

Note that the number of handles in the Attributes tuple is exactly the number of non-void
attributes allowing for compact memory footprint. Moreover all the transformations are done
without overhead for execution time since they are all done at compiling time. This guaranty
also a direct access to each handle. This illustrates one important advantage of using variadic
templates and tuples.

template <unsigned int d, typename CMap >

class Dart {

RR n° 8427



8 Guillaume Damiand & Monique Teillaud

CMap:: Dart_handle Betas[d+1];

CMap:: Attribute_handles Attribute_handles;

};

Listing 3: Dart class

The dart class, given in listing 3, is essentially composed of an array of d + 1 dart handles
that encode the β maps (from β0 to βd), and a tuple of attribute handles, one for each non-void
attribute. The two types Dart_handle and Attribute_handles are defined as inner types in the
CMap class.

4.2 Linear Cell Complexes

A linear cell complex is a linear geometric embedding of a combinatorial map. The class
Linear_cell_complex<d,d2,Traits,Items> inherits from the class Combinatorial_map<d,Items> and
adds the constraint that each vertex of the combinatorial map must be associated with a point.
d is the dimension of the combinatorial map and d2 is the dimension of the geometric ambient
space (generally d2≥d). For example, d=d2=2 for a planar graph embedded in a plane, d=2 and
d2=3 for a surface embedded in R

3.
The Traits template parameter is the geometric traits class that defines the types for geo-

metric objects such as Point and Vector, and the functors for geometric operations (for exam-
ple Construct_translated_point, Construct_sum_of_vectors, or Construct_midpoint). The type
Point is a Cgal Point type depending on the dimension of the ambient space. Cgal provides
us with different so-called kernels, allowing us to choose between exact or inexact construction
methods. The relation between vertices and points is encoded through attributes. The class
Cell_attribute_with_point contains a Point of the type got from the traits class. This attribute
may also optionally contain additional information associated with vertices, for example a color
or a normal.

4.3 Iterators

The main basic features used in operations on combinatorial maps are iterators: they are used
each time we need to process cells, as cells are orbits defined by β maps, and orbits are retrieved
by iterating through all their corresponding darts. Since combinatorial maps are defined for
any dimension, orbits can be used with any number of permutations. The C++11 variadic
template mechanism allows us to define a generic iterator taking an arbitrary number of integers
as template arguments. These integers give the indices of the β maps that define the orbit.

Iterators are defined as inner classes of Combinatorial_map, and are grouped into ranges, a
range being simply a pair of iterators begin and end. For example, we have the following ranges:

Dart_of_orbit_range<unsigned int... Beta> ranges through all the darts belonging to 〈Beta...〉(δ)
for a given dart δ. For instance, Dart_of_orbit_range<1,2>(δ) ranges through all the darts
of orbit 〈β1, β2〉(δ), or Dart_of_orbit_range<1,2,4,5>(δ) ranges through all the darts of orbit
〈β1, β2, β4, β5〉(δ);

Dart_of_cell_range<unsigned int i> ranges through all the darts of the i-cell containing a
given dart δ. For example Dart_of_cell_range<2>(δ) ranges through all the darts of the face
containing dart δ;

One_dart_per_cell_range<unsigned int i> ranges through one dart of each i-cell of the com-
binatorial map. For example One_dart_per_cell_range <0>() ranges through one dart of each
vertex of the combinatorial map.

Inria



dD Combinatorial Maps in Cgal 9

All the ranges are defined in a generic way allowing their use for any dimension of the
combinatorial map. Moreover, template specialization allows us to propose optimized versions
that are automatically used instead of the generic version in specific cases. For example, the
generic version of Dart_of_orbit_range uses a stack storing the darts linked with the current
darts by the considered β maps. These darts will be visited later (in a similar way as traversal
algorithms for graphs). However versions with only one β map and some versions with two β

maps can be implemented without this stack by using an order of the darts in the considered
orbit, where each dart can be obtained from the previous darts in the order.

4.4 Operations

There are three types of operations defined on combinatorial maps and linear cell complexes.
Computation operations allow to compute some properties of a given combinatorial map. We

can for example compute the number of cells using count_cells, which fills an std::vector with
the number of cells of the combinatorial maps (for all the i-cells between 0 and d). We can also
compute the normal vector of a face, given one of its darts, using compute_normal_of_cell_2.

Construction operations allow to create objects in a combinatorial map. We can create an ob-
ject from scratch, for example make_combinatorial_hexahedron creates an isolated combinatorial
hexahedron. It is also possible to convert an existing object from another format, for example
import_from_triangulation_3 converts a given Cgal 3D triangulation into the combinatorial
map.

Modification operations allow to modify the combinatorics of a given map. We can create
isolated darts, identify some cells to glue objects using sew operations, or reciprocally split some
cells to detach two glued objects using unsew operations. We can also modify the structure of
an object by merging two (i + 1)-cells incident to an i-cell containing a given dart using the
remove<i> operation, or similarly by merging two (i − 1)-cells incident to an i-cell containing a
given dart using the contract<i> operation. Reciprocally, we can add an i-cell inside a j-cell
using the insertion operations. These operations are a generalization in any dimension of the
Euler operators [19] defined for polygonal meshes.

5 Comparison with Other Software

To the best of our knowledge, our two Cgal packages are the only available software that can
describe dD irregular subdivided objects for any d. So, we have made two sets of experiments:6

a first one on 2D objects (i.e. surfaces), and a second one on 3D objects (i.e. volumes). Note
that among all other packages tested, CGoGN is the only one that is able to describe both 2D and
3D objects.

In 2D, we compare with OpenMesh [3], SurfaceMesh [22] and Cgal Polyhedron7 [12], which
are all based on halfedge data structures, and with CGoGN [15], which implements combinatorial
maps.

We refer to [22, 15] for a more precise description of the protocol that we follow. In a few
words: (1) circulator iterates on all vertices incident to all faces; (2) barycenter computes the
barycenter and recenters the mesh at the origin; (3) normal computes (and stores) all normals
to faces; (4) smoothing performs a Laplacian smoothing; (5) subdivision does one step of

√
3-

subdivision; (6) collapse splits all faces and then collapses each new edge.

6The code of these benchmarks and all the detailed results is available at this url http://liris.cnrs.fr/

gdamiand/download/linear_cell_complex_benchmarks.tgz.
7We tested the version using a list, since the version using a vector does not allow to remove elements, thus

many operations of modification are not supported.

RR n° 8427
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Figure 3: Times obtained by Cgal Linear Cell Complex (LCC), Cgal Polyhedron, OpenMesh,
SurfaceMesh and CGoGN in 2D. Times are the means of the results on the five meshes, shown
relatively to Linear Cell Complex.

We made these tests on five classical meshes (number of vertices, number of edges, number
of faces): armadillo (26k, 78k, 52k), bunny (26k, 78k, 52k), horse (20k, 59k, 39k), octopus (16k,
49k, 33k) and vaselion (38k, 116k, 77k).

The results are shown in Fig. 3 (times are given relatively to the times obtained by our method
to make interpretation easier). SurfaceMesh and OpenMesh are the best for access operations
because they store elements in vectors, which yield very efficient iterators; the drawback of such
representations is slower modification operations, as can be seen for subdivision and collapse.
Our solution is always better than Polyhedron, which uses doubled linked lists as containers.
We obtain very similar results as CGoGN, which is also based on combinatorial maps; CGoGN is
better for normals and smoothing, due to the use of a cache during the first traversal of iterators,
to optimize the future uses. Such a technique could also be integrated in our solution to speed
up circulators.

In 3D, we compare with OpenVolumeMesh [16], which is based on an extension of the halfedge
data structure, and with CGoGN [15].

We again follow the same protocol as in [16, 15]: (1) circulator iterates along all vertices
incident to all volumes; (2) circulator2 iterates along all vertices adjacent along a common vol-
ume; (3) barycenter computes and stores the barycenters of all volumes; (4) smoothing performs
a Laplacian smoothing; (5) subdivision does one step of (1− 4)-subdivision of each tetrahedron;
(6) collapse does a series of edge collapses of the shortest edge.

We reuse the five previous surfacic meshes and use TetGen [21] to build corresponding tetra-
hedral meshes. The sizes of the five volumic meshes obtained are (number of vertices, number
of tetrahedra): (26k, 174k), (26k, 176k), (20k, 136k), (16k, 127k) and (38k, 262k).

The results are shown in Fig. 4. OpenVolumeMesh is faster than our implementation for
circulator and smoothing, because it explicitly stores cells and incidence relations between cells; as
a counterpart, this makes it definitely unefficient for modification operations. CGoGN is also better
for circulator and smoothing, due to the computation and the storage of these incidence relations,
which are integrated inside the software itself. We use the same techniques for smoothing, which
allow for fast circulators, but only in the benchmarking code. In high level operations, time is
generally not spent by circulators, but by the operation itself; this is confirmed in subdivision

and collapse, where the results obtained by Linear Cell Complexes are the best or close to the
best.

Note that we obtain better results here for Linear Cell Complexes than the results given
in the two previous papers [16, 15], where operations for testing linear cell complex where not
implemented in the best way. We improved the benchmarking code, which lead to a speed up
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0
Smoothing CollapseSubdvisionCirculator Circulator2 Barycenter

1.5

1

0.5
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CGoGN
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58

7.7

Figure 4: Times obtained by Cgal Linear Cell Complex (LCC), CGoGN and OpenVolumeMesh

(OVM). Times are the means of the results on the five meshes, shown relatively to Linear Cell

Complex.

factor between 2 and 20! Such optimized algorithms are actually integrated in CGoGN, while low
level functions must currently be used for Linear Cell Complexes, which could be enriched to
offer the same optimized functions in the future.

To summarize, we observe that software using vectors to store their elements (OpenMesh,
SurfaceMesh, and OpenVolumeMesh) are generally better for iterations, and thus better for static
operations, while they obtain slower performances for modification operations.

The most important observation for us is that our generic software obtains results that are
competitive when compared with other software, which are all restricted to to 2D and 3D, and it
shows performance that are among the best ones for modification operations. This illustrates that
generic programming and features introduced in C++11 lead to both genericity and efficiency.

6 Examples of Applications

Combinatorial maps and linear cell complexes can be used in various applications manipulating
objects that are subdivided into irregular cells.

6.1 Building Reconstruction

Computer models of 3D buildings are extensively used, e.g., by architects or city planners, to
create virtually new buildings and to visualize them in virtual 3D environments. When the
models are used only for visualization purposes, there is no need for advanced data structures;
a soup of polygons can be used to represent the buildings. However, such a description does not
allow to manipulate the different parts of the scene or to iterate through the different objects by
using adjacency relations, therefore it cannot be used for high level treatments such as physical
simulations.

To answer this need, the TopoBuilding project is aiming at reconstructing a 3D building from
a given geometry into a valid topological description as a 3D linear cell complex. The input is
a geometric description of a building, given in a Collada format [1], which is an exchange file
format for 3D applications. The resulting 3D linear cell complex describes the topology of the
input building. Volumes correspond to the different elements of the building (such as rooms,
walls and doors) with adjacency relations between these volumes (allowing for example to know
if two rooms are connected by a door), and with incidence relations between the different parts of
these volumes (for example to know how the different walls of a room are linked). Fig. 5 depicts
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(a) (b)

Figure 5: An example of a reconstruction of
a building. (a) A building described geometri-
cally by a set of independent polygons. (b) The
3D linear cell complex constructed.

(a) (b)

Figure 6: An example of a physical simulation.
(a) An initial beam described as a 3D linear
cell complex made of 5× 3× 3 hexahedra. The
beam is attached to a wall by two of its vertices.
(b) The 3D linear cell complex obtained after
the physical simulation.

an example of reconstruction. The description of buildings as 3D linear cell complexes can be
used in order to perform energy and acoustic simulations.

6.2 Physical Simulation

In this application, the goal is to use 3D linear cell complexes as basic topological framework to
implement a physical simulation method based on mass spring systems. Classical implementa-
tions often use graphs where vertices are physical particles, and edges are springs. Using a more
complete description allows to define more efficient operations that change the subdivision during
the simulation (for example cutting the object or locally refining some cells) while guarantying
the topological validity of the objects.

For this application, the project TopoSim implements a generic topological framework for
physical simulation based on 3D linear cell complexes [8]. We can see in Fig. 6 an example
of some preliminary results. It is possible to apply a physical simulation on 3D hexahedral or
tetrahedral meshes, while allowing the cutting of some volumes during the simulation. Future
work could allow to refine some cells during the simulation, and could provide more general
types of cuttings (for example cutting by a plane). In both cases, the generic type of cells should
simplify the operations and 3D linear cell complexes will provide all basic tools to quickly develop
new high level operations.

7 Conclusion

We have presented a generic implementation of dD combinatorial maps and linear cell complexes,
which is compact, i.e., it does not use useless data members for disabled attributes, and efficient,
i.e., it gives direct access to information associated with each dart. Genericity, compactness and
efficiency are achieved by using generic programming techniques and new possibilities introduced
in the recent C++11 standard, such as variadic templates and tuples. We have compared our
solution with existing 2D and 3D software. These tests show that our solution is competitive
compared to dedicated solutions. We have illustrated the practical interest of such data structures
by showing two applications under development.

Inria



dD Combinatorial Maps in Cgal 13

Future work may improve the two Cgal modules by adding new operations and by proposing
alternative implementations to describe β maps, for example using indices instead of handles.
We will also implement some optimization of our iterators, using ideas that are similar to those
used in CGoGN.

Work will be pursued on the different applied projects that use these combinatorial maps.
Lastly, it will be interesting to explore applications in higher dimensions; for example, it is
possible to use 4D linear cell complexes to describe temporal sequences of 3D MRI images and
to use the cells and incidence relations to propose 4D image processing.
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A How to transform a tuple of types into a tuple of Com-

pact_container

The code given in this appendix can be found in the public release of Cgal, in file internal/

Combinatorial_map_utility.h.

The goal is to transform a tuple of types into a tuple of Compact_container’s on the corre-
sponding types, but only for non-void attributes (see Section 4.1).

We first transform the tuple of types into a tuple where we have removed all the void types
using class Keep_non_void_type given in listing 4.

template <class Attrs , class Res=tuple <> >

struct Keep_non_void_type;

template <class T, class ...Attrs , class ...Res >

struct Keep_non_void_type <tuple <T, Attrs...>, tuple <Res...> > {

typedef Keep_non_void_type <tuple <Attrs...>,

tuple <Res..., T> >::type type;

};

template <class ...Attrs , class ...Res >

struct Keep_non_void_type <tuple <void , Attrs...>, tuple <Res...> > {

typedef Keep_non_void_type <tuple <Attrs...>,

tuple <Res...> >::type type;

};

template <class ...Res >

struct Keep_non_void_type <tuple <>, tuple <Res...> > {

typedef tuple <Res...> type;

};

Listing 4: Remove void types from a tuple

This code uses the variadic templates mechanism (as tuples are also defined thanks to this
mechanism).

The principle of this class is to make a recursion at compile time on the tuple of attributes
(called Attrs). The general case is the first specialization

Keep_non_void_type<tuple<T, Attrs...>, tuple<Res...> >

where the first type in the tuple Attrs is different from void. Then we have the special case
Keep_non_void_type<tuple<void, Attrs...>, tuple<Res...> >

when the first type is void and the last case
Keep_non_void_type <tuple<>, tuple<Res...> >

stops the recursion when the tuple is empty.
Note that the class Keep_non_void_type has two template parameters, which are two tuples.

This explains why even by using two variadic templates arguments, the compiler can retrieve
which arguments correspond to the first tuple and which arguments correspond to the second
one.

In order to construct the resulting tuple, we use an additional templare argument, Res. When
the first type of the tuple Attrs is a non-void T, we simply add T at the end of Res; when T is
void, then Res is not modified. When the Attrs tuple is void, the Res tuple contains the result
of the transformation: A tuple of types equal to Attrs, from which we have removed all the void

types.
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Now we present in listing 5 the code allowing to transform a tuple of types info a tuple of
Compact_container of these types.

template <class ...T>

struct Transform_to_containers <tuple <T...> >

{

typedef tuple <Compact_container <T>... > type;

};

Listing 5: Transform a tuple of types into a tuple of Compact_container of these types

Here the transformation is direct: C++11 allows to transform a tuple tuple<T...> into an-
other tuple by extension: tuple<Compact_container<T>... >. As an example, if we are given a
tuple

typedef tuple<int, void, char, void, Dart> Attrs,
we first get

typedef Keep_non_void_type<Attrs>::type Attrs_novoid,
which is equal to tuple<int, char, Dart>. Finally,

Transform_to_containers<Attrs_novoid>::type is
tuple<Compact_container<int>, Compact_container<char>, Compact_container<Dart> >.
Remind that all transformations are done at compile time, there is no overhead for running time.

Lastly, we give in listing 6 the code allowing to transform a tuple of types into a tuple of handle
to these types (these handles are defined as inner type of the corresponding Compact_container).

template <class ...T>

struct Transform_to_handles <tuple <T...> >

{

typedef tuple <Compact_container <T>:: iterator ... > type;

};

Listing 6: Transform a tuple of types into a tuple of handle to these types
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