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ROOT OPTIMIZATION OF POLYNOMIALS IN THE NUMBER

FIELD SIEVE

SHI BAI, RICHARD P. BRENT, AND EMMANUEL THOMÉ

Abstract. The general number field sieve (GNFS) is the most efficient al-
gorithm known for factoring large integers. It consists of several stages, the

first one being polynomial selection. The quality of the chosen polynomials in
polynomial selection can be modelled in terms of size and root properties. In
this paper, we describe some algorithms for selecting polynomials with very
good root properties.

1. The general number field sieve

The general number field sieve [14] is the most efficient algorithm known for
factoring large integers. It consists of several stages including polynomial selection,
sieving, filtering, linear algebra and finding square roots.

Let n be the integer to be factored. The number field sieve starts by choos-
ing two irreducible and coprime polynomials f(x) and g(x) over Z which share a
common root m modulo n. In practice, the notations F (x, y) and G(x, y) for the
homogenized polynomials corresponding to f and g are often used. We want to
find many coprime pairs (a, b) ∈ Z2 such that the polynomial values F (a, b) and
G(a, b) are simultaneously smooth with respect to some upper bound B. An inte-
ger is smooth with respect to bound B (or B-smooth) if none of its prime factors
are larger than B. Lattice sieving [19] and line sieving [6] are commonly used to
identify such pairs (a, b). The running time of sieving depends on the quality of
the chosen polynomials in polynomial selection, hence many polynomial pairs will
be generated and optimized in order to produce a best one.

This paper discusses algorithms for root optimization in polynomial selection in
the number field sieve. We mainly focus on polynomial selection with two polyno-
mials, one of which is a linear polynomial.

2. Polynomial selection

For large integers, most polynomial selection methods [6, 11, 12, 16, 17] use a
linear polynomial for g(x) and a quintic or sextic polynomial for f(x). Let f(x) =
∑d

i=0 cix
i and g(x) = m2x−m1. The standard method to generate such polynomial

pairs is to expand n in base-(m1,m2) so n =
∑d

i=0 cim
i
1m

d−i
2 .

The running time of sieving depends on the smoothness of the polynomial values
|F (a, b)| and |G(a, b)|. Let Ψ(x, x1/u) be the number of x1/u-smooth integers below
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x for some u. The Dickman-de Bruijn function ρ(u) [9] is often used to estimate
Ψ(x, x1/u), since

lim
x→∞

Ψ(x, x1/u)

x
= ρ(u).

The Dickman-de Bruijn function satisfies the differential equation

uρ′(u) + ρ(u− 1) = 0, ρ(u) = 1 for 0 ≤ u ≤ 1.

It can be shown that ρ(u) satisfies the asymptotic estimate

log(ρ(u)) = −(1 + o(1))u log u as u → ∞.

For practical purposes, the frequency of smooth numbers can be approximated by
the Canfield-Erdős-Pomerance theorem, which can be stated as follows [10].

Theorem 2.1. For any fixed ǫ > 0, we have

Ψ(x, x1/u) = xu−u(1+o(1))

as x1/u and u tend to infinity, uniformly in the region x ≥ uu/(1−ǫ).

It is desirable that the polynomial pair can produce many smooth integers across
the sieve region. Heuristically this requires that the size of polynomial values is
small on average (Theorem 2.1). In addition, one can choose an algebraic poly-
nomial f(x) which has many roots modulo small prime powers. Such a choice
is driven by inheritance of practices which already date back to the CFRAC era,
where suitable multipliers were chosen precisely in order to optimize this very prop-
erty [15, 20]. Then the polynomial values are likely to be divisible by small prime
powers. This may increase the smoothness probability for polynomial values. We
first describe some methods [11, 17] to estimate and compare the quality of poly-
nomials.

2.1. Sieving test. A sieving experiment over short intervals is a relatively accurate
method to compare polynomial pairs. It is often used to compare a few polyno-
mial candidates in the final stage of the polynomial selection. Ekkelkamp [7] also
described a method for predicting the number of relations needed in the sieving.
The method conducts a short sieving test and simulates relations based on the test
results. Experiments show that the prediction of the number of relations is close
to the number of relations needed in the actual factorization.

2.2. Size property. Let (a, b) be pairs of coprime integers in the sieving region
Ω. For the moment, we assume that a rectangular sieving region is used where
|a| ≤ K and 0 < b ≤ K. We also assume that polynomial values |F (a, b)| and
|G(a, b)| behave like random integers of similar size. The number of sieving reports
(coprime pairs that lead to smooth polynomial values) can be approximated by

6

π2

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

ρ

(

log|G(x, y)|
logB

)

dxdy.

The multiplier 6/π2 accounts for the probability of a, b being relatively prime.
Since G is a linear polynomial, we may assume that log(|G(a, b)|) does not vary

much across the sieving region. A simplified approximation to compare polynomials



ROOT OPTIMIZATION OF POLYNOMIALS IN THE NUMBER FIELD SIEVE 3

(ignoring the constant multiplier) is to compare

(2.1)

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

dxdy.

The base-(m1,m2) expansion [11, 12] gives polynomials whose coefficients are
O(n1/(d+1)). The leading coefficients cd and cd−1 are much smaller than n1/(d+1).
The coefficient cd−2 is slightly smaller than n1/(d+1). For such polynomials, it is
often better to use a skewed sieving region where the sieving bounds for a, b have
ratio s ≥ 1, while keeping the area of the sieving region 2K2. The sieving bounds
become |a| ≤ K

√
s and 0 < b ≤ K/

√
s. Each monomial in the polynomial is

bounded by ciK
dsi−d/2.

In the integral (2.1), computing ρ is time-consuming (cf. [2]), especially if there
are many candidates. We can use some coarser approximations. Since ρ(u) is a
decreasing function of u, we want to choose a polynomial pair such that the size of
|F (a, b)| and |G(a, b)| is small on average over all (a, b). This roughly requires that
the coefficients of the polynomials are small in absolute value. We can compare
polynomials using the logarithm of an L2-norm for the polynomial F (x, y) by

(2.2)
1

2
log

(

s−d

∫ 1

−1

∫ 1

−1

F 2(xs, y) dxdy

)

where s is the skewness of sieving region. Polynomials which minimize the expres-
sion (2.2) are expected to be better than others.

2.3. Root property. If a polynomial f(x) has many roots modulo small primes
and prime powers, the polynomial values may behave more smoothly than random
integers of about the same size. Boender, Brent, Montgomery and Murphy [5, 16,
17, 18] described some quantitative measures of this effect (root property).

Let p be a fixed prime. Let νp(x) denote the exponent of the largest power of
p dividing the integer x and νp(0) = ∞. Let S be a set of integers. We use (the
same) notation νp(S) to denote the expected p-valuation of x ∈ S. If integers in S
are random and uniformly distributed 1, the expected p-valuation νp(S) is

νp(S) = E
x∈S

[νp(x)] =

∞
∑

k=1

Pr(νp ≥ k) =

∞
∑

k=1

1

pk
=

1

p− 1
.

Thus, in an informal (logarithmic) sense, an integer x in S contains an expected
power p1/(p−1).

Let now S be a set of polynomial values f(x). We use (the same) notation νp(S)
(or νp(f)) to denote the expected p-valuation of the polynomial values S. Hensel’s
lemma gives conditions when a root of f (mod pk) can be lifted to a root of f
(mod pk+1).

Lemma 2.2 (Hensel’s lemma). Let r1 be a root of f(x) modulo an odd prime p.

(1) If r1 is a simple root, f(x) (mod pk) has an unique root rk ≡ r1 (mod p)
for each k > 1.

1We consider integer random variables within a large enough bounded sample space.
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(2) If rk is a multiple root 2 of f(x) (mod pk) for k ≥ 1, there are two possible

cases. If pk+1 | f(rk), then ∀ i ∈ [0, p), pk+1 | f(rk + i pk). If pk+1 ∤ f(rk),
rk cannot be lifted to a root modulo pk+1.

Assume now that the integers x leading to the values f(x) ∈ S are uniformly
random. There are two cases. First, suppose p ∤ ∆(f), the discriminant of f(x),
then p is an unramified prime, and hence f(x) (mod p) has only simple roots.
Let np be the number of roots for f(x) (mod p). The expected p-valuation of
polynomial values is νp(f) = np/(p − 1) (apply the formula above, using Pr(νp ≥
k) = np/p

k).
The second case is when p | ∆(f). Here one may get multiple roots. The

expected p-valuation may be obtained by counting the number of lifted roots.

2.3.1. Homogeneous polynomials. In the number field sieve, we want to know the
expected p-valuation of homogeneous polynomial values F (a, b), where (a, b) is a
pair of coprime integers, and F (x, y) is the homogenous polynomial corresponding
to f(x). We assume in the following that (a, b) is a uniformly random pair of
coprime integers. We have

(2.3) νp(F (a, b)) = νp(F (λa, λb))

for any integer λ coprime to p. A pair of coprime integers (a, b) maps to a point
(a : b) on the projective line P1(Fp). Because of property (2.3) above, pairs for
which νp(F (a, b)) > 0 correspond to the points of the zero-dimensional variety on
P1(Fp) defined by the polynomial F .

The projective line P1(Fp) has p + 1 points, consisting of p affine points which
can be represented as (x : 1) with x ∈ Fp, together with the point at infinity (1 : 0).
Among these, the zeroes of F correspond, for affine points (x : 1), to affine roots
x ∈ Fp of the dehomogenized polynomial f . The point at infinity is a zero of F if
and only if the leading coefficient cd of f cancels modulo p. If F has a total of np

affine and projective zeroes in P1(Fp), then F (a, b) for coprime (a, b) is divisible by
p with probability np/(p+ 1).

It is also possible to look at (a, b) modulo a prime power pk. Then (a, b) maps
to an equivalence class (a : b) on the projective line over the ring Z/pkZ. The
p-valuation of F at (a : b) ∈ P1(Z/pkZ) (an integer between 0 and k − 1, or “k or
more”) conveys the information of what happens modulo pk. There are pk + pk−1

points in P1(Z/pkZ) (pk affine points of the form (x : 1), while the remaining pk−1

points at infinity are written as (1 : py)). A coprime pair (a, b) chosen at random
maps therefore to a given point in P1(Z/pkZ) with probability 1/(pk−1(p+ 1)).

Given an unramified p, let F (x, y) (mod p) have np affine and projective roots
(zeroes on P1(Fp)). In application of the Hensel Lemma (applied to f at an affine
root x, or to pd−1f( 1

py ) above the possible projective root), there is a constant

number np of points (a : b) = P1(Z/pkZ) such that νp(F (a : b)) ≥ k, as k grows.
The expected p-valuation νp(F ) is thus:

(2.4) νp(F ) =

∞
∑

k=1

np

pk−1(p+ 1)
=

npp

p2 − 1
.

2Let rk be a root of f (mod pk). We say that rk is a multiple root of f (mod pk) if f ′(rk) ≡ 0
(mod p); otherwise it is a simple root.
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For ramified p, simply counting the number np of affine and projective roots modulo
p is not sufficient to deduce νp(F ). One can substitute np by npk (the number of

roots modulo pk) in the above summation. For convenience, one can also define a
truncated version where

(2.5) νp(F, e) =
e

∑

k=1

npk

pk−1(p+ 1)
.

Murphy [17, p. 49] defines the α(F,B) function to compare the cumulative ex-
pected p-valuation of polynomial values to random integers of similar size. The
function α(F,B) can be considered as the logarithmic benefit of using polynomial
values compared to using random integers:

(2.6) α(F,B) =
∑

p≤B

p prime

(

1

p− 1
− νp(F )

)

log p

where the summand can be written as

(

1− npp

p+ 1

)

log p

p− 1
when p is unramified.

In the number field sieve, α(F,B) is often negative since we are interested in the
case when F (x, y) has on average more than one root modulo small primes.

2.4. Steps in polynomial selection. Polynomial selection can be divided into
three steps: polynomial generation, size optimization and root optimization.

In the polynomial selection, we first generate some polynomials of relatively good
size (cf. Subsection 2.2). Two efficient algorithms are given by Kleinjung [11, 12].
The size and root properties of these polynomials can then be further optimized
using translation and rotation.

Translation of f(x) and g(x) by t ∈ Z/nZ gives a new polynomial pair f(x+t) and
g(x+ t). The new common root is m1/m2− t (mod n). Translation only affects the
size property. Rotation by a polynomial λ(x) produces a new polynomial fλ(x)(x) =
f(x) + λ(x) (m2x − m1). The linear polynomial and common root is unchanged
during rotation. λ(x) is often a linear or quadratic polynomial, depending on the
size of n and the skewness of f(x). Rotation can affect both size and root properties.

Given a polynomial pair, translation and rotation are used to find a polynomial
of smaller (skewed) norm (Equation (2.2)). This is called size optimization. After
size optimization, many polynomials can have comparable size. Given f(x), we can
use polynomial rotation to find a related polynomial fλ(x)(x) which has a much
smaller α-value but similar size. This step is referred to as root optimization. If
the skewness of the polynomial is large, the size property of the polynomial may
not be altered significantly. As an indication of this, the skewed L∞ norm of f ,
defined as maxi |si−d/2ci|, remains unchanged as long as the trailing coefficients of
fλ(x) do not dominate. This is true for the polynomials generated by the algorithm
of Kleinjung [12], where the skewness of the polynomials is likely to be large.

We discuss some algorithms for root optimization in the following sections. We
will focus on rotation using linear polynomials. The idea naturally generalises to
quadratic and higher degree rotations which are needed for large integers such as
RSA-768 [13] and RSA-896.
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3. Root sieve

We consider linear rotations defined by fu,v(x) = f(x) + (ux+ v)g(x). We want
to choose (u, v) such that fu,v(x) has a small α-value. The straightforward way is
to look at individual polynomials fu,v(x) for all possible (u, v)’s and compare their
α-values. This is time-consuming and impractical since the permissible bounds for
u and v are often huge. Murphy [17, p. 84] describes a sieve-like procedure, namely
the root sieve, to find polynomials with good root properties. We describe the root
sieve in Algorithm 1.

Let B be the upper bound for primes in Equation (2.6) and U, V be bounds for
the linear rotation such that |u| ≤ U and |v| ≤ V . We often choose V ≈ sU (cf.
Subsection 2.2). The root sieve fills an array with estimated α-values. The α-values
are estimated from p-valuations for primes p ≤ B. Alternatively, it is sufficient to
calculate the summation of the weighted p-valuations νp(F ) log p for the purpose of
comparison. The idea of the root sieve is that, when r is a root of fu,v(x) (mod pk),
it is also a root of fu+ipk,v+jpk (x) (mod pk) for i, j ∈ Z.

Algorithm 1: Murphy’s root sieve

Input : a polynomial pair f, g; integers U , V , B;
Output: an array of approximated α-values of dimension (2U + 1)× (2V + 1);

1 for p ≤ B, p prime do

2 for k where pk ≤ B do

3 for x ∈ [0, pk − 1] do
4 for u ∈ [0, pk − 1] do
5 compute v in f(x) + (ux+ v)g(x) ≡ 0 (mod pk);

6 update νp(Fu+ipk,v+jpk ) by sieving;

In general, the root sieve does not affect the projective roots significantly. It is
sufficient to only consider the affine roots’ contribution to the α-value. In the end,
we identify good slots (those with small α-values) in the sieving array. For each
slot (polynomial), we can compute a more accurate α-value with a large bound

B̃ > B and re-optimize its size using translation only (which will not affect the
root property).

With B2 ≪ UV , the asymptotic complexity of Murphy’s root sieve is

∑

p≤B

p prime







⌊ log B

log p
⌋

∑

k=1

pkpk
(

O(1) +
(2U + 1)(2V + 1)

p2k

)







= O

(

B3

logB

)

+ (2U + 1)(2V + 1)
∑

p≤B

p prime

⌊

logB

log p

⌋

≈ (2U + 1)(2V + 1) logB

∫ B

2

1

log2 p
dp

= O

(

UV
B

logB

)

.

We are interested in small primes and hence B/ logB is small. The sieving bounds
U, V dominate the running time O(UV B/ logB).
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4. A faster root sieve

In the root sieve, we compare the number of roots of polynomials fu,v(x) for
small primes and prime powers. In most cases, the roots are simple. Hence their
average p-valuation follows immediately from Equation (2.4), and there is no need
to count the lifted roots. We describe a faster root sieve (Algorithm 2) taking
advantage of this idea.

First, we show that the cases corresponding to simple roots (cf. Equation (2.4))
can be dealt with by a sieve. Suppose r1 is a simple root of f(x) (mod p). There
exists a unique lifted root rk of f(x) (mod pk) for each k > 1. In addition, each
lifted root rk is a simple root of f(x) (mod p). Let rk be a simple root of fu,v(x)
(mod pk) for some k ≥ 1. It is clear that rk is also a simple root of polynomials
fu+ipk,v+jpk (x) (mod pk). Given a simple root r1 of a polynomial fu,v(x) (mod p),

the contribution of the root r1 to νp(Fu,v) is p/(p
2− 1). We can update this value 3

for all rotated polynomials fu+ip,v+jp(x) in a sieve (Line 8 of Algorithm 2).
Second, we consider the multiple roots. Let rk be a multiple root of a ro-

tated polynomial fu,v(x) (mod pk). It is also a multiple root for rotated polyno-
mials fu+ipk,v+jpk (x) (mod pk). Hence we can also update the score in a sieve,

but only for rotated polynomials fu+ipk,v+jpk(x) (mod pk). The lifted roots of

fu+ipk,v+jpk (x) (mod pk+1) can have different behaviours (cf. Lemma 2.2). We
need to lift to count the multiple roots (Line 10 of Algorithm 2).

Algorithm 2: A faster root sieve

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values of dimension (2U + 1) × (2V + 1);

1 for p ≤ B, p prime do

2 for x ∈ [0, p− 1] do
3 compute ũ such that ũg2(x) ≡ f(x)g′(x) − f ′(x)g(x) (mod p);

4 for u ∈ [0, p − 1] do
5 compute v such that f(x) + (ux+ v)g(x) ≡ 0 (mod p);

6 if u 6= ũ;

7 then

8 update νp(Fu+ip,v+jp) in sieving;

9 else

10 lift to count multiple roots of fū,v̄(x) (mod pk) such that (ū, v̄) ≡ (u, v)

(mod p), ū, v̄ ≤ pk ≤ B and then sieve;

Line 5 of Algorithm 2 describes the following optimization. Given some r ∈
Z/pZ, we want to know when r is a multiple root for some polynomial fu,v(x)
(mod p). If f(r) + (ur + v)g(r) ≡ 0 (mod p) and f ′(r) + ug(r) + (ur + v)g′(r) ≡ 0
(mod p), then we get

(4.1) ug2(r) ≡ f(r)g′(r) − f ′(r)g(r) (mod p)

since (ur+ v) ≡ −f(r)/g(r) (mod p). Therefore, only one in p values of u admit a
multiple root at r (mod p). For the other u’s, we can compute v and update the
simple contribution p/(p2−1) in the sieve. If however r is a multiple root of fu,v(x)
(mod p), we have to lift to count the multiple roots.

3νp(Fu,v) log p, the contribution of the root r1 (mod p) to α(Fu,v, B).
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The asymptotic running time has the same magnitude as Murphy’s root sieve
where

∑

p≤B

p prime

(

p

(

(p− 1)
(2U + 1)(2V + 1)

p2
+O

(

UV

p2

)))

= O

(

UV
B

logB

)

.

In practice, however, we benefit from this optimization which avoids most prime
powers. For comparison, Murphy’s root sieve takes about 4UV

∑

p≤B⌊logB/ log p⌋
operations, while Algorithm 2 takes about 4UV

∑

p≤B 1 operations. Taking B =

200 for instance.
∑

p≤200⌊log 200/ logp⌋ = 60 and
∑

p≤200 1 = 46. Thus the
speedup is about 1.3.

5. A two-stage method

If the permissible rotation bounds U, V are large, the root sieve can take a long
time for each polynomial. We give a two-stage algorithm for the root optimization.
The algorithm is motivated by previous work by Gower [8], Papadopoulos (personal
communication), Stahlke and Kleinjung [21], who suggested to consider congruence
classes modulo small primes.

The root optimization is based on the following ideas. A polynomial with only a
few roots modulo small prime powers is less likely to have a small α-value. There-
fore, rotated polynomials with many roots modulo small prime powers peii are first
detected, with pi ≤ P for some tiny bound P ≪ B. How exactly the powers ei are
chosen is discussed at the end of this section. A further root sieve (cf. Algorithm 2)
for larger prime powers peii (where P < pi ≤ B and peii ≤ B) can then be applied.

For convenience, let primes pi be ordered such that pi ≤ pj when i ≤ j.

5.1. Stage 1. Let pe11 , · · · , pess be the distinct prime powers and such that ps ≤ P .
Let M =

∏s
i=1 p

ei
i . In the first stage, we find some rotated polynomial fu0,v0(x)

which has the smallest approximated α-value (Equations (2.5) and (2.6)) among
all u, v ∈ Z/MZ.

Gower [8] described an algorithm to find such fu0,v0(x). The method first fixes
some root set {ri,j} modulo peii and then finds the rotated coefficients (u0,i, v0,i)
(mod peii ). Finally, the CRT (Chinese Remainder Theorem) is applied to recover
(u0, v0) (mod M). However, it is not guaranteed that such (u0, v0) leads to the
smallest α-value among all u, v ∈ Z/MZ given the root set being fixed in advance.
We describe a better method based on the lifting idea in Section 4.

Let peii be fixed. We first find some polynomial fu0,i,v0,i(x) that has good 4 ap-
proximated pi-valuation νpi

(Fu,v, ei) (cf. Equation (2.5)) among all u, v ∈ Z/peii Z.
We use the lifting method in a p2i -ary tree (of height ei) where each node represents
some rotated polynomial fu,v modulo some ẽi ≤ ei. A depth-search method can be
used since the bottom level leaves of the tree are most interesting. The number of
nodes in this p2i -ary tree (of height ei) can be bounded above by peii using the rela-
tion in Equation (4.1). Given polynomials fu0,i,v0,i(x) (mod peii ) for all 1 ≤ i ≤ s,
we can then use the CRT to recover a set of good pairs {(u0, v0) (mod M)}.

4In practice, one can record the top l such polynomials in a priority queue.
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5.2. Stage 2. Fix some (u0, v0) (mod M). We apply the root sieve on the sublat-
tice defined by (u0+γM, v0+βM) where (γ, β) ∈ Z2. The points on the sublattice
are expected to give rotated polynomials with promising root properties, since the
polynomials are constructed to have many roots modulo M .

In Stage 1, we often choose the pi’s to be the smallest consecutive primes since
they are likely to contribute most to the α-value. The exponents ei can be chosen
such that M ≈ U in practice. Note U ≪ V if s is large. Since u0 ≈ M ≈ U , it is
sufficient to sieve a single line in Stage 2.

Compared to a full root sieve over Z2, the search space is reduced by a factor of
M2. The root sieve in Stage 2 runs asymptotically in UV (B−P )/(M2 log(B−P )) ≈
(V/M)(B/ logB) as B ≪ V and P ≪ B.

Remark 5.1. In Stage 2, the polynomials f̄ not on the sublattice are discarded since
we assume that they are unlikely to give rise to polynomials with good root prop-
erties: the sum of the approximated pi-valuations

∑s
i=1 νpi

(F̄ , ei) log pi is smaller
than

∑s
i=1 νpi

(F, ei) log pi. However, it may be possible that
∑s

i=1 νpi
(F̄ ) log pi ≥

∑s
i=1 νpi

(F ) log pi (for the exact pi-valuations). Here we assume that νpi
(F ) ≈

νpi
(F, ei) which is plausible if the number of lifted multiple roots becomes station-

ary for pki ≥ peii (but also see below in 5.3).

5.3. Choice of the valuations ei. There are several approaches to choosing the
valuations ei in Stage 1. To start with, for consistency with the rest of the proce-
dure, it is natural to restrict to peii ≤ B, whence ei ≤ ⌊logpi

B⌋. It is also reasonable
to require that polynomials fu,v considered in Stage 2, for u, v within the lattice
(u0 + γM, v0 + βM), all share the same lifting patterns for their pi-adic roots (in
terms of numbers of roots and multiplicities as lifting proceeds), which is to say
that the number of lifted roots for these polynomials should be stationary above peii .
This would imply that we set ei to at most νpi

(disc fu,v), since setting to a larger
value would not differentiate between lifting patterns. Of course the dependency
of the latter expression on u, v is cumbersome. An upper bound would be needed,
and can be obtained with moderate efforts by considering disc fu,v as a bivariate
polynomial in u, v. In practice, however, it is generally satisfactory to restrict to
the bound νpi

(disc f) as a first guess.
Another aspect leads to consider the maximum values for ei in a more relaxed

way. So far, in our improved root sieve, we have ignored the size property of
polynomials in the algorithms. In practice, we may want to tune the parameters
by trying several sets of parameters (varying pi’s and ei in Stage 1). We can run
a test root sieve in short intervals. The set of parameters which generates the best
score (considering both size and root properties) is then used. To summarize, while
a bound such as ei = min(νpi

(disc f), ⌊logpi
B⌋) would be advised by the analysis,

efficiency considerations lead us to consider several sets of parameters around this
value. This compensates for the acknowledged inaccuracy in considering νpi

(disc f).

6. Conclusion

Root optimization aims to produce polynomials that have many roots modulo
small primes and prime powers. We gave some faster methods for root optimization
based on Hensel’s lifting lemma and root sieve on congruence classes modulo small
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prime powers. The algorithms described here have been implemented in the soft-
ware CADO-NFS [3] and tested in practice (e.g. for the factorization of the 704-bit
RSA challenge [4]).
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