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Abstract

Mixmod is a well-established software package for fitting a mixture model of mul-
tivariate Gaussian or multinomial probability distribution functions to a given data set
with either a clustering, a density estimation or a discriminant analysis purpose. The
Rmixmod S4 package provides a bridge between the C++ core library of Mixmod (mix-
modLib) and the R statistical computing environment. In this article, we give an overview
of the model-based clustering and classification methods, and we show how the R package
Rmixmod can be used for clustering and discriminant analysis.

Keywords: model-based clustering, discriminant analysis, mixture models, visualization, R,
Rmixmod.

1. Introduction
Clustering and discriminant analysis (or classification) methods are among the most impor-
tant techniques in multivariate statistical learning. The goal of cluster analysis is to partition
the observations into groups (“clusters”) so that the pairwise dissimilarities between observa-
tions assigned to the same cluster tend to be smaller than observations in different clusters.
The goal of classification is to design a decision function from a learning data set to assign
new data to groups a priori known. Mixture modeling supposes that the data are an i.i.d.
sample from some population described by a probability density function. This density func-
tion is characterized by a parameterized finite mixture of component density functions, each
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component modeling one of the clusters. This model is fit to the data by maximum likelihood
(Mclachlan and Peel 2000).
The Mixmod package (Mixmod Team 2008) is primarily devoted to clustering using mixture
modeling and, to a lesser extent, to discriminant analysis (supervised and semi-supervised
situations). Many options are available to specify the models and the strategy to be run.
Mixmod is dealing with 28 multivariate Gaussian mixture models for quantitative data and
10 multivariate multinomial mixture models for qualitative data. Estimation of the mixture
parameters is performed via the EM, the Stochastic EM or the Classification EM algorithms.
These three algorithms can be chained and initialized in several different ways leading to
original strategies (see Section 2.3). The model selection criteria BIC, ICL, NEC and cross-
validation are proposed according to the modeling purpose (see Section 2.4 for a brief review).
Mixmod, developped since 2001, is a package written in C++. Its core library (mixmodLib)
can be interfaced with any other softwares or libraries, or can be used in command line. It
has been already interfaced with Scilab and Matlab (Biernacki et al. 2006). It was lacking
an interface with R (R Development Core Team 2012). The Rmixmod package provides a
bridge between the C++ core library ofMixmod and the R statistical computing environment.
Both cluster analysis and discriminant analysis can be now performed using Rmixmod. User-
friendly outputs and graphs allow for a relevant and nice visualisation of the results.
There exists a wide variety of packages in R dedicated to the estimation of mixture model.
Among them let us cite bgmm (Biecek et al. 2012), flexmix (Leisch 2004; Grün and Leisch
2007, 2008), mclust (Fraley and Raftery 2007a,b), mixtools (Benaglia et al. 2009) but none
of them offer the large set of possibilities of the newcomer Rmixmod.
This paper reviews in Section 2 the Gaussian and multinomial mixture models and the Mix-
mod library. An overview of the Rmixmod package is then given in Section 3 through a
description of the main function and of other related companion functions. The practical use
of this new package is illustrated in Section 4 on toy datasets for model-based clustering in a
quantitative and qualitative setting (Section 4.1) and for discriminant analysis (Section 4.2).
The last section (Section 5) evokes future works of the Mixmod project. The package is avail-
able from the Comprehensive R Archive Network at http://cran.r-project.org/package=
Rmixmod.

2. Overview of the Mixmod library functionalities

2.1. Model-based classifications focus

“X-supervised” classifications

Roughly speaking, the Mixmod library is devoted to three kinds of different classification
tasks. Its main task is unsupervised classification but supervised and semi-supervised classifi-
cations can benefit from its meaningful models, its efficient algorithms and its model selection
criteria.

Unsupervised classification Unsupervised classification, called also cluster analysis, is
concerned with discovering a group structure in a n by d data matrix x = {x1, ...,xn} where
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xi is an individual in X1× . . .×Xd. The space Xj (j = 1, . . . , d) depends on the type of data
at hand: It is R for continuous data and it is {1, . . . ,mj} for categorical data with mj levels.
The result provided by clustering is typically a partition z = {z1, ..., zn} of x into K groups,
zi’s being indicator vectors or labels with zi = (zi1, . . . , ziK), zik = 1 or 0, according to the
fact that xi belongs to the kth group or not.

Supervised classification In discriminant analysis, data are composed by n observations
x = {x1, ...,xn} (xi ∈ X1 × . . . × Xd) and a partition of x into K groups defined with the
labels z. The aim is to estimate the group zn+1 of any new individual xn+1 of X1 × . . .× Xd

with unknown label. Discriminant analysis in Mixmod is divided into two steps. The first
step consists of a classification rule from the training data set (x, z). The second step consists
of assigning the other observations to one of the groups.

Semi-supervised classification Usually all the labels zi are completely unknown (unsu-
pervised classification) or completely known (supervised classification). Nevertheless, par-
tial labeling of data is possible, and it leads to the so-called semi-supervised classification.
The Mixmod library handles situations where the data set x is divided into two subsets
x = (x`,xu) where x` = {x1, ...,xg} (1 ≤ g ≤ n) are units with known labels z` = {z1, ..., zg},
and xu = {xg+1, ...,xn} units with unknown labels zu = {zg+1, ..., zn}.
Usually, semi-supervised classification is concerned by the supervised classification purpose
and it aims to estimate the group zn+1 of any new individual xn+1 of X1 × . . . × Xd with
unknown label by taking profit of the unlabeled data of the learning set.

Model-based classifications

The model-based point of view allows to consider all previous classification tasks in a unified
manner.

Mixture models Let x = {x1, ...,xn} be n independent vectors in X1×. . .×Xd, where each
Xj denotes some measurable space, and such that each xi arises from a mixture probability
distribution with density

f(xi|θ) =
K∑

k=1
pkh(xi|αk) (1)

where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, ...,K and p1+...+pK = 1),
h(·|αk) denotes a d-dimensional distribution parameterized by αk. As we will see below, h
is for instance the density of a Gaussian distribution with mean µk and variance matrix Σk

and, thus, αk = (µk,Σk). The whole vector parameter (to be estimated) of f is denoted by
θ = (p1, . . . , pK ,α1, . . . ,αK).

Label estimation From a generative point of view, drawing the sample x from the mixture
distribution f requires previously to draw a sample of labels z = {z1, ..., zn}, with zi =
(zi1, . . . , ziK), zik = 1 or 0, according to the fact that xi is arising from the kth mixture
component or not. Depending of the fact that the sample z is completely unknown, completely
known or only partially known, we retrieve respectively an unsupervised, a supervised or
a semi-supervised classification problem. Mixture models are particularly well-suited for
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modeling these different standard situations since an estimate of any label zi (i = 1, . . . , n for
unsupervised classification, i = n+ 1 for supervised or semi-supervised classification) can be
easily obtained by the following so-called Maximum A posteriori (MAP) rule

ẑ(θ) = MAP(t(θ)) ⇔ ẑik(θ) =
{

1 if k = arg maxk′∈{1,...,K} tik′(θ)
0 otherwise (2)

where t(θ) = {tik(θ)}, tik(θ) denoting the following conditional probability that the observa-
tion xi arises from the group zi:

tik(θ) = pkh(xi|αk)
f(xi|θ) . (3)

2.2. Parsimonious and meaningful models

The Mixmod library proposes many parsimonious and meaningful models, depending on the
type of variables to be considered. Such models provide simple interpretation of groups.

Continuous variables: Fourteen Gaussian models

In the Gaussian mixture model, each xi is assumed to arise independently from a mixture of
d-dimensional Gaussian density with mean µk and variance matrix Σk. In this case we have
in Equation (1), with αk = (µk,Σk),

h(xi|αk) = (2π)−d/2|Σk|−1/2 exp
{
−1

2(xi − µk)>Σ−1
k (xi − µk)

}
. (4)

Thus, clusters associated to the mixture components are ellipsoidal, centered at the means
µk and the variance matrices Σk determine their geometric characteristics.
Following Banfield and Raftery (1993) and Celeux and Govaert (1995), we consider a param-
eterization of the variance matrices of the mixture components consisting of expressing the
variance matrix Σk in terms of its eigenvalue decomposition

Σk = λkDkAkD
>
k (5)

where λk = |Σk|1/d, Dk is the matrix of eigenvectors of Σk and Ak is a diagonal matrix, such
that |Ak| = 1, with the normalized eigenvalues of Σk on the diagonal in a decreasing order.
The parameter λk determines the volume of the kth cluster, Dk its orientation and Ak its
shape. By allowing some but not all of these quantities to vary between clusters, we obtain
parsimonious and easily interpreted models which are appropriate to describe various group
situations (see Table 1). More explanations about notation used in this table are given below.

The general family First, we can allow the volumes, the shapes and the orientations of
clusters to vary or to be equal between clusters. Variations on assumptions on the parameters
λk, Dk and Ak (1 ≤ k ≤ K) lead to eight general models of interest. For instance, we can
assume different volumes and keep the shapes and orientations equal by requiring that Ak = A
(A unknown) and Dk = D (D unknown) for k = 1, . . . ,K. We note this model [λkDAD

>]
(or, shortly, [λkC] where C = DAD>). With this convention, writing [λDkAD

>
k ] means that

we consider the mixture model with equal volumes, equal shapes and different orientations.
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model number of parameters M step Rmixmod model name
[λDAD>] α+ β CF "Gaussian_*_L_C"
[λkDAD

>] α+ β +K − 1 IP "Gaussian_*_Lk_C"
[λDAkD

>] α+ β + (K − 1)(d− 1) IP "Gaussian_*_L_D_Ak_D"
[λkDAkD

>] α+ β + (K − 1)d IP "Gaussian_*_Lk_D_Ak_D"
[λDkAD

>
k ] α+Kβ − (K − 1)d CF "Gaussian_*_L_Dk_A_Dk"

[λkDkAD
>
k ] α+Kβ − (K − 1)(d− 1) IP "Gaussian_*_Lk_Dk_A_Dk"

[λDkAkD
>
k ] α+Kβ − (K − 1) CF "Gaussian_*_L_Ck"

[λkDkAkD
>
k ] α+Kβ CF "Gaussian_*_Lk_Ck"

[λB] α+ d CF "Gaussian_*_L_B"
[λkB] α+ d+K − 1 IP "Gaussian_*_Lk_B"
[λBk] α+Kd−K + 1 CF "Gaussian_*_L_Bk"
[λkBk] α+Kd CF "Gaussian_*_Lk_Bk"

[λI] α+ 1 CF "Gaussian_*_L_I"
[λkI] α+K CF "Gaussian_*_Lk_I"

Table 1: Some characteristics of the 14 models. We have α = Kd+K − 1, * = pk in the case
of free proportions and α = Kd, * = p in the case of equal proportions, and β = d(d+1)

2 ; CF
means that the M step is closed form, IP means that the M step needs an iterative procedure.

The diagonal family Another family of interest consists of assuming that the variance
matrices Σk are diagonal. In the parameterization (5), it means that the orientation matrices
Dk are permutation matrices. We write Σk = λkBk where Bk is a diagonal matrix with
|Bk| = 1. This particular parameterization gives rise to four models: [λB], [λkB], [λBk] and
[λkBk].

The spherical family The last family of models consists of assuming spherical shapes,
namely Ak = I, I denoting the identity matrix. In such a case, two parsimonious models are
in competition: [λI] and [λkI].

Remark The Mixmod library provides also some Gaussian models devoted to high dimen-
sional data. We do not describe them here since they are not yet available in the Rmixmod
package but the reader can refer to the Mixmod website1 for further informations.

Categorical variables: Five multinomial models

We consider now that the data are n objects described by d categorical variables, with re-
spective number of levels m1, . . . ,md. The data can be represented by n binary vectors
xi = (xjh

i ; j = 1, . . . , d;h = 1, . . . ,mj) (i = 1, . . . , n) where xjh
i = 1 if the object i belongs

to the level h of the variable j and 0 otherwise. Denoting m =
∑d

j=1mj the total number
of levels, the data matrix x = {x1, . . . ,xn} has n rows and m columns. Binary data can be
seen as a particular case of categorical data with d dichotomous variables, i.e., mj = 2 for
any j = 1, . . . , d.
The latent class model assumes that the d categorical variables are independent given the
latent variable: Each xi arises independently from a mixture of multivariate multinomial

1http://www.mixmod.org/
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distributions (Everitt 1984). In this case we have in Equation (1)

h(xi|αk) =
d∏

j=1

mj∏
h=1

(αjh
k )xjh

i (6)

with αk = (αjh
k ; j = 1, . . . , d;h = 1, . . . ,mj). In (6), we recognize the product of d condition-

ally independent multinomial distributions of parameters αj
k = (αj1

k , . . . , α
jmj

k ). This model
may present problems of identifiability (see for instance Goodman 1974) but most situations
of interest are identifiable (Allman et al. 2009).
In order to propose more parsimonious models, we present the following extension of the
parameterization of Bernoulli distributions used by Celeux and Govaert (1991a) for clustering
and also by Aitchison and Aitken (1976) for kernel discriminant analysis. The basic idea is
to impose the vector αj

k to have a unique modal value for one of its components, the other
components sharing uniformly the remaining mass probability. Thus, αj

k takes the form
(βj

k, . . . , β
j
k, γ

j
k, β

j
k, . . . , β

j
k) with γj

k > βj
k. Since

∑mj

h=1 α
jh
k = 1, we have (mj − 1)βj

k + γj
k = 1

and, consequently, βj
k = (1−γj

k)/(mj−1). The constraint γj
k > βj

k becomes finally γj
k > 1/mj .

Equivalently and meaningfully, the vector αj
k can be reparameterized by a center aj

k and a
dispersion εj

k around this center with the following decomposition:

• Center: aj
k = (aj1

k , . . . , a
jmj

k ) where ajh
k = 1 if h is to the rank of γj

k (in the following,
this rank will be noted h(k, j)), 0 otherwise;

• Dispersion: εj
k = 1− γj

k the probability that the data xi, arising from the kth compo-
nent, are such that xjh(k,j)

i 6= 1.

Thus, it allows us to give an interpretation similar to the center and the variance matrix used
for continuous data in the Gaussian mixture context. Since, the relationship between the
initial parameterization and the new one is given by:

αjh
k =

{
1− εj

k if h = h(k, j)
εj

k/(mj − 1) otherwise,
(7)

Equation (6) can be rewritten with ak = (aj
k; j = 1, . . . , d) and εk = (εj

k; j = 1, . . . , d)

h(xi|αk) = h̃(xi|ak, εk) =
d∏

j=1

mj∏
h=1

(
(1− εj

k)ajh
k (εj

k/(mj − 1))1−ajh
k

)xjh
i
. (8)

In the following, this model will be noted [εj
k]. In this context, three other models can be

defined. We note [εk] the model where εj
k is independent of the variable j, [εj ] the model

where εj
k is independent of the component k and, finally, [ε] the model where εj

k is independent
of both the variable j and the component k. In order to maintain some unity in the notation,
we will note also [εjh

k ] the most general model introduced at the previous section. The number
of free parameters associated to each model is given in Table 2.

2.3. Efficient maximum “X-likelihood” estimation strategies
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model number of parameters Rmixmod model name
[ε] δ + 1 "Binary_*_E"
[εj ] δ + d "Binary_*_Ej"
[εk] δ +K "Binary_*_Ek"
[εj

k] δ +Kd "Binary_*_Ekj"
[εjh

k ] δ +K
∑d

j=1(mj − 1) "Binary_*_Ekjh"

Table 2: Number of free parameters of the five multinomial models. We have δ = K − 1, * =
pk in the case of free proportions and δ = 0, * = p in the case of equal proportions.

EM and EM-like algorithms focus

Estimation of the mixture parameter is performed either through maximization of the log-
likelihood (ML) on θ

L(θ) =
n∑

i=1
ln f(xi|θ) (9)

via the EM algorithm (Expectation Maximization, Dempster et al. 1997), the SEM algorithm
(Stochastic EM, Celeux and Diebolt 1985) or through maximization of the completed log-
likelihood on both θ and z

Lc(θ, z) =
n∑

i=1

K∑
k=1

zik ln(pkh(xi|αk)), (10)

via the CEM algorithm (Clustering EM, Celeux and Govaert 1992). We now describe these
three algorithms at iteration q. The choice of the starting parameter θ{0} and of the stopping
rules are both described later.

The EM algorithm It consists of repeating the following E and M steps:

• E step: Compute the conditional probabilities t(θ{q}) (see Equation 3).

• M step: Compute the parameter θ{q+1} = argmaxθ Lc(θ, t(θ{q})) (see Equation 10).
Mixture proportions are given by p{q+1}

k =
∑n

i=1 tik(θ{q})/n. Detailed formula of other
parameters α{q+1} depend on the model at hand and are given in the reference manual
of Mixmod (Mixmod Team 2008).

The SEM algorithm It is a stochastic version of EM incorporating between the E and M
steps a so-called S step restoring stochastically the unknown labels z:

• E step: Like EM.

• S step: Draw labels z{q} from t(θ{q}) with z{q}i ∼ multinomial(ti1(θ{q}), . . . , tiK(θ{q})).

• M step: Like EM but t(θ{q}) is replaced by z{q}.
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It is important to notice that SEM does not converge pointwise. It generates a Markov
chain whose stationary distribution is more or less concentrated around the ML estimate.
A natural estimate from a SEM sequence (θ{q})q=1,...,Q of length Q is either the mean∑

q=Q−,...,Q θ
{q}/(Q − Q−) (the first Q− burning iterates are discarded) or the parameter

value leading to the highest log-likelihood in the whole dequence.

The CEM algorithm It incorporates a classification step between the E and M steps of
EM, restoring by a MAP the unknown labels z:

• E step: Like EM.

• C step: Choose the most probable labels ẑ(θ{q}) = MAP(t(θ{q})).

• M step: Like EM where t(θ{q}) is replaced by ẑ(θ{q}).

CEM leads to inconsistent estimates (Bryant and Williamson 1978; Mclachlan and Peel 2000,
Section 2.21) but has faster convergence that EM since it converges with a finite number of
iterations. It allows also to retrieve and generalize standard K-means like criteria both in
the continuous case (Govaert 2009, Chap. 8) and in the categorical case (Celeux and Govaert
1991b).

Remark on the partial labelling case Mixmod allows partial labelling for all algorithms:
It is straightforward since known labels zl remain fixed in the E step for all of them. In that
case the log-likelihood is expressed by

L(θ) =
g∑

i=1
ln f(xi|θ) +

n∑
i=g+1

K∑
k=1

zik ln(pkh(xi|αk)) (11)

and the completed log-likelihood, noted now Lc(θ, zu), is unchanged.

Remark on duplicated units In some cases, it arises that some units are duplicated.
Typically, it happens when the number of possible values for the units is low in regard to the
sample size. To avoid entering unnecessarily large lists of units, it is also possible to specify
a weight wi for each unit yi (i = 1, . . . , r). The set yw = {(y1, w1), . . . , (yr, wr)} is strictly
equivalent to the set with eventual replications x = {x1, ...,xn}, and we have the relation
n = w1 + . . .+ wr.

Remark on spurious solutions In the Gaussian case, some solutions with (finite) high
log-likelihood value can be uninteresting for the user since they correspond to ill-conditionned
estimate covariance matrices for some mixture components. It corresponds to so-called spu-
rious situations (Mclachlan and Peel 2000, Section 3.10 and 3.11). As far as we know such
spurious solutions cannot be detected automatically and have to be discarded by hand.

Strategies for using EM and CEM
Both likelihood and completed likelihood functions usually suffer from multiple local maxima
where EM and CEM algorithms can be trapped. Slow evolution of the objective function can
be also encountered sometimes during a long period for some runs, in particular with EM.
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Notice that SEM is not concerned by local maxima since it does not converge pointwise but
slow evolution towards the stationary distribution cannot be excluded in some cases.
In order to avoid such drawbacks, Mixmod can act in three ways: Chained algorithms, starting
strategies and stopping rules. More details can be found in the Mixmod reference manual
(Mixmod Team 2008).

Chained algorithms strategies The three algorithms EM, CEM and SEM can be chained
to obtain original fitting strategies (e.g., CEM then EM with results of CEM) taking advantage
of each of them in the estimation process.

Initialization strategies The available procedures of initialization are:

• “random”: Initialization from a random position is a standard way to initialize an
algorithm. This random initial position is obtained by choosing at random centers
in the data set. This simple strategy is repeated several times from different random
positions and the position maximizing the likelihood or the completed lilkelihood is
selected.

• “smallEM”: A predefined number of EM iterations is split into several short runs of EM
launched from random positions. By a short run of EM, we mean that we do not wait
for complete convergence but we stop it as soon as the log-likelihood growth is small
in comparison to a predefined crude threshold (see details in Biernacki et al. 2003).
Indeed, it appears that repeating runs of EM is generally profitable since using a single
run of EM can often lead to suboptimal solutions.

• “CEM”: A given number of repetitions of a given number of iterations of the CEM
algorithm are run. One advantage of initializing an algorithm with CEM lies in the fact
that CEM converges generally in a small number of iterations. Thus, without consuming
a large amount of CPU times, several runs of CEM are performed. Then EM (or CEM)
is run with the best solution among all repetitions.

• “SEMMax”: A run of a given number of SEM iterations. The idea is that a SEM sequence
is expected to enter rapidly in the neighborhood of the global maximum of the likelihood
function.

Stopping rules strategies They are two ways to stop an algorithm:

• "nbIterationInAlgo": All algorithms can be stopped after a pre-defined number of
iterations.

• "epsilonInAlgo": EM and CEM can be stopped when the relative change of the
criterion at hand (L or Lc) is small.

2.4. Purpose dependent model selection

It is of high interest to automatically select a model or the number K of mixture components.
However, choosing a sensible mixture model is highly dependent on the modeling purpose.
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Before describing these criteria, it can be noted that if no information on K is available, it is
recommended to vary it between 1 and the smallest integer larger than n0.3 (Bozdogan 1993).

Density estimation
In a density estimation perspective, the BIC criterion must be preferred. It consists of choos-
ing the model and/or K minimizing

BIC = −2L(θ̂) + ν lnn (12)

with θ̂ the ML estimate and with ν the number of parameters to estimate. BIC is an asymp-
totic approximation of the integrated likelihood, valid under regularity conditions, and has
been proposed by Schwarz (1978). Despite the fact that those regularity conditions are not
fulfilled for mixtures, it has been proved that the criterion BIC is consistent if the likelihood
remains bound (Keribin 2000) and has been proved to be efficient on a practical ground (see
for instance Fraley and Raftery 1998).

Unsupervised classification
In the unsupervised setting, three criteria are available: BIC, ICL and NEC. But in a full
cluster analysis perspective, ICL and NEC can provide more parsimonious answers.
The integrated likelihood does not take into account the ability of the mixture model to give
evidence for a clustering structure of the data. An alternative is to consider the integrated
completed likelihood. Asymptotic considerations lead to the ICL criterion to be minimized
(Biernacki et al. 2000):

ICL = −2Lc(θ̂, t(θ̂)) + ν lnn (13)

= BIC− 2
n∑

i=1

K∑
k=1

tik(θ̂) ln tik(θ̂) (14)

Notice that both expressions of ICL above allow to consider ICL either as Lc penalized by the
model complexity or as BIC penalized by an entropy term measuring the mixture component
overlap.
The NEC criterion measures the ability of a mixture model to provide well-separated clusters
and is derived from a relation highlighting the differences between the maximum likelihood
approach and the classification maximum likelihood approach to the mixture problem. It is
defined by

NECK =

 −
∑n

i=1

∑K

k=1 tik(θ̂K) ln tik(θ̂K)
L(θ̂K)−L(θ̂1) if K > 1

1 otherwise
(15)

with θ̂K the ML estimate of θ for K components. The index K is used to highlight that
NEC is essentially devoted to choose the number of mixture components K, not the model
parameterization (Celeux and Soromenho 1996; Biernacki et al. 1999). The chosen value of
K corresponds to the lower value of NEC.

Supervised classification
In the supervised setting, note that only the model (not the number of mixture components)
has to be selected. Two criteria are proposed in this situation: BIC and cross-validation. For
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BIC, the completed log-likelihood (10), where z is fixed to its known value, has to be used.
The cross-validation criterion (CV) is valid only in the discriminant analysis (supervised)
context.The model leading to the highest CV criterion value is selected. Cross validation is a
resampling method which can be summarized as follows: Consider random splits of the whole
data set (x, z) into V independent datasets (x, z)(1), . . . , (x, z)(V ) of approximatively equal
sizes n1, . . . , nV . (If n/V is an integer h, we have n1 = . . . = nV = h.) The CV criterion is
then defined by

CV = 1
n

V∑
v=1

∑
i∈Iv

δ(ẑi(θ̂
(v)), zi) (16)

where Iv denotes the indexes i of data included in (x, z)(v), δ corresponds to the 0-1 cost and
ẑi(θ̂

(v)) denotes the group to which xi is assigned when designing the assignment rule from
the entire data set (x, z) without (x, z)(v). When V = n the cross validation is known as
the leave one out procedure, and, in this case, fast estimation of the n discriminant rules is
implemented in Mixmod in the Gaussian situation (Biernacki and Govaert 1999).

Semi-supervised classification

Two criteria are available in the semi-supervised context (supervised purpose): BIC and CV.
For BIC, the partial labeling log-likelihood (11) has to be used. For CV, split at random
in V blocks of approximately equal sizes the whole data set, including both the labeled and
the unlabeled units, to obtain unbiased estimate of the error rate (Vandewalle et al. 2010).
However, note that the CV criterion is quite expensive to be computed in the semi-supervised
setting since it requires to run an EM algorithm V times to estimate θ̂(v).

2.5. Mixmod library implementation and related packages

The Mixmod library

The Mixmod core library (mixmodLib) is the main product of the Mixmod software package.
Developped since 2001, it has been downloaded from the Mixmod web site http://www.
mixmod.org about 300 per year. Distributed under GNU GPL license, mixmodLib has been
enhanced and improved for years (Biernacki et al. 2006). An important work has been done
to improve performance of the mixmodLib which can today treat very large data sets quickly
with accuracy and robustness. Currently, some arbitrarily large “hard” limits for the sample
size and for the variable number are respectively fixed to 1 000 000 and 10 000. It is possible
to change them but it requires to recompile the source code. The user must also be aware
that to reach these limits in practice will essentially depend on its computing resources.
It contains about 80 C++ classes and can be used in command line or can be interfaced with
any other software or library (in accordance with the terms of the GNU GPL license). Some
of these C++ classes (top level classes) have been created to interface easily mixmodLib.
Clustering can be performed with the top level XEMClusteringMain class (using XEMClus-
teringInput and XEMClusteringOutput classes) and Discriminant Analysis with the XEM-
LearnMain class (using XEMLearnInput and XEMLearnOutput classes) for the first step and
the XEMPredictMain class (using XEMPredcitInput and XEMpredictOutput classes) for the
second step (prediction).

http://www.mixmod.org
http://www.mixmod.org
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The Rmixmod package uses also the Rcpp package (Eddelbuettel and François 2011) which
provides C++ classes that greatly facilitate interfacing C or C++ code in R packages. Since
the Rcpp package works only on R versions 2.15 and above, an up-to-date version of R is
required for smooth installation of the package.

Existing related packages
To provide a suitable product for an increasingly large and various public, the Mixmod team
has developped four products, available at http://www.mixmod.org:

• mixmodLib (developped since 2001), the core library which can be interfaced with any
other sofware and can also be used in command line (for expert users);

• mixmodForMatlab package (developped since 2002), a collection of Matlab functions to
call mixmodLib supplemented by some functions to visualise results;

• mixmodGUI (developped since 2009), a very user friendly software which provides all
the clustering functionnalities of mixmodLib (we plan to make available soon also dis-
criminant analysis functionnalities).

3. Overview of the Rmixmod functions

3.1. Main Rmixmod functions

Unsupervised classification and density estimation
Cluster analysis can be performed with the function mixmodCluster(). Illustration of use of
this function is given in Section 4.1.
This function has two mandatory arguments: A data frame x and a list of number of groups.
Default values for model and strategy will be used unless users specify a list of models with the
models option (see Section 3.2) or a new strategy with the strategy option (see Section 3.3).
By default only the BIC criterion is used to select models, but users can make a list of criteria
by using the criterion option. In Table 3 the reader will find a summary of all the input
parameters of the mixmodCluster() function with its default value if it is not a mandatory
parameter.
The mixmodCluster() function returns an instance of the MixmodCluster class. Its two
attributes will contain all outputs:

• results: A list of MixmodResults object containing all the results sorted in ascending
order according to the given criterion.

• bestResult: A MixmodResults object containing the best model results.

Supervised and semi-supervised classification
Supervised and semi-supervised classification can be performed using the mixmodLearn() and
the mixmodPredict() functions. Both functions are illustrated in Section 4.2.

http://www.mixmod.org
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Input Parameter Description
data Data frame containing quantitative or qualitative data. Rows

correspond to observations and columns correspond to vari-
ables.

nbCluster Numeric. List the number of clusters.
dataType Character. Type of data is either “quantitative” or

“qualitative”. Set as NULL by default, type will be guessed
depending on variables type.

models A Model object defining the list of models to run. For quan-
titative data, the model “Gaussian_pk_Lk_C” is called (see
mixmodGaussianModel() Section 3.2 to specify other mod-
els). For qualitative data, the model “Binary_pk_Ekjh” is
called (see mixmodMultinomialModel() Section 3.2 to spec-
ify other models)

strategy A Strategy object containing the strategy to run. Call
mixmodStrategy() Section 3.3 method by default.

criterion List of characters defining the criterion to select the best
model. The best model is the one with the lowest crite-
rion value. Possible values: “BIC”, “ICL”, “NEC”, c(“BIC”,
“ICL”, “NEC”). Default is “BIC”.

weight Numeric vector with n (number of individuals) rows. weight
is optional. This option is to be used when weights are asso-
ciated to the data.

knownLabels Vector of size n. it will be used for semi-supervised classi-
fication when labels are known. Each cell corresponds to a
cluster affectation.

Table 3: List of all the input parameters of the mixmodCluster() function.

mixmodLearn() function It has two mandatory arguments: A data matrix x and a vec-
tor containing the known labels z. As the mixmodCluster() function the three arguments
models, weight and criterion are available. The default criterion is CV (Cross Validation).
In Table 4 the reader will find a summary of all the input parameters of the mixmodLearn()
function and default value if it is not a mandatory parameter.
The mixmodLearn() function returns an instance of the MixmodLearn class. Its two attributes
will contain all outputs:

• results: A list of MixmodResults object containing all the results sorted in ascending
order according to the given criterion (in descending order for the CV criterion).

• bestResult: A S4 MixmodResults object containing the best model results.

mixmodPredict() function It only needs two arguments: A data matrix of the remaining
observations and a classification rule (see Table 5). It returns an instance of the MixmodPredict
class which contains predicted partitions and probabilities.
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Input Parameter Description
data Data frame containing quantitative or qualitative data. Rows

correspond to observations and columns correspond to vari-
ables.

knownLabels Vector of size number of observations. Each cell corresponds
to a cluster affectation. So the maximum value is the number
of clusters.

dataType Character. Type of data is either “quantitative” or
“qualitative”. Set as NULL by default, type will be guessed
depending on variables type.

models A Model object defining the list of models to run. For quan-
titative data, the model “Gaussian_pk_Lk_C” is called (see
mixmodGaussianModel() Section 3.2, to specify other mod-
els). For qualitative data, the model “Binary_pk_Ekjh” is
called (see mixmodMultinomialModel() Section 3.2, to spec-
ify other models).

criterion List of characters defining the criterion to select the best
model. Possible values: “BIC”, “CV” or c(“CV”, “BIC”).
Default is “CV”.

nbCVBlocks Integer which defines the number of blocks to perform the
cross validation. This value will be ignored if the CV criterion
is not chosen. Default value is 10.

weight Numeric vector with n (number of individuals) rows. weight
is optional. This option is to be used when weights are asso-
ciated to the data.

Table 4: List of all the input parameters of the mixmodLearn() function.

3.2. Companion functions for model definition

Continuous variables: Gaussian models

All the Gaussian models summarized in Table 1 are available in Rmixmod. Users can get all
the 28 models by calling mixmodGaussianModel().

R> all <- mixmodGaussianModel()
R> all

****************************************
*** Mixmod Models:
* list = Gaussian_pk_L_I Gaussian_pk_Lk_I Gaussian_pk_L_B Gaussian_pk_Lk_B

Gaussian_pk_L_Bk Gaussian_pk_Lk_Bk Gaussian_pk_L_C Gaussian_pk_Lk_C
Gaussian_pk_L_D_Ak_D Gaussian_pk_Lk_D_Ak_D Gaussian_pk_L_Dk_A_Dk
Gaussian_pk_Lk_Dk_A_Dk Gaussian_pk_L_Ck Gaussian_pk_Lk_Ck
Gaussian_p_L_I Gaussian_p_Lk_I Gaussian_p_L_B Gaussian_p_Lk_B
Gaussian_p_L_Bk Gaussian_p_Lk_Bk Gaussian_p_L_C Gaussian_p_Lk_C
Gaussian_p_L_D_Ak_D Gaussian_p_Lk_D_Ak_D Gaussian_p_L_Dk_A_Dk
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Input Parameter Description
data Data frame containing quantitative or qualitative data. Rows

correspond to observations and columns correspond to vari-
ables.

classificationRule A MixmodResults object which contains the classification
rule computed in the mixmodLearn() or mixmodCluster()
step.

Table 5: List of the input parameters of the mixmodPredict() function.

Gaussian_p_Lk_Dk_A_Dk Gaussian_p_L_Ck Gaussian_p_Lk_Ck
* This list includes models with free and equal proportions.
****************************************

This function has four parameters to specify some particular models in the family:

• listModels can be used when users want to use specific models;

R> list.models <- mixmodGaussianModel(listModels = c("Gaussian_p_L_C",
+ "Gaussian_p_L_Dk_A_Dk", "Gaussian_pk_Lk_B"))

• free.proportions and equal.proportions can be used to include or not models with
free or equal proportions;

R> only.free.proportions <- mixmodGaussianModel(equal.proportions = FALSE)

• family allows to include models from a specific family ("general", "diagonal", "spherical",
"all").

R> family.models <- mixmodGaussianModel(family = c("general", "spherical"),
+ free.proportions = FALSE)

Categorical variables: Multinomial models

All the multinomial models summarized in Table 2 are available in Rmixmod. Users can get
all the 10 models by calling mixmodMultinomialModel().

R> all <- mixmodMultinomialModel()
R> all

****************************************
*** Mixmod Models :
* list = Binary_pk_E Binary_pk_Ekj Binary_pk_Ekjh Binary_pkEj Binary_pk_Ek

Binary_p_E Binary_p_Ekj Binary_p_Ekjh Binary_p_Ej Binary_p_Ek
* This list includes models with free and equal proportions.
****************************************

This function has five parameters. As mixmodGaussianModel() this function has the following
parameters: listModels, free.proportions and equal.proportions.
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R> only.free.proportions <- mixmodMultinomialModel(equal.proportions = FALSE)
R> list.models <- mixmodMultinomialModel(listModels = c("Binary_p_E",
+ "Binary_p_Ekjh", "Binary_pk_Ekj", "Binary_pk_Ej"))

But users can also use variable.independency and component.independency in order to
include models which are independent of the variable j or independent of the component k.

R> var.independent <- mixmodMultinomialModel(variable.independency = TRUE)
R> var.comp.independent <- mixmodMultinomialModel(
+ variable.independency = TRUE, component.independency = TRUE)

3.3. Companion function for maximum likelihood estimation strategies

The strategies described in Section 2.3 can be tuned using the mixmodStrategy() function.
The mixmodStrategy() function have no mandatory argument and the default arguments
are the ones specified in the mixmod documentation (Mixmod Team 2008). In Table 6 the
reader will find a summary of all the input parameters of the mixmodStrategy() function.
The mixmodStrategy() function returns an instance of the MixmodStrategy class. A default
strategy can be defined in Rmixmod with the mixmodStrategy() function:

R> mixmodStrategy()

****************************************
*** MIXMOD Strategy:
* algorithm = EM
* number of tries = 1
* number of iterations = 200
* epsilon = 0.001
*** Initialization strategy:
* algorithm = smallEM
* number of tries = 50
* number of iterations = 5
* epsilon = 0.001
* seed = NULL
****************************************

Here are other examples to show different ways to set a strategy:

R> strategy1 <- mixmodStrategy(algo = "CEM", initMethod = "random",
+ nbTry = 10, epsilonInInit = 0.000001)
R> strategy2 <- mixmodStrategy(algo = c("SEM", "EM"),
+ nbIterationInAlgo = c(200, 100), epsilonInAlgo = c(NA, 0.0001))

It is well-known that the number of local maxima of the log-likelihood function increases in
conjunction with the number of parameters to be estimated. In such a situation, Rmixmod is
able to avoid these traps by tuning its previous input parameters, in particular by increasing
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Input Parameter Description
algo List of character string with the estimation algorithm. Pos-

sible values: "EM", "SEM", "CEM", c("EM", "SEM"). Default
value: "EM".

nbTry Integer defining the number of tries. nbTrymust be a positive
integer. Default value: 1.

initMethod A character string with the method of initialization of the
algorithm specified in the algo argument. Possible val-
ues: "random", "smallEM", "CEM", "SEMMax". Default value:
"smallEM".

nbTryInInit Integer defining number of tries in initMethod algorithm.
nbTryInInit must be a positive integer. Option available
only if initMethod is "smallEM" or "CEM". Default value:
50.

nbIterationInInit Integer defining the number of "EM" or "SEM" iterations in
initMethod. nbIterationInInit must be a positive inte-
ger. Only available if initMethod is "smallEM" or "SEMMax".
Default values: 5 if initMethod is "smallEM" and 100 if
initMethod is "SEMMax".

nbIterationInAlgo List of integers defining the number of iterations if
nbIteration is used as a stopping rule for the algorithm(s).
Default value: 200.

epsilonInInit Real defining the epsilon value in the initialization step. Only
available if initMethod is "smallEM". Default value: 0.001.

epsilonInAlgo List of reals defining the epsilon value for the algorithm.
Warning: epsilonInAlgo doesn’t have any sense if algo is
"SEM", so it needs to be set as NaN in that case. Default
value: 0.001.

seed Random seed used in the random generator. Default value:
NULL

Table 6: List of all the input parameters of the mixmodStrategy() function.

the value of nbTry. The need for this adjustement is easily detected by the fact that multiple
re-runs of Rmixmod provide unstable results.

However, ability of Rmixmod to provide a good search over the log-likelihood function in-
creases the frequency of spurious solutions in the Gaussian case (see a description in Sec-
tion 2.3.1). Such solutions are then easily manually discarded.

In addition, for some specific reproducibility purposes, note that Rmixmod allows also to
control exactly the random seed by providing the optional seed argument (see Table 6).
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3.4. Other companion functions

Non-graphical functions

The show, the print and the summary methods have been redefined for the Rmixmod
S4 classes Strategy, Model, GaussianParameter, MultinomialParameter, MixmodResults,
MixmodCluster, MixmodLearn and MixmodPredict.
The Rmixmod package provides two other utility functions:

1. nbFactorFromData(): Allow to get the number of levels of each column of a data set;

2. sortbyCriterion(): After calling the mixmodCluster() or mixmodLearn() method,
results will be sorted into ascending order according to the first given criterion (descend-
ing order for CV criterion). This method is able to reorder the list of results according
to a given criterion. The input parameters are

• object: A Mixmod object;
• criterion: A string containing the criterion name.

Most of these functions will be illustrated in Section 4.

Graphical functions

The three methods plot, hist and barplot have been redefined for the Rmixmod S4 classes
MixmodResults. hist and barplot are respectively specific for quantitative and qualitative
data. All functions will be also illustrated in Section 4.

4. Rmixmod through examples

4.1. Unsupervised classification

Continuous variables: Geyser dataset

The outputs and graphs of clustering with Rmixmod are illustrated on the well-known geyser
dataset (Azzalini and Bowman 1990). It is a data frame containing 272 observations from the
Old Faithful Geyser in the Yellowstone National Park taken from the Modern Applied Statis-
tics in S library (Venables and Ripley, 2002). Each observation consists of two measurements:
The duration (in minutes) of the eruption and the waiting time (in minutes) to the next
eruption. In this example we ignore the partition and we want to estimate the best Gaussian
mixture model fitting the data set. The following code provides a way to do it by running
a cluster analysis with a list of clusters (from 2 to 8 clusters), all the Gaussian models, the
BIC, ICL and NEC model selection criteria, and strategy2 defined in Section 3.3:

R> data("geyser")
R> xem.geyser <- mixmodCluster(data = geyser, nbCluster = 2:8,
+ criterion = c("BIC", "ICL", "NEC"), models = mixmodGaussianModel(),
+ strategy = strategy2)
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The xem.geyser variable contains information both on input and ouput of the clustering:

R> xem.geyser

****************************************
*** INPUT:
****************************************
* nbCluster = 2 3 4 5 6 7 8
* criterion = BIC ICL NEC
****************************************
*** MIXMOD Models:
* list = Gaussian_pk_L_I Gaussian_pk_Lk_I Gaussian_pk_L_B Gaussian_pk_Lk_B
Gaussian_pk_L_BkGaussian_pk_Lk_Bk Gaussian_pk_L_C Gaussian_pk_Lk_C
Gaussian_pk_L_D_Ak_D Gaussian_pk_Lk_D_Ak_D Gaussian_pk_L_Dk_A_Dk
Gaussian_pk_Lk_Dk_A_Dk Gaussian_pk_L_Ck Gaussian_pk_Lk_Ck Gaussian_p_L_I
Gaussian_p_Lk_I Gaussian_p_L_B Gaussian_p_Lk_B Gaussian_p_L_Bk Gaussian_p_Lk_Bk
Gaussian_p_L_CGaussian_p_Lk_C Gaussian_p_L_D_Ak_D Gaussian_p_Lk_D_Ak_D
Gaussian_p_L_Dk_A_DkGaussian_p_Lk_Dk_A_Dk Gaussian_p_L_Ck Gaussian_p_Lk_Ck
* This list includes models with free and equal proportions.
****************************************
* data (limited to a 10x10 matrix) =

Duration Waiting.Time
[1,] 3.6 79
[2,] 1.8 54
[3,] 3.333 74
[4,] 2.283 62
[5,] 4.533 85
[6,] 2.883 55
[7,] 4.7 88
[8,] 3.6 85
[9,] 1.95 51
[10,] 4.35 85
* ... ...
****************************************
*** MIXMOD Strategy:
* algorithm = SEM EM
* number of tries = 1
* number of iterations = 200 100
* epsilon = NaN 1e-04
*** Initialization strategy:
* algorithm = smallEM
* number of tries = 50
* number of iterations = 5
* epsilon = 0.001
* seed = NULL
****************************************
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****************************************
*** BEST MODEL OUTPUT:
*** According to the BIC criterion
****************************************
* nbCluster = 3
* model name = Gaussian_p_L_C
* criterion = BIC(2312.5998) ICL(2434.3210) NEC(0.3831)
* likelihood = -1131.0738
****************************************
*** Cluster 1
* proportion = 0.3333
* means = 2.0390 54.5078
* variances = | 0.0795 0.5333 |

| 0.5333 34.2083 |
*** Cluster 2
* proportion = 0.3333
* means = 4.5545 81.0516
* variances = | 0.0795 0.5333 |

| 0.5333 34.2083 |
*** Cluster 3
* proportion = 0.3333
* means = 3.9750 78.7151
* variances = | 0.0795 0.5333 |

| 0.5333 34.2083 |
****************************************

A summary of the previous information can also be obtained:

R > summary(xem.geyser)

**************************************************************
* Number of samples = 272
* Problem dimension = 2
**************************************************************
* Number of cluster = 3
* Model Type = Gaussian_p_L_C
* Criterion = BIC(2312.5998) ICL(2434.3210) NEC(0.3831)
* Parameters = list by cluster
* Cluster 1 :

Proportion = 0.3333
Means = 2.0390 54.5078

Variances = | 0.0795 0.5333 |
| 0.5333 34.2083 |

* Cluster 2 :
Proportion = 0.3333

Means = 4.5545 81.0516
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Variances = | 0.0795 0.5333 |
| 0.5333 34.2083 |

* Cluster 3 :
Proportion = 0.3333

Means = 3.9750 78.7151
Variances = | 0.0795 0.5333 |

| 0.5333 34.2083 |
* Log-likelihood = -1131.0738
**************************************************************

The plot() function has been redefined to get on the same graph:

• On diagonal: A 1D representation with densities and data;

• On lower triangular: A 2D representation with isodensities, data points and partition.

The output of plot(xem.geyser) is displayed in Figure 1.

Figure 1: Output displayed by the plot() function for the geyser dataset.

By default, all models of the xem.geyser@results variable are sorted by the BIC criterion.
Alternatively, it is easy to sort this list of models according to the ICL criterion value with
the sortByCriterion() function. Then, by looking at the best result, we can see that ICL
criterion selects two clusters (contrary to BIC which selects three clusters):
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R> icl <- sortByCriterion(xem.geyser, "ICL")
R> icl["bestResult"]

* nbCluster = 2
* model name = Gaussian_pk_Lk_D_Ak_D
* criterion = BIC(2320.2833) ICL(2321.3701) NEC(0.0034)
* likelihood = -1132.1126
****************************************
*** Cluster 1
* proportion = 0.3568
* means = 2.0387 54.5040
* variances = | 0.0783 0.6467 |

| 0.6467 33.8916 |
*** Cluster 2
* proportion = 0.6432
* means = 4.2915 79.9892
* variances = | 0.1588 0.6810 |

| 0.6810 35.7675 |
****************************************

A list with all results is also available, this list being sorted by criterion values:

R> xem.geyser["results"]
R> icl["results"]

Categorical variables: Birds of different subspecies

birds data set (Bretagnolle 2007) provides details on the morphology of birds (puffins). Each
bird is described by five qualitative variables: One variable for the gender and four variables
giving a morphological description of the birds. There are 69 puffins divided in two sub-
classes: lherminieri and subalaris (34 and 35 individuals respectively). Here we run a cluster
analysis of birds with 2 clusters:

R> data("birds")
R> xem.birds <- mixmodCluster(birds, 2)

The plot() function has been redefined in the qualitative case: A multiple correspondance
analysis is performed to get a 2-dimensional representation of the data set and a bigger
symbol is used when observations are similar. The output of plot(xem.birds) is displayed
in Figure 2(a).
The barplot() function has also been redefined. For each qualitative variable, we have:

• A barplot with the frequencies of the modalities;

• For each cluster a barplot with the probabilities for each modality to be in that cluster.

The output of barplot(xem.birds) is displayed in Figure 2(b).
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(a) (b)

Figure 2: Output displayed (a) by the plot() function and (b) by the barplot() function
for the birds dataset.

4.2. Supervised classification

The following example concerns quantitative data. But, obviously, discriminant analysis also
works with qualitative datasets in Rmixmod.
The outputs and graphs of discriminant analysis with Rmixmod are illustrated through pre-
diction of the company’s ability to cover its financial obligations (Du Jardin and Séverin 2010;
Lourme and Biernacki 2011). It is an important question that requires a strong knowledge
of the mechanism leading to bankruptcy. The original first sample (year 2002) is made up of
216 healthy firms and 212 bankruptcy firms. The second sample (year 2003) is made up of
241 healthy firms and 220 bankruptcy firms. Four financial ratios expected to provide some
meaningful information about the company’s health are considered: EBITDA/Total Assets,
Value Added/Total Sales, Quick Ratio, Accounts Payable/Total Sales.

First step: Learning

After spliting data into years 2002 and 2003, we learn the discriminant rule on year 2002 then
we have a look at the best result:

R> data("finance")
R> ratios2002 <- finance[finance["Year"] == 2002, 3:6]
R> health2002 <- finance[finance["Year"] == 2002, 2]
R> ratios2003 <- finance[finance["Year"] == 2003, 3:6]
R> health2003 <- finance[finance["Year"] == 2003, 2]
R> learn <- mixmodLearn(ratios2002, health2002)
R> learn["bestResult"]

* nbCluster = 2
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* model name = Gaussian_pk_Lk_C
* criterion = CV(0.8201)
* likelihood = 444.9579
****************************************
*** Cluster 1
* proportion = 0.4953
* means = -0.0386 0.2069 0.6089 0.1774
* variances = | 0.0226 0.0064 0.0186 -0.0023 |

| 0.0064 0.0166 0.0076 -0.0006 |
| 0.0186 0.0076 0.2728 -0.0095 |
| -0.0023 -0.0006 -0.0095 0.0079 |

*** Cluster 2
* proportion = 0.5047
* means = 0.1662 0.2749 1.0661 0.1079
* variances = | 0.0172 0.0049 0.0142 -0.0017 |

| 0.0049 0.0126 0.0058 -0.0005 |
| 0.0142 0.0058 0.2076 -0.0073 |
| -0.0017 -0.0005 -0.0073 0.0060 |

****************************************
* Classification with CV:

| Cluster 1 | Cluster 2 |
----------- ----------- -----------
Cluster 1 | 167 | 32 |
Cluster 2 | 45 | 184 |
----------- ----------- -----------
* Error rate with CV = 17.99 %

* Classification with MAP:
| Cluster 1 | Cluster 2 |

----------- ----------- -----------
Cluster 1 | 212 | 0 |
Cluster 2 | 0 | 216 |
----------- ----------- -----------
* Error rate with MAP = 0.00 %
****************************************

We call now the plot() function to a get a visualisation of the best result. The output
of plot(learn) is displayed in Figure 3. It is also allowed to specify a subset of vari-
ables to be combined on the figure; For instance the command line plot(learn,c(1,3))
would display only variables 1 and 3. Equivalently, names of variables 1 and 3 could be
used: plot(learn,c("EBITDA.Total.Assets","Quick.Ratio")). This functionality could
be particularly useful when many variables are available.

Second step: Prediction

We perform predictions on year 2003, then we get a summary (note that [...] indicates
that output has been truncated) and finally we compare predictions of health 2003 with the
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Figure 3: Output displayed by the plot() function for the finance dataset.

true health 2003 (75.7% of good classification):

R> prediction <- mixmodPredict(data = ratios2003,
+ classificationRule = learn["bestResult"])
R> summary(prediction)

**************************************************************
* partition = 2 1 1 1 [...] 1 2
* probabilities = | 0.4966 0.5034 |

| 0.8125 0.1875 |
| 0.8851 0.1149 |
| 0.8329 0.1671 |

[...]
| 0.5626 0.4374 |
| 0.0308 0.9692 |

**************************************************************

R> mean(as.integer(health2003) == prediction["partition"])

[1] 0.7570499

5. Further works
The Rmixmod package interfaces almost every functionality of the Mixmod library. Some
particular initializations strategies and models to deal with high-dimensional data have not



26 Rmixmod: The R Package of the Mixmod Library

been implemented in the package. But initialization strategies of most interest are available
in Rmixmod and the package HDclassif (Bergé et al. 2012) has been recently released to the
clustering and the discriminant analysis of high-dimensional data.
We have proposed some tools to visualize outcomes but data visualization in Rmixmod can be
enhanced. In addition, supervised and semi-supervised classification currently implemented
could be greatly improved by including a variable selection procedure for instance (see Maugis
et al. 2011). Moreover, we encourage users to contribute by suggesting new graphics or other
utility functions.
The Mixmod project is currently implementing some other recent advances in model-based
clustering in order to provide associated efficient R packages. It concerns for instance co-
clustering (partioning simultaneaously rows and colums of a dataset) and clustering of mixed
data (dealing with quantitative and qualitative data in the same exercise). The next versions
of Rmixmod will include these latter functionalities.
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