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Abstract

Many biological oscillators have a cyclic structure consisting of nega-
tive feedback loops. In this paper, we analyze the impact that the addi-
tion of a positive or a negative self-feedback loop has on the oscillatory
behaviour of the three negative feedback oscillators proposed by Tsai et
al (Science 231:126-129, 2008) where, in contast with numerous oscillator
models, the interactions between elements occur via the modulation of
the degradation rates. Through analytical and computational studies we
show that an additional self-feedback affects the dynamical behaviour. In
the high cooperativity limit, i.e. for large Hill coefficients, we derive exact
analytical conditions for oscillations and show that the relative location
between the dissociation constants of the Hill functions and the ratio of
kinetic parameters determines the possibility of oscillatory activities. We
compute analytically the probability of oscillations for the three models
and show that the smallest domain of periodic behaviour is obtained for
the negative-plus-negative feedback system whereas the additional posi-
tive self-feedback loop does not modify significantly the chance to oscillate.
We numerically investigate to what extent the properties obtained in the
sharp situation applied in the smooth case. Results suggest that a switch-
like coupling behaviour, a time-scale separation and a repressilator-type
architecture with an even number of elements facilitate the emergence
of sustained oscillations in biological systems. An additional positive self-
feedback loop produces robustness and adaptability whereas an additional
negative self-feedback loop reduces the chance to oscillate.

Keywords : Oscillation - Feedback - Limit cycle - Repressilator - Helmholtz
decomposition

∗To the memory of José Manuel Zald́ıvar Comenges.

1



1 Introduction

Connected networks arising in systems biology show a wide variety of dynamical
behaviours, oscillations being a recurrent motif. Oscillations frequently occur
in the regulation of biological systems and play a fundamental role in numer-
ous physiological processes as the hormone secretion (Walker et al. (2012)),
the cardiac electrical activity (Keener and Sneyd (1998)), the circadian rhythm
(Goldbeter (2002)) or in pharmacodynamics (Dokoumetzidis et al. (2001)), to
mention a few. Therefore, an important topic in mathematical biology has been
the study of necessary conditions for a system to show and maintain oscillations
in a fluctuating environment such as the interior of a cell (Weber et al. (2011);
Mincheva (2011); Tsai et al. (2008); Ferrell et al. (2011) and references therein).
Determining the oscillatory regimes of a system described by a set of coupled
nonlinear differential equations is well recognized as a very difficult problem
and finding conditions on a system’s parameters for which a limit cycle exists
is revealed to be a major challenge. This issue has been extensively tackled
through numerical simulations and analytical approaches. Algebraic criteria for
biochemical reaction networks described with mass action law kinetics have been
derived (Mincheva and Roussel (2007); Boulier et al. (2007)). Generalized mass
action kinetics and nonmass action kinetics, such as Michaelis-Menten and Hill
kinetics, have been studied in (Mincheva (2011)) and (Mincheva and Cracium
(2008)), respectively. These approaches are based on the existence of a super-
critical Andronov-Hopf bifurcation (Kuznetsov (2004)) and provide a restricted
set of parameters for which small oscillations exist (Tyson (1975)). However the
absence of Hopf bifurcations cannot preclude the existence of a limit cycle that
could appear through another bifurcation. Necessary conditions for oscillations
based on a generalized version of the Bendixon-Dulac criterion have been de-
rived and applied to polynomial vector fields (Weber et al. (2011)).
Sustained oscillations most often result from the interaction of different com-
ponents forming complex networks. It has been suggested that the dynamical
properties of the system could be understood in terms of network connectiv-
ity considering the so-called interaction graph (Thomas (1981); Kaufman et al.
(2007); Mincheva (2011); Domijan and Pécou (2012); Purcell et al. (2010)). A
hallmark of robust oscillations is the existence of inhibitory feedback loops de-
spite the fact that the existence of a negative feedback circuit is not necessary
(Richard and Comet (2011)) 1. Negative feedbacks are frequently embedded in
a cyclic architecture (Fraser and Tiwari (1974); Hastings et al. (1977); Smith
(1987); Mallet-Paret and Smith (1990); Goldbeter (1991); Elkhader (1992);
Müller et al. (2006)) that is believed to be the underlying circuit responsible
for the emergence of oscillations in networks. The cyclic nature of interactions
appears in the description of cascades of enzimatic reactions coupled with gene
transcription (see references in (Hastings et al. (1977))), in cellular control sys-
tems or in neural systems where the term ’ring’ is used (see various exemples

1The local interaction graph of an oscillatory system does not have necessarily a negative
circuit. However the global interaction graph must have a negative circuit of length at least
two.
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and references in section 4 of (Mallet-Paret and Smith (1990))). The repressila-
tor, a well-known synthetic genetic regulatory network, uses a cyclic repression
architecture (Elowitz and Leibler (2000); Müller et al. (2006)). For this class of
models, many results can be found in the literature. A proof of the existence
of large amplitude oscillations for a three dimensional cyclic negative feedback
system with one nonlinearity dates back to Tyson (1975). The proof is based
on the construction of an invariant torus and the use of a fixed point theorem.
Hastings (1977) has shown a similar result replacing the sigmoidal response by
a step function and has provided results on the unicity and stability of the limit
cycle. A general nonlinearity has been tackled by Smith (1986). The extension
to an arbitrary dimension and to a general class of nonlinearities has been per-
formed by Hastings et al. (1977). Moreover it has been observed (Fraser and
Tiwari (1974)) and proved (Smith (1987)) that a qualitative difference occurs
in the dynamics of negative cyclic systems between an odd number and an even
number of nodes in the cycle. A significant insight has been accomplished by
Mallet-Paret and Smith (1990): they have shown that monotone cyclic feedback
systems can be embedded in R2 and, therefore, the possible dynamics of the
network are severely constrained. Common characteristics of global attractors
for generic cyclic feedback systems have been described by Gedeon and Mis-
chaikow (1995) and Gedeon (1998).
Even though negative feedback loops are enough to generate oscillations (Gold-
beter (1991); Griffith (1968); Elowitz and Leibler (2000); Hirata et al. (2002);
Tsai et al. (2008)), many biological oscillators have also positive feedback loops
(Harris and Levine (2005); Hornung and Barkai (2008); Angeli et al. (2004);
Guantes and Poyatos (2006)) raising the question of the functional role of these
extra loops. It has been shown that the regulation of cell cycle is based on a
combination of positive and negative feedback loops (Goldbeter (2002)). Ge-
netic oscillators are frequently modeled by a two-component system of repressor-
activator type (see for instance Guantes and Poyatos (2006)). There is an exten-
sive literature on the coupling of positive and negative feedback loops generat-
ing p53 oscillations (Ciliberto et al. (2005); Harris and Levine (2005)). Several
explanations have been proposed to justify the existence of positive loops in
biological systems. A conjecture by Thomas (Thomas (1981)) demonstrated in
(Snoussi (1998); Gouzé (1998); Plahte et al. (1995); Cinquin and Demongeot
(2002)) states that the presence of a positive feedback loop is a necessary con-
dition for biological systems being able to possess multiple steady states. In
particular a bistable behavior can be obtained inducing a switch-like response
(Angeli et al. (2004); Cherry and Adler (2000)). Tsai et al. (2008) argued
that the existence of a positive feedback loop makes oscillatory systems easy to
tune and more robust (see also (Stricker et al. (2008))). This is an important
characteristic that living systems should possess when exposed to a changing
environment (Stricker et al. (2008)). Moreover it is believed that positive con-
trol elements might improve the reliability of the oscillations and induce high
noise-resistance (Elowitz and Leibler (2000)). Positive feedback loops allow
the stabilization of active steady states (López-Caamal et al. (2013)) whereas
positive-plus-negative feedback loops are thought to be involved in the balance
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between noise buffering and signaling sensitivity (Hornung and Barkai (2008)).
The study of the network architecture and its relation with the dynamical be-
haviour has attracted a lot of attention but the geometrical properties of the
vector field generating the flow of the system have been poorly explored. A first
attempt in this direction has been carried out by Demongeot et al. (2007a,b).
They shown that a close link exists between sustained oscillations and the exis-
tence of a potential-Hamiltonian decomposition of the vector field. For Liénard
polynomial system, the Hamiltonian part of the decomposition provides an ac-
curate approximation of the limit cycle. However the link with the interaction
graph of the system and the applicability of the method to a dimension greater
than two have not been addressed. There is a need to fill the gap between os-
cillations, interaction graph and vector-field properties.
In this paper, we study the cyclic inhibitory feedback systems considered by
Tsai et al. (2008) where the symmetry of the cycle can be broken by an addi-
tional negative or positive self-feedback loop. In Sect. 2 we present the models.
In Sect. 3.1 we discuss the nature of the interactions and in Sect. 3.2 we exhibit
a vector-field decomposition of the 3D system. Fixed points are studied in Sect.
3.3 and a qualitative description of oscillations in terms of slow-fast dynamics
is provided (Sect. 3.4). In the idealized case of step-like coupling, we derive
exact conditions for the existence of oscillations and we describe analytically
the ranges of model parameter where stable limit cycles can be found (Sect.
3.5). Numerical simulations in the smooth-coupling case are performed in Sect.
3.6. We generalize some results to large cyclic repression systems in Sect. 3.7
and we conclude by a discussion (Sect. 4).

2 Models

The dynamics that controls the synthesis and degradation of molecules is an
elaborate process supported by a complex circuitry forming positive and nega-
tive feedback loops. All the feedbacks are not active at the same time and it
is thought that only small size circuits are involved in the modulation of the
molecule concentration at a given period of its life (Harris and Levine (2005)).
In this context, simple oscillators have been used as minimal models to unravel
the complexity of network dynamics (Ferrell et al. (2011); Purcell et al. (2010)).
Among them cyclic three-component oscillators have attracted a lot of atten-
tion (Hastings (1977); Goldbeter (1991); Ferrell et al. (2011)). In this paper
the oscillator models formulated in (Tsai et al. (2008)) are considered (see also
(Angeli et al. (2004)) and (Ferrell et al. (2011))): each oscillator is modeled by
a dynamical system of three variables where the temporal evolution is driven by
a linear term plus a Hill-type coupling term. The first oscillator model, referred
to as the negative feedback-only oscillator (the No-oscillator in the sequel) is
described by a set of three coupled non linear differential equations

dA

dt
= k1(1 − A) − k2AS1(C), (1)
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dB

dt
= k3(1 − B) − k4BS2(A),

dC

dt
= k5(1 − C) − k6CS3(B).

Variables, A, B and C, represent a concentration of a molecule or a chemical
species; a gene, a protein or a metabolite. Parameters (ki)i=1,...,6 > 0 are rate
constants and (Si)i=1,2,3 are the Hill functions

Si(x) =
xni

Kni

i + xni

, (2)

where ni > 0 are Hill coefficients and Ki > 0 are the median effective con-
centration values of the Hill functions (i.e. the half-maximal concentrations).
Parameters Ki are also referred to as the microscopic dissociation constants or
saturation constants, or when Hill functions have a sharp transition, as thresh-
olds or switching values. Without cooperative binding, i.e. for ni = 1, the
interactions follow the Michaelis-Menten kinetic model, Ki being the Michaelis
constant.
Two other oscillators have been introduced: the negative-plus-negative oscilla-
tor (NN-oscillator in the sequel) and the positive-plus-negative oscillator (PN-
oscillator in the sequel). These oscillators have an additional self-feedback loop
on the A-component of the No-oscillator. For the NN-oscillator, equation (1)
becomes

dA

dt
= k1(1 − A) − k2AS1(C) − k7AS4(A), (3)

and for the PN-oscillator a positive feedback is introduced

dA

dt
= k1(1 − A) − k2AS1(C) + k7(1 − A)S4(A). (4)

where S4 is given by (2). The No-oscillator belongs to the class of repressilator-
type models (Elowitz and Leibler (2000)) that are characterized by the cyclic
inhibitory connection of elements (proteins that cyclically repress the synthesis
of another). The presence of a positive self-feedback loop for the PN-oscillator is
a characteristic feature of amplified negative feedback oscillators (Purcell et al.
(2010)) where one species amplifies its own production.
The system is endowed with properties frequently encountered in regulatory
systems. The internal dynamics of each molecule is described by a linear term
that combines a constant (normalized) production with a degradation term (or
dilution) using a constant relaxation time τi = 1/ki. The couplings between
components are monotone (a positive influence remains positive at all concen-
trations 2, and vice versa) and are described by standard Hill’s equations mul-
tiplied by the concentration of the associated molecule. It is worth noting that
the coupling term can be rewritten as a modulation of the degradation rates

2Except for the PN-oscillator (see Sect. 3.1)
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unlike many regulatory models where the coupling acts on the synthesis term
(we will discuss this point latter, section 3.5.2). A schematic view of the oscil-
lators is provided in Fig. 1.
Due to the Bendixson’s and Dulac’s criteria, it is well known that the two com-

NN − PN

A

BC

PN

Figure 1: Schematic view of the oscillator models. The additionnal loops of
the negative-plus-negative oscillator (labelled NN) and positive-plus-negative
oscillator (labelled PN) are represented in dotted lines.

ponents version of the No-oscillator and NN-oscillator are not able to generate
oscillations and a minimal oscillator with negative interactions only has at least
three components. The three-node architecture proposed for the No-oscillator
model appears as a recurrent network motif in many different independent bi-
ological contexts (Pigolotti et al. (2007)). It has been widely used as a generic
and realistic minimal model responsible for the oscillatory behaviour observed in
complex networks ( Goldbeter (1991); Ferrell et al. (2011); Boulier et al. (2007);
Pigolotti et al. (2007)). The ring architecture made of successive negative inter-
actions is a common motif in regulatory networks or signaling systems (Angeli
et al. (2004); Pigolotti et al. (2007)).
Recently, a similar model of repressilator-type has been studied by Buse et al.
(2009, 2010). It has been shown that if the negative feedback is sufficiently
strong and if the sigmoidal interaction is sufficiently stiff then the system oscil-
lates. For the models studied here, it has been numerically observed by Tsai
et al. (2008) that the three oscillator models exhibit oscillations and that os-
cillatory regimes are more easily obtained in the positive-plus-negative type
oscillator whereas oscillations are limited by the negative self-feedback loop.

3 Results

3.1 The nature of interactions

The positive or negative nature of a loop is determined by the sign of the partial
derivative of the functions involved in the loop and is commonly represented by
an interaction graph. The sign of the (i, j) component of the Jacobian matrix
(see Appendix A), i.e. ∂fi/∂xj , defines the nature of the connection from j
to i and the product of the signs of the components defining the loop gives the
nature of the feedback loop. In Tsai et al. (2008) another convention seems to
be used since the sign of the scalar term describing the feedback in the equations
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determines the nature of the interaction. For the oscillators studied here the
two definitions coincide except for the nature of the self-feedback loop of the
PN-oscillator. The positive interaction term (1 − A)S4(A) in the PN-oscillator
equation has a positive derivative on (0, A∗) and a negative derivative on (A∗, 1)
where A∗ is the unique solution of xn4+1 + (1 + n4)K

n4

4 x−n4K
n4

4 = 0. Adding
the linear term k1(1−A) the nature of the self-interaction remains variable and
can become negative in particular when k1 is sufficiently large. In the limit of
large n4 values, it is easy to show that the maximum of the derivative of the
interaction term (1 − A)S4(A) is reached for A = K4 (when K4 < 1) and the
feedback is non-negative if and only if

k1

k7
<

n4

4

(

1

K4
− 1

)

−
1

2

to a leading order in 1/n4. To sum up, the interactions between molecules induce
a negative coupling. In addition, each molecule has a negative self-feedback
loop describing the degradation but it is common to ignore it in the interaction
graph (Fig. 1). The additional loop of the NN-oscillator does not change the
nature of the self-feedback loop whereas for the PN-oscillator the nature of
the loop becomes variable: it is negative when the degradation dominates and
positive when amplification dominates. By abuse of language the PN-oscillator
is referred to as an amplified negative feedback oscillator.
The oscillator models previously introduced can be generalized and written in
an abstract form as

dxi

dt
= fi(xi, xi−1), i = 1, 2, . . . , n

where we set x0 = xn with n the number of species involved in the cycle. For
the negative feedback-only model we have:

fi(xi, xi−1) = k2i−1(1 − xi) − k2ixiSi(xi−1), i = 1, 2, . . . , n.

For the NN-model and PN-model an additional loop, that depends on x1 only,
is included in the definition of f1 (see eq. (3) and eq. (4) , respectively). It can
be checked easely that D =]0, 1[n is positively invariant. Moreover we have

∂fi(xi, xi−1)

∂xi−1
= −k2ixiS

′

i(xi−1) < 0, ∀x ∈ D and 1 ≤ i ≤ n

and therefore the different oscillators belong to the class of monotone cyclic
feedback systems (Mallet-Paret and Smith (1990)). It is worth noting that the
models considered here do not satisfy the properties of the systems presented in
(Hastings et al. (1977)) and in (Smith (1987)) and therefore previous theorems
on limit cycle existence do not apply here.
If we define ui such that xi = eui , then the cyclic feedback system can be
rewritten in a more standard decoupled form as

dui

dt
= ai(ui) − bi(ui−1), i = 1, 2, . . . , n

where ai(x) = k2i−1(e
−x − 1) and bi(x) = k2iSi(e

x).
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3.2 Helmholtz decomposition, energy dissipation and di-

vergence

Oscillations in biological systems have been widely analyzed via the associated
interaction graph but the geometrical properties of the system have been poorly
addressed. One can expect that the structure of the vector field provides an
intuitive understanding of the dynamics and gives some key elements to figure
out the appearance of stable periodicity.

Let us define S
[1]
k (x) =

∫ x

0
Sk(u)du and S

[2]
k (x) =

∫ x

0
S

[1]
k (u)du. Both integrals

can be analytically expressed with the generalized hypergeometric functions

pFq(a1, . . . , ap; b1, . . . , bq; x) as

S
[1]
k (x) = x

(

1 −2 F1(1, 1/nk; 1 + 1/nk;−(x/Kk)nk)
)

, (5)

S
[2]
k (x) = x

(

1 −3 F2(1, 1/nk, 2/nk; 1 + 2/nk, 1 + 1/nk;−(x/Kk)nk)
)

. (6)

Let Fi be the vector field of oscillator i where i ∈ {No, NN, PN} stands for
one of the three different oscillators. The oscillators share a similar Helmholtz
decomposition of their vector field

Fi = −∇φi + ∇× G (7)

where φi is a scalar potential defining the conservative part of the vector field.
The vector potential G is identical for all oscillators and is given by

G(A, B, C) =







k6CS
[1]
3 (B)

k2AS
[1]
1 (C)

k4BS
[1]
2 (A)






.

The scalar potential φi can be decomposed as φi = φ+ φ̃i where φ is a potential
common to all oscillators given by

φ(A, B, C) =
k1

2
(1 − A)2 + k4S

[2]
2 (A) +

k3

2
(1 − B)2 + k6S

[2]
3 (B) + . . .

+
k5

2
(1 − C)2 + k2S

[2]
1 (C). (8)

φ̃i is an oscillator-dependent potential induced by the self-feedback loop and is
given by

φ̃No(A) = 0,

φ̃NN (A) = k7AS
[1]
4 (A) − k7S

[2]
4 (A),

φ̃PN (A) = k7(A − 1)S
[1]
4 (A) − k7S

[2]
4 (A).

The vector field of each oscillator is the sum of a curl-free vector field, defined
by φi, and a divergence-free vector field, defined by G. The divergence-free
part defines the circulation density (source free) of the oscillators and remains
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the same in the three versions of the oscillators. The curl-free part defines
the source density and reflects the difference between each oscillator induced by
the additional self-feedback. The modification of the source density term can be
measured directly by the divergence of the vector field. Physically the divergence
measures to which extent the flow generated by the vector field behaves as a
source or a sink. The divergence describes the rate of change of an infinitesimal
state space volume V (t) following the flow defined by F and we have div(F (x)) =
V̇ (t)/V (t). In conservative systems there is no change of the total energy and
therefore the state space volume is constant and divF = 0. In non-conservative
systems, if divF > 0 the volume V (t) increases and the vector field flow behaves
like a source, whereas if divF < 0 then V (t) decreases and the vector field flow
behaves as a sink. We have

divFi = −∆φi,

and we calculate for the No-oscillator

divFNo = −k1 − k3 − k5 − k2S1(C) − k4S2(A) − k6S3(B) (9)

which is negative. For the NN-oscillator, we get

divFNN = divFNo − k7S4(A) − k7AS′

4(A) (10)

which is still negative. For the PN-oscillator, we obtain

divFPN = divFNo − k7S4(A) + k7(1 − A)S′

4(A) (11)

which has k7(1 − A)S′

4(A) as a positive term in the divergence traducing the
existence of a positive self-feedback. It is easy to show that the sum of the two
terms adding divFNo in the right hand side of (11) is positive when A ∈ (0, A∗)
where 0 < A∗ < 1 is the unique solution of n4K

n4

4 − (n4 + 1)Kn4

4 x − xn4 = 0.
It is worth noting that the existence of an Helmhotz decomposition is not insured
by the Helmholtz-Hodge theorem which applies for a decaying vector field that
vanishes at infinity. Here, the system lies on a bounded space (the cube [0, 1]3)
where the decomposition is not unique. It is easy to check that φ = k1A+k2B+
k3C and G = 0.5(k2C − k3B, k3A − k1C, k1B − k2A)t satisfy ∇φ = ∇× G.

3.3 Steady states

Without interactions between molecules, i.e. k2 = k4 = k6 = k7 = 0, the
oscillators have (A, B, C) = (1, 1, 1) as a globally attractive steady state. The
negative coupling modifies the nature of the resting state and qualitatively the
new fixed points result from a balance between an attraction towards (1, 1, 1)
driven by the internal dynamics and an attraction towards (0, 0, 0) generated by
the inhibitory connection. If a static balance can not be reached, a dynamical
state induced by the negative interactions emerges with possibly the birth of
oscillations.
Steady states are points in the state space where the curl-free component equals
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the divergence-free component of the vector field. For oscillator i, the steady
state X0 = (A0, B0, C0) satisfies

∇φi(X0) = ∇× G(X0).

For the No-oscillator we obtain

A0 = (1 + r2,1S1(C0))
−1,

B0 = (1 + r4,3S2(A0))
−1,

C0 = (1 + r6,5S3(B0))
−1,

where rp,q is the ratio of rate constants kp/kq. The functions fk : x → 1/(1 +
rkSk(x))) (where rk = r2k,2k−1) are decreasing and thus

A0 = f1(f3(f2(A0))) (12)

has at most one solution. Since f1(f3(f2(0))) > 0 and f1(f3(f2(x))) − x < 0
for sufficiently large x, equation (12) has exactly one solution. The stability is
given by the eigenvalues of the jacobian matrix. For the NN-oscillator, using
similar arguments one can show that there is exactly one steady state. However
for the PN-oscillator several steady states can coexist as shown in Fig. 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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0.8

1

 

 

Negative only

Negative−Negative

Positive−Negative

A

0.13 0.16 0.19
0.1
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0.3

0.4

 

 

Figure 2: Determination of the A-component of the steady states as the crossing
point between the curves and the straight line y = A, for the different oscillators.
For the negative feedback-only oscillator and the negative-plus-negative oscilla-
tor there exists one fixed point. For the positive-plus-negative oscillator, several
steady states can coexist. The inset shows a zoom on the corresponding region.
Parameters are r2,1 = r4,3 = r6,5 = 10, r7,1 = 100, K1 = K2 = K4 = 0.2,
K3 = 0.25 and n1 = n2 = n3 = n4 = 3.

It is worth noting that the No-oscillator is invariant under the circulating per-
mutation

k1 → k3 → k5 → k1,
k2 → k4 → k6 → k2,
K1 → K2 → K3 → K1,
n1 → n2 → n3 → n1.

10



The symmetry is broken by the additional self-feedback loop and thus, in com-
parison with the No-oscillator, the possible oscillator birth or oscillator death
obtained for the NN-oscillator or the PN-oscillator is induced by symmetry
breaking.

3.4 The fast-slow repressilator

A qualitative understanding of the emergence of oscillations is provided by a
fast-slow timescale analysis of the negative feedback oscillators. Let us con-
sider the No-oscillator where we assume that the rate constants k1, k3 and k5

are small, i.e. k1, k3, k5 ∼ ǫ where ǫ ≪ 1. If the sigmoidal interactions are
sufficiently sharp, thus starting from an underthreshold initial condition (i.e.
each sigmoidal function Si is inactivated), the system evolves following the slow
dynamics

dA

dt
= k1(1 − A),

dB

dt
= k3(1 − B),

dC

dt
= k5(1 − C),

that continues as long as the concentrations of the different molecules are below
their associated thresholds, i.e. A < K2, B < K3 and C < K1. When one
species reaches its threshold, the corresponding interaction is activated. De-
pending on the relative location of K1, K2, K3 and the relative strength of the
rate constants k1, k3 and k5, different oscillatory patterns can be obtained. Let
us assume that C reaches its threshold K1 first. At that time, noted t0, the
concentration of molecule A follows the fast dynamic

dA

dt
= −k2AS1(C)

and quickly tends towards 0. We enter a regime where A(t) ≪ 1 and B, C
slowly tend towards 1. Let t1 be the time at which B(t1) = K3. At that time,
C tends towards 0 following a fast dynamics whereas A enters a slow recovery
process towards 1 while B continues to increase towards 1. At a time noted t2,
A reaches its threshold and subsequently B is reset to 0 whereas C starts its
recovery process that will define a time t3 such that C(t3) = K1. These different
regimes repeat indefinitely giving rise to an oscillatory activity characterized by
the successive resetting of variables A, B and C (fast trajectory towards 0)
following by recovery processes towards 1 (see Fig. 3). It should be noted
that the fast-slow repressilator presented here has a fast repressor dynamics
in contrast with many synthetic oscillators where the activation is fast and
repression is slow (Purcell et al. (2010)).
From the previous discussion, it is easy to show that a necessary and sufficient
condition to have a periodic switch between the fast and the slow regimes is

11
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Figure 3: Oscillatory activity of the fast-slow negative feedback-only oscillator
as a function of time. Parameters are k1 = k3 = k5 = 0.01, k2 = 30, k4 = 10
and k6 = 10. The threshold values are K1 = 0.6, K2 = 0.8 and K3 = 0.9. The
Hill coefficients are n1 = n2 = n3 = 100.

Ki < 1, i = 1, 2, 3. The analysis is valid in the limit of a sharp sigmoid, i.e.
ni ≫ 1, and we will show in the next section that this condition prevents the
occurence of fixed points that would lead to oscillator death.

3.5 The high cooperativity limit

The Hill functions describe the cooperative dynamics of macromolecules. In-
teractions of Hill type are modeled by sigmoidal functions where the slope of
the curve near the median effective concentration is governed by the Hill coeffi-
cient. When the Hill coefficient is large (ni ≫ 1), a situation that we refer to as
the high cooperativity limit, the transition around Ki is sharp and the sigmoid
behaves as an Heaviside-step function generating a switch-like interaction. The
functions Si, eq. (2), become

Si(x) = Θ(x − Ki)

where Θ is the Heaviside step function and parameter Ki plays the role of a
threshold. The idealization of nonlinear functions by an Heaviside step function
to address oscillations dates back to McKean (1970) and Hastings (1977). It
has been long-past observed that many biological interactions exhibit a switch-
like behaviour and threshold-dominated systems have attracted a widespread
interest (see references in (Mestl et al. (1995a))). The resulting piecewise linear
systems have been proposed as a modelling framework in biology allowing ef-
ficient simulations while being analytically tractable. Piecewise linear systems
have been introduced for the study of regulatory networks (Glass and Kaufman
(1973); Mestl et al. (1995a); Gouzé and Sari (2003)) and have been successfully
applied to the qualitative simulation of genetic networks (de Jong et al. (2003)).
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Earlier results on the possible oscillatory regimes have been obtained by Glass
and Pasternack (1978a) and greatly extended by Snoussi (1989), Farcot and
Gouzé (2010) and Lu and Edwards (2010).
For the piecewise linear version of the oscillators studied here, it is possible to
derive analytical conditions for the existence of oscillations. Let us define the
following critical values

K∗

1 =
k5

k5 + k6
, K∗

2 =
k1

k1 + k2
, K∗

3 =
k3

k3 + k4
.

For the NN-oscillator, we define the two additional critical values

K∗

4,a =
k1

k1 + k2 + k7
, K∗

4,b =
k1

k1 + k7

and for the PN-oscillator, we define

K∗

4 =
k1 + k7

k1 + k2 + k7
.

Each critical value is the ratio of the rate constants of the reaction kinetics with
and without interactions. We find that the conditions for the existence of an
oscillatory regime are determined by the relative location of Ki, i = 1, 2, 3, 4
with the associated critical values K∗

i and with unity (see appendix B.2). More
precisely, for the No-oscillator, oscillations exist when

K∗

1 < K1 < 1,
K∗

2 < K2 < 1,
K∗

3 < K3 < 1.
(13)

For the NN-oscillator, the existence of oscillations is given by the following
non-intersecting sets

K∗

1 < K1 < 1,
K∗

2 < K2 < 1,
K∗

3 < K3 < 1,
K4 > 1,

or

K∗

1 < K1 < 1,
K∗

4,a < K2 < K∗

4,b,

K∗

3 < K3 < 1,
0 < K4 < K∗

4,b.

(14)

For the PN-oscillator, we find

K∗

1 < K1 < 1,
K∗

2 < K2 < 1,
K∗

3 < K3 < 1,
K4 > K∗

4 ,

or
K∗

1 < K1 < 1,
K∗

4 < K2 < 1,
K∗

3 < K3 < 1.
(15)

The projection of the sets (13), (14) and (15) on the (K2, K4) parameter plane
is shown in Fig. 4. An example of a limit cycle together with the corresponding
oscillatory pattern is plotted in Fig. 5. When one of the inequalities defining the
sets (13), (14) and (15) is violated, a stable fixed point appears (see appendix
B.1) leading to the so-called oscillator death. When K4 > 1, the additional
self-feedback loop of the NN and PN-oscillator is inactive and the conditions
for the existence of oscillations are identical for all oscillators, i.e. K∗

i < Ki <
1, i = 1, 2, 3.
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Figure 4: Locus of existence of stable oscillations in the (K2, K4) parame-
ter space (shaded grey) for (A) the negative feedback-only oscillator, (B) the
negative-plus-negative oscillator and (C) the positive-plus-negative oscillator.
Parameters, Ki, i = 1, 3, satisfied K∗

i < Ki < 1.

3.5.1 Remarks on oscillatory activities

The oscillatory patterns that we obtained are expected to be limit cycles, i.e. pe-
riodic trajectories. The main reason is based on the results of Mallet-Paret and
Smith (1990) on smooth monotone feedback systems and its possible general-
ization to discontinuous systems: without stable fixed points, the trajectories of
the system approach as t → ∞, either a limit cycle, or a set consisting of equi-
libra together with homoclinic and hetereclinic orbits. In particular, chaotic
solutions do not occur. Homoclinic or heteroclinic orbits do not exist in the
studied systems. The proof is trivial for regular fixed points and we assume
that the possible singular fixed points do not support these connecting orbits.
Numerically we only observed limit cycles or fixed points.
We have, strictly speaking, only derived sufficient conditions for the existence
of oscillatory patterns. These conditions are necessary if we assume that the
existence of a stable fixed point precludes the existence of stable limit cycles,
i.e. bistability between a fixed point and a limit cycle is ruled out. Many
negative cyclic feedback systems share this property (Tyson (1975); Hastings
(1977); Hastings et al. (1977); Smith (1987); Mallet-Paret and Smith (1990);
Müller et al. (2006), and other references therein) that holds for systems where
oscillations occur through a supercritical Hopf bifurcation, in contrast with the
subcritical Hopf bifurcation that may support bistability. Thus we have rigor-
ously derived only a subset of the total oscillatory domain but, numerically, we
did not observed bistability.
Additional complications in the analysis are generated by the nature of the
flow on the switching surfaces where singular solutions may exist (Glass and
Pasternack (1978a,b); Snoussi and Thomas (1993); Mestl et al. (1995a)). A rig-
orous definition of these states can be found in the Filippov textbook (Filippov
(1988)). Another way to study dynamics on singular domain is the singular
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Figure 5: Oscillations in the piecewise linear negative feedback-only oscillator.
A) Limit cycle in the phase plane. The phase plane is partitioned into rectangu-
lar regions delimited by the switching planes A = K2, B = K3 and C = K1. B)
The corresponding trajectories of the three variables of the model. Parameters
are ki = 1, i = 1, . . . , 6 and K1 = 0.6, K2 = 0.7 ,K3 = 0.8. The initial condition
is (A(0), B(0), C(0)) = (0.5, 0.5, 0.5).

perturbation method of Plahte and Kjoglum (2005) and Ironi et al. (779-794).
These approaches have been recently revisited by Machina et al. (2013) and
reformulated in the complementarity systems framework by Acary et al. (2013)
. Due to the particular nature of the systems studied here, there are no oscil-
latory trajectories with a sliding part but steady states may lie on a switching
surface. Such steady states are the so-called singular steady states in contrast
with the regular steady states commonly encountered in smooth dynamical sys-
tems. The study of the existence and stability of steady states done in appendix
B.1 encompasses these two cases.
It is worth noting that (i) the limit cycles do not occur through the destabiliza-
tion of a fixed point undergoing an Andronov-Hopf bifurcation and therefore
we are not limited here to small size limit cycles. (ii) Multistability between
two stable fixed points exists only for the PN-oscillator: one fixed point satis-
fies Ass = K∗

4 and the other Ass = K∗

2 . This is in agreement with the result
stating that positive loops are responsible for multistability (Snoussi (1998)).
(iii) When a regular fixed point exists, it is stable and only singular fixed points
can be unstable. In particular, the singular fixed point (K2, K3, K1) may exist
for the three different oscillators and is always unstable. For the NN- and PN-
oscillator an additional singular fixed point may occur on the switching surface
A = K4 and can be stable for the NN-oscillator whereas it is always unstable
for the PN-oscillator.
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3.5.2 Links with previous works

The analytical treatment of the piecewise linear oscillators uses a partition of the
phase space into orthants defined by the thresholds. A common representation
of the dynamics uses the so-called state transition diagram of the system (Glass
and Pasternack (1978a,b)). The state transition diagram is a directed graph that
can be assigned to piecewise linear systems due to the constant direction of the
flow across the common boundary of neighboring orthants. The nodes represent
orthants, the arrows denote the direction of the flow between orthants and a
boolean variable is associated to each orthant. For instance 010 corresponds
to the configuration A < K2, B > K3 and C < K1. The state transition
diagram does not depend on the precise values of the parameters but rather on
the location of the so-called focal points. In Fig. 6 we plot the state transition
diagram of the No-oscillator for ki = 1, i = 1, . . . , 6 and Ki = 2/3, i = 1, 2, 3
showing the existence of a so-called logical cycle. Since there is no branching
point the logical cycle is a cyclic attractor of the system. A conjecture of

111

010 110

000 100

101001

011

Figure 6: State transition diagram for the negative feedback-only oscillator
where K∗

i < Ki < 1, i = 1, 2, 3. The cyclic attractor is represented by heavy
edges.

Glass and Pasternack (1978a) (conjecture 2) stated that the existence of a cyclic
attractor in the state transition diagram implies the existence of a stable limit
cycle in the associated piecewise-linear differential system. This conjecture has
been refined and shown in (Glass and Pasternack (1978b)) for piecewise linear
systems with identical decay rates: if the state transition diagram supports
a cyclic attractor then the corresponding differential system tends towards a
limit cycle or asymptotically approaches the origin, the origin being the singular
steady state where each variable equals to its threshold value. A similar theorem
has been previously derived in (Hastings (1977)) for a three dimensional system.
Recent outcomes that generalize previous results have been obtained by Farcot
and Gouzé (2009, 2010) for non uniform decay rates and multiple interaction
loops.
To make a comparison with our analysis it is convenient to rewrite the equations
in the following form

dxi

dt
= αi(X) − γi(X)xi, i = 1, 2, . . . , n (16)
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where X is the boolean vector X = (Θ(x1 − K2), Θ(x2 − K3) . . . ,Θ(xn − K1)),
αi(X) denotes the production rate and γi(X) is the relative decay rate. For-
mulation (16) is commonly used to describe the dynamics of regulatory genetic
networks (Glass and Pasternack (1978b); Mestl et al. (1995a,b)). However only
one threshold per variable is used and thus the PN- and NN-oscillators cannot be
recasted in this framework. Moreover common assumptions are to consider iden-
tical decay rates and to use the production term to describe the interactions,
in contrast with the No-oscillator studied here where the coupling is defined
through the degradation rate

γi(X) = k2i−1 + k2iXi−1,

(we define X0 = Xn) and the production rate is assumed to be constant

αi(X) = k2i−1.

Oscillations are therefore induced by the modulation of the decay rates and
not by the time evolution of production rates. Mathematically, the equations
present piecewise constant decay rates unlike the vast majority of previous work
that uses constant rates and piecewise constant production terms. Moreover an-
other significative difference with previous work on periodic orbits (Glass and
Pasternack (1978b); Farcot and Gouzé (2009)) is the interaction structure of
the model: each variable inhibits the production of the next variable that differ
from systems where each variable activates the next variable except one (noted
xn) which inhibits x1.
The cyclic attractor of the transition graph is closely related to the existence of
an absorbing torus-like region for the smooth system (Buse et al. (2010)) which
is conected with the partition of the state space into several regions where the
sign of the flow remains constant. The signature of the dynamics is a pattern
similar to the one obtained here (Buse et al. (2009)): (110) → (100) → (101) →
(001) → (011) → (010) which is remiscent to the functioning of the ring oscilla-
tor (an odd number of not gate in series forming a chain) in electronics.
Finally, a closely related study in term of methodology has been performed by
Mahaffy (1980) in the field of neurosciences. Sufficient conditions for oscillations
in neural networks are derived from stable fixed points analysis. Similarly to
our approach, the author uses a step function to idealize the nonlineraties, con-
siders inhibitory connections and focuses on circular architectures. Analytical
expressions on network structure are obtained for a network to generate and
sustained oscillations (including chaotic solutions).

3.5.3 Probability of oscillations

A Monte Carlo approach has been used by Tsai et al. (2008) to explore in the
parameter space the domain of existence of stable limit cycles. They gener-
ated random parameter sets for the three different oscillators and determined
with the numerical integration of the equations whether oscillatory regimes are
observed. One of the goals of this paper is to provide an analytical understand-
ing of the results numerically obtained by the authors (Fig. 4 in (Tsai et al.
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(2008))). On the other hand, determining the probability of oscillations has a
twofold interest. First it allows to tackle the issue of robustness of oscillations
and, secondly, it provides a quantitative measure of the percentage of oscillatory
cells.
In the limit ni → ∞ we have obtained in the previous section the domain of ex-
istence of oscillatory activities. Thus we will derive analytically the probability
of oscillations for the different oscillator models.
Negative feedback-only oscillator. Let PNo be the probability of the No-oscillator
oscillating. We have

PNo =
∏

i=1,2,3

P (K∗

i < Ki < 1),

or equivalently

PNo =
∏

i=1,2,3

(1 − P (Ki > 1) − P (Ki < K∗

i )) .

Let us assume that the thresholds, Ki, i = 1, 2, 3, are random variables that
follow continuous uniform distributions on [0, K̄i] and we note Ki ∼ U(0, K̄i)
where (K̄i) are positive constants that we assume greater than 1 for simplicity.
We also assume that the rate constants kj , j = 1, . . . , 6 satisfy ki ∼ U(0, k̄i).
We have

P (Ki > 1) = 1 −
1

K̄i

. (17)

Using K∗

1 = k5/(k5 + k6), we obtain

P (K1 < K∗

1 ) =
1

K̄1k̄5k̄6

k̄6
∫

0

k̄5
∫

0

x

x + y
dxdy. (18)

We define

F (x) =
ln(1 + x)

x
(19)

and we calculate

P (K1 < K∗

1 ) =
1

2K̄1

(

F

(

k̄6

k̄5

)

− F

(

k̄5

k̄6

)

+ 1

)

(20)

and similar equations hold for the expressions of P (K2 < K∗

2 ) and P (K3 < K∗

3 ).
Let (H) be the following assumption: the thresholds (Ki), i = 1, 2, 3, the self
rate constants (k2i−1) and the coupling rate constants (k2i) have identical and
independent uniform distributions. We note

(H)







Ki ∼ U(0, K),
k2i−1 ∼ U(0, k)
k2i ∼ U(0, kc)

(21)
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where K ≥ 1, k > 0 and kc > 0 where the subscript ’c’ stands for ’coupling’.
The probability of oscillations for the No-oscillator is given by

PNo =
1

8K3

(

1 + F (rc) − F

(

1

rc

))3

(22)

where rc is the ratio of the maximal value of the self rate constant over the
maximal value of the coupling rate constant, i.e. rc = k/kc. Probability (22)
is maximum when rc → 0, and, for small rc values, we derive the following
asymptotic expansion

PNo =
1

K3

(

1 −
3

4
rc +

3

2
rc ln rc

)

+ rcǫ(rc), (23)

where ǫ(rc) → 0 as rc → 0. For parameters used in (Tsai et al. (2008)) (see
appendix C) we find PNo = 0.01446. Approximation (23) gives PNo = 0.01443
and if we keep only the first term of the expansion we find PNo = 0.01562.
In (Tsai et al. (2008)) the value of k5 has been fixed to 1 and therefore K∗

1 =
(1 + k6)

−1. Expression (18) becomes:

P (K1 < K∗

1 ) =
1

K̄1k̄6

k̄6
∫

0

dy

1 + y

which gives

P (K1 < K∗

1 ) =
1

K̄1
F (k̄6)

and we find P (K1 < K∗

1 ) = 1.72 10−3 (instead of P (K1 < K∗

1 ) = 6.39 10−3

when k5 ∼ U(0, k)) that yields PNo = 0.0147.
Negative-plus-negative oscillator. For the NN-oscillator, we assume that the
parameters of the self-feedback loop satisfy k7 ∼ U(0, k̄7) and K4 ∼ U(0, K̄4).
From (14) the probability of oscillations for the NN-oscillator is given by

PNN = PNoP (K4 > 1)

+P (K∗

1 < K1 < 1)P (K∗

4,a < K2 < K∗

4,b)P (K∗

3 < K3 < 1)P (K4 < K∗

4,b).

Both probabilities P (K∗

1 < K1 < 1) and P (K∗

3 < K3 < 1) have been previously
calculated analytically (see (17) and (20)). We have P (K4 > 1) = 1 − 1/K4

and both probabilities, P (K4 < K∗

4,b) and P (K2 < K∗

4,b), are given by (20)

substituting k̄7/k̄1 to k̄6/k̄5 and using K̄4 and K̄2, respectively, instead of K̄1.
To complete the analytical expression of PNN , it remains to calculate P (K2 <
K∗

4,a). We get

P (K2 < K∗

4,a) =
1

K̄2k̄1k̄2k̄7

k̄1
∫

0

k̄2
∫

0

k̄7
∫

0

x

x + y + z
dxdydz (24)
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which has an analytical expression given in appendix B.3 (eq. (32)).
Assuming that (H) holds, we obtain

PNN = PNo

(

1 −
1

K

)

+
1

16K4

(

1 − F

(

1

rc

)

+ F (rc)

)2(

1 + F

(

1

rs

)

− F (rs)

)

×

(

1 + F

(

1

rs

)

− F (rs) − 2KINN

)

where INN is the integral in the right-hand side of (24) and rs = k/k̄7 measures
the strength of the self-feedback loop. Taking the limit rc → 0 we have INN → 0
that yields

PNN =
1

K3

(

1 −
1

K

)

+
1

4K4

(

1 + F

(

1

rs

)

− F (rs)

)2

+ ǫ(rc) (25)

To compare with the No-oscillator, we calculate the zero-order expansion of the
ratio of probabilities

PNN

PNo

= 1 −
1

K
+

1

4K

(

1 + F

(

1

rs

)

− F (rs)

)2

for small rc values. The ratio is maximum when rs → ∞ and we have PNN/PNo →
1 that corresponds to the case where k7 → 0, i.e. the self-feedback is inactivated
and the two oscillators coincide. The minimum is reached for rs → 0 (strong
self-feedback) and we have PNN/PNo → 1 − 1/K. Expression (25) has been
derived assuming rc/rs → 0 and therefore we only capture the limiting regime
rc → 0, rs → 0 and rc/rs → 0, i.e. the coupling strength remains greater (of at
least one order) than the self-feedback strength.
For a strong self-feedback and a strong coupling, both of the same order, we
consider rc = rs = r ≪ 1, and, from the complete expression of PNN , we
calculate

PNN =
1

K3

(

1 −
1

K

)

+ ǫ(r) (26)

which coincides with the asymptotic development (25) when rs → 0.
For parameters used in (Tsai et al. (2008)) (see appendix (C)), we find PNN =
0.0109 using the exact analytical expression. Asymptotic expansion (25) gives
PNN = 0.0118. In the so-called ’strong positive feedback’ case, i.e. rc = rs =
0.01, we find PNN = 0.0108 and approximation (26) gives 0.0117.
Positive-plus-negative oscillator. As for the NN-oscillator, we take k7 ∼ U(0, k̄7)
and K4 ∼ U(0, K̄4). From (15) the probability of oscillations for the PN-
oscillator is given by

PPN = PNoP (K4 > K∗

4 )

+P (K∗

1 < K1 < 1)P (K∗

4 < K2 < 1)P (K∗

3 < K3 < 1)P (K4 < K∗

4 ).
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All the probabilities occuring in the expression of PPN have been calculated
analytically hereinabove except P (K4 < K∗

4 ) and P (K2 < K∗

4 ). We have

P (K4 < K∗

4 ) =
1

K̄4k̄1k̄2k̄7

k̄1
∫

0

k̄2
∫

0

k̄7
∫

0

x + z

x + y + z
dxdydz

that can be rewritten as

P (K4 < K∗

4 ) =
1

K̄4
− IPN

where

IPN =
1

K̄4k̄1k̄2k̄7

k̄1
∫

0

k̄2
∫

0

k̄7
∫

0

y

x + y + z
dxdydz

has been previously calculated analytically (from eq. (24), switching k2 and k1).
A similar expression holds for P (K2 < K∗

4 ).
Assuming that (H) holds, we calculate

PPN = PNo

(

1 −
1

K
+ IPN

)

+
1

4K2

(

1 + F (rc) − F

(

1

rc

) )2

IPN

(

1

K
− IPN

)

.

Taking the limit rc → 0 we get IPN → 1/K and we obtain

PPN =
1

K3
+ ǫ(rc) (27)

that yields PNP /PNo → 1. The limit does not depend on rs unlike the NN-
oscillator. For a strong negative coupling and a strong self-feedback, we note
r = rc = rs → 0. We find IPN → 1/(2K) and we calculate

PPN =
1

K3

(

1 −
1

4K

)

+ ǫ(r) (28)

that is lower than the limit (27) obtained as rc → 0 and rs fixed.
For K = 4, rc = 0.01 and rs = 0.1, we find PPN = 0.01438 using the exact
analytical expression and we find PPN = 0.01562 using (27). When rc = rs =
0.01, i.e. strong coupling and strong self-feedback, we have PPN = 0.01356 and
approximation (28) gives 0.01367.
Probabilities of oscillations as a function of the coupling ratio rc are plotted Fig.
7 for the three oscillators. Different values for the self feedback ratio are used.
Probability of oscillations for the different models decreases with rc suggesting
that strong negative coupling facilitate oscillations. The addition of a negative
self-feedback reduces the chance to oscillate whereas a moderate positive self-
feedback does not modify significantly the probability of oscillations as shown
Fig. 8. The effect of a negative or a positive self-feedback loop is illustrated in
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Figure 7: Log-log plot of the percentage of parameter sets that yield stable
oscillations as a function of the coupling ratio, rc = k/kc, for the negative
feedback-only oscillator (left panel), negative-plus-negative oscillator (middle
panel) and positive-plus-negative oscillator (right panel). For the two last oscil-
lators, the percentage is computed for different values of the self-feedback ratio
rs = k/k̄7.

details Fig. 9 where the probability is plotted as a function of rs for different rc

values. It is shown that the probability of oscillations is an increasing function
of rs and crucially depends on the coupling ratio rc. As the self-feedback ratio
rs increases a sigmoid-type transition occurs from a low-probability level to a
higher probability level. The transitions for the PN and NN oscillators are
compared Fig. 10. The high-probability level is reached when rs → +∞ (weak
self-feedback). This level can be maintained for a large range of rs values when
the self-feedback loop is positive. However when rc ≫ 1 the difference induced
by the nature of the self-feedback connection vanishes and the probability of
oscillations becomes negligible.
The strong coupling regime (rc ≪ 1) is related to the fast-slow repressilator
previously discussed and is revealed to be the configuration that maximizes the
chance to function in an oscillatory regime. Moreover when the strength of the
self-feedback is also strong, we found, for rs = rc ≪ 1,

PNN =
1

K3

(

1 −
1

K

)

,

PPN =
1

K3

(

1 −
1

4K

)

which has PNN = 33/44 ≈ 0.1055 and PPN = 3/4 as a maximum when K = 4/3
and K = 1, respectively.
Figure 8 indicates that the high cooperativity regime gives an upper approxi-
mation of the probability of oscillations comparing to the smooth case for the
the No-oscillator and NN-oscillator whereas a lower approximation is obtained
for the PN-oscillator.
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Figure 8: Percentage of parameter sets that yield stable oscillations. Each
group is for an oscillator: the negative feedback-only oscillator (left group), the
negative-plus-negative oscillator (middle group) and the positive-plus-negative
oscillator (right group). The black bar is for the high cooperativity limit (HCL)
with a coupling ratio rc = 0.01 and a self-feedback ratio rs = 0.1. The middle
bar represents the maximum probability obtained as the coupling ratio rc tends
towards 0 (strong coupling). The right bar represents the result of the numerical
investigations in the smooth case.

3.5.4 Helmholtz decomposition of the piecewise linear oscillators

In the high cooperativity limit, the functions (5) and (6) can be simplified as
follows

S
[1]
i (x) = (x − Ki)Θ(x − Ki),

S
[2]
i (x) =

1

2
(x − Ki)

2Θ(x − Ki)

and the scalar potential (8) can be rewritten as quadratic function combined
with step functions. It is straightforward to show that the potential functions
of the oscillators admit a global minimim. Oscillations are therefore generated
by a balance between an attracting fixed point where the gradient part vanishes
and a rotating part derived from the potential vector

G(A, B, C) =





k6C(B − K3)Θ(B − K3)
k2A(C − K1)Θ(C − K1)
k4B(A − K2)Θ(A − K2)



 .

For the No-oscillator and for parameters satisfying (13), the minimum is given

(Am, Bm, Cm) =

(

k1 + k4K2

k1 + k4
,
k3 + K3k6

k3 + k6
,
k5 + K1k2

k5 + k2

)

.

If Ki > 1, the corresponding minimum is 1. Therefore the necessary condition
for the existence of a limit cycle Ki < 1 can be reformulated as : the minimum
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corresponding curve (see also Fig. 10).

point of the potential energy has to be greater than the median effective con-
centration (component by component).
For the NN-oscillator, the additional term in the potential energy can be rewrit-
ten as

φ̃NN (A) =
k7

2
(A2 − K2

4 )Θ(A − K4).

The minimum point remains unchanged if Am < K4 and a sufficient condition
is K4 > 1 corresponding to the upper zone of existence of limit cycles (see Fig.
4B). In this case the minimum point Am is lower then the median effective
concentration K4 but gretaer than K2. For the other set of parameter values
yielded oscillations ( bottom left part of Fig. 4B), the minimum is given by

Am =
k1 + k4K2

k1 + k4 + k7
,

and Bm, Cm remain unchanged. Thus Am > K2 is equivalent to the necessary
condition K2 < K4,b previously derived (when K4 < 1).
For the PN-oscillator, we have

φ̃PN (A) =
k7

2
(A − K4)(A + K4 − 2)Θ(A − K4).

The minimum stays unchanged if Am < K4, otherwise the minimum becomes

Am =
k1 + k7 + k4K2

k1 + k4 + k7
.

In both cases Am > K2 reads K2 < 1.
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3.6 The smooth case: numerical analysis of oscillatory

regimes

In this section we will investigate numerically the smooth sigmoidal case and we
will determine the domain of existence of stable oscillations in the parameter
space together with the size and location of the limit cycles.

3.6.1 Domain of oscillations

We redid the numerical experiments of Tsai et al. (2008): for the different
oscillators, we generated random parameter sets (see appendix C) until we
had obtained 500 that gave stable oscillations. The distributions of parame-
ters (Ki)i=1,...,4 that give oscillations are represented with histograms shown in
Fig. 11A, B and C for the three different oscillators. Figures 11D and E show
the distributions in the (K2, K4) plane for the NN- and PN-oscillator and Fig.
11F, G and H show the distributions of the Hill coefficients. Figure 11 indicates
that there are no significative differences in the distribution of parameters be-
tween the No-oscillator 3 and the NN-oscillator. The histograms of the median
effective concentrations are peaked near a value slightly less than 1 (reminis-
cent to the condition for oscillations Ki < 1 obtained for the step-like coupling)
whereas the Hill coefficients are mainly located at large values. Therefore a high
cooperativity facilitates oscillatory activities and explained the upper approxi-
mation of the probability of oscillations obtained when ni ≫ 1. The existence of
a positive self-feedback loop makes more uniform the distributions of parameters
indicating weak constraints on parameters for limit cycle existence. Parameter
K4 of the NN-oscillator has to be large (greater than 1) suggesting that the
additional negative self-feedback loop is preferentially inactived during oscilla-
tions whereas the positive loop plays an enhancing role in oscillatory regimes

3The nonsymmetric distribution of parameters (Ki)i=1,2,3 observed for the No-oscillator
is due to the fact that k5 has been fixed to 1.
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Figure 11: Distributions of parameters leading to oscillations for the different
oscillator models. (A) Histograms of K1, K2 K3 for the negative feedback-only
oscillator and of K1, K2, K3, K4 for (B) the negative-plus-negative oscillator
and (C) the positive-plus-negative oscillator. The histograms are computed for
500 parameter sets that gave oscillations for each oscillator. The projections
of the distributions in the (K2, K4) parameter space are shown panel (D) and
(E) for the negative-plus-negative oscillator and for the positive-plus-negative
oscillator, respectively. Histograms of the distributions of the Hill coefficients,
(ni)i=1,...,4, are shown panels (F), (G) and (H) (models as for (A), (B), (C)
respectively).

(histogram peaks for a value less than 1). For the PN-oscillator, a local peak of
the n4-histogram occurs close to n4 = 2 suggesting that moderate n4 values also
facilitates oscillations and therefore explains the lower approximation previously
computed in the high cooperativity limit.

3.6.2 Location and size of limit cycles

In order to assess the location and the size of the limit cycles we compute for the
three different oscillators and for each variable of the model: (i) the mean value
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X̄ = 1/T
∫ T

0
X(t)dt for X = A(t), B(t) or C(t) and (ii) the peak amplitude

|X | = maxX(t) − min X(t) where (A(t), B(t), C(t)) is the limit cycle solution
and T the period of the oscillations. Results are shown Fig 12. It can be
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Figure 12: Plots of the peak amplitude as a function of the mean location of the
limit cycles for the three different oscillators. The first row is for the oscillator
without self feedback, the second one is for the negative-plus-negative oscillator
and the third one is for the positive-plus-negative oscillator. The left column is
for the A variable, the middle one is for B and the right one is for C. A different
scale of the vertical axis has been used for the positive-plus-negative oscillator.

seen that the PN-oscillator supports a larger variability in the amplitude and
location of its limit cycle whereas the No-oscillaor and NN-oscillator exhibits
similar properties. This is also illustrated in Fig. 13 where some limit cycles
are plotted in the phase space. A larger filling is obtained for the PN-oscillator.
Results suggest that the addition of a positive self-feedback loop produces a
higher variability and thus enhances the tunability of the system.

3.7 A generalized repressilator-type model

The core pathway motif that underpins sustained oscillations may involve more
than three components. The generalization to an arbitrary number N of chem-
ical species is a cyclic biochemical feedback circuit where interactions are se-
quenced in series, schematically represented by x1 ⊣ x2 ⊣ . . . ⊣ xN ⊣ x1. We
will investigate the oscillatory behaviour of the following repressilator-type net-
work

dx1

dt
= k1(1 − x1) − k2x1S1(xN )

dxi

dt
= k2i−1(1 − xi) − k2ixiSi(xi−1), for i = 2, . . . , N,
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Figure 13: Plots of the limit cycles in the state space (250 limit cycles have
been plotted) for the negative feedback-only oscillator (left), the negative-plus-
negative oscillator (middle) and positive-plus-negative oscillator (right).

where xi is the concentration (or fraction of the concentration) of the chemical
species i, k2i−1 and k2i are kinetic constants, Ki are the dissociation constants
and Si are the sigmoidal functions given by (2). Here we restrict our attention
to a network without self-feedback loop. Each species is repressed (inhibited)
by the species immediately preceding in the loop. The network architecture is
based on the successive inhibition of the chemical species and follows the design
principles of the repressilator. A similar generalized model of repressilator-type
has been proposed and studied in (Müller et al. (2006)).
For a switch-like coupling obtained in the limit of large Hill coefficients the
equations become

dxi

dt
= k2i−1(1 − xi) − k2ixiΘ(xi−1 − Ki), for i = 1, . . . , N,

where we define x0 = xN . Shifting the origin to the point of intersection of all
thresholds, the system could be rewritten as

dxi

dt
= ai(xi) − bi(xi)sgn(xi−1), for i = 1, . . . , N,

where ai(x) = k2i−1 − (k2i−1 + k2i/2)(x + Ki+1), bi(x) = k2i/2(x + Ki+1) and
sgn is the sign function.
An analysis (not shown) similar to the one performed for the three-component
oscillator gives

• if N is odd, oscillatory regimes are obtained for

K∗

i < Ki < 1, i = 2, . . . , N where

K∗

i =
k2i−3

k2i−3 + k2i−2
, (29)

where k0 = k2N and k−1 = k2N−1.
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• if N is even, the network admits at least one stable fixed point. In par-
ticular, for parameters belonging to the domain of periodic behaviour
obtained for the negative feedback system, i.e. (29), it can be shown that
the network exhibits bistability between the two stable steady states

(1, K∗

3 , 1 . . .K∗

N−1, 1, K∗

1 ) and (K∗

2 , 1, K∗

4 . . . 1, K∗

N , 1)

This situation is similar to the one encountered for the two-component
system where it is easy to see that (1, K∗

1 ) and (K∗

2 , 1) are two stable fixed
points that coexist if and only if K∗

1 < K1 < 1 and K∗

2 < K2 < 1.

The qualitative difference in the dynamics between an odd and an even num-
ber of elements in the cycle has already been pointed out by Fraser and Ti-
wari (1974) and studied by Smith (1987) and subsequently in (Mallet-Paret
and Smith (1990); Müller et al. (2006)) for similar cyclic feedback systems. It
has been shown that this difference mainly manifests for strong nonlinearities
whereas for weak nonlinearities the number of molecules involved in the loop
does not play a crucial role in the dynamics. An even number of negative in-
teractions canceled each other and the network essentially acts as a positive
feedback system. The fundamental difference of both networks is related to the
competitive nature of negative feedback systems whereas positive feedback sys-
tems are of cooperative and irreductible nature in the sense of Hirsch (Hirsch
(1982, 1985)). For cooperative systems, almost all trajectories tend to a steady
state that always exists for N even. When two stable fixed points coexist, the
system is bistable and could function as a switch (Cherry and Adler (2000)).
For an odd number of nodes and for uniformly distributed parameters, i.e.
Ki ∼ U(0, K̄i), i = 1, . . . , N and ki ∼ U(0, k̄i), i = 1, . . . , 2N , the probability of
oscillations is given by

PNo =

N
∏

1

1

2K̄i

(

1 + F

(

k̄2i−2

k̄2i−3

)

− F

(

k̄2i−3

k̄2i−2

))

where we define k̄0 = k̄2N and k̄−1 = k̄2N−1. The function F (x) is given by (19
). For dissociation constants with identical maximal values, K̄i = K, and for
identical ratios of maximum rate constants, rc = k̄2i−1/k̄2i, we obtain

PNo =
1

2NKN

(

1 + F (rc) − F

(

1

rc

))N

. (30)

Probability (30) is represented in Fig. 14A as a function of rc for different N
values. In the limit of a strong coupling (or weak internal dynamics), i.e. rc ≪ 1,
we obtain the following asymptotic expansion of the probability of oscillations

PNo =
1

KN
+

Nrc

2KN
ln(rc) + rcO(1). (31)

Some typical trajectories of network elements are shown Fig.14B for a network of
N = 19 nodes with a weak rc value. The activity is characterized by sequential
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Figure 14: A. Log-log plot of the percentage of parameters leading to oscillation
as a function of the coupling ratio rc for different lengths of the negative feedback
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Activity of elements i = 1, 7, 14 is represented (starting from a random intial
condition in [0, 1]N).

successions of active and inactive states. Probability (30) vanishes as N becomes
large except for K = 1 and for sufficiently small rc values. More precisely, a non-
zero probability is reached if and only if rcN ≪ 1, i.e. rc has to be sufficiently
small with respect to N , or equivalently a necessary and sufficient condition is
Nrβ

c bounded ∀β < 1.

4 Discussion

In the present work, we corroborated and characterized some observations al-
ready made or proved in various biological systems. (i) Oscillations are pro-
moted by negative feedbacks. (ii) Strong nonlinearities facilitate oscillations:
the more switch-like are the interactions, the easier it is to generate oscillations.
(iii) A qualitative difference in the dynamics of monotone cyclic feedback sys-
tems occurs between an even or an odd number of components in the cycle.
(iv) A strong inhibitory coupling induces a fast-slow dynamics that maximizes
the probability of oscillations. In this regime, the dynamics is characterized
by sequential switches from active to inactive states and vice-versa. (v) Small
molecular circuits are better candidates to design biological oscillators. As the
length N of the feedback loop increases, the coupling strength 1/rc has to in-
crease in order to maintain Nrc ≪ 1. Therefore the claim ’the longer the loop,
the easier it is to produce oscillations’ (see for instance (Ferrell et al. (2011)))
is not fully corroborated by our study. However we used here a restrictive
framework where interactions are step-like that seems to be unlikely in many
biological systems. It is suspected that a longer cycle allows to a relaxation of
the assumption on the stiffness of nonlinearities (Smith (1987)) and a balance
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between ’moderate’ Hill coefficients, sufficiently long feedback loop and strong
inhibitory coupling should be reached to maximize the chance to oscillate.
Adding a negative self-feedback loop in a negative cyclic feedback oscillator
does not present any new advantages whereas a moderate positive self-feedback
weakens the constraints on parameters in the oscillatory regime and improves
the flexibility of the system. Tunability induced by positive loops has already
been observed in molecular systems (López-Caamal et al. (2013); Tsai et al.
(2008)) and is essential in cases where cellular processes require a tight regula-
tion. The additional self-feedback loop modifies the Helmholtz decomposition
of the oscillators. The divergence-free part of the decomposition, analog to a
circulating density responsible for a vortex-like behaviour, remains unchanged
but the gradient part that minimizes the corresponding potential energy is af-
fected. A positive self-feedback loop increases the divergence of the system and
facilitates oscillations whereas a negative self-feedback loop tends to stabilize
the system on a steady state precluding oscillations. However the Helmholtz
decomposition does not yield any additional results but provides a new point of
view on the structure of the flow of the 3-components negative feedback system.
There are various ways of taking into account the fluctuations inherent in real
systems. Two different frameworks have been used to address the issue of ran-
domness and limit cycles: random environments (Lin and Kahn (1977)) and
uncertain environnements (Falkenburg (1979)). Here we considered random pa-
rameters. The system remains deterministic and it is expected that stable solu-
tions persist under random perturbations. However the presence of a stochastic
term in the nonlinear differential system may induce new behaviours. A stochas-
tic switching between two stable states has been observed in three-node genetic
regulatory networks (Li et al. (2012)). It has been shown that the unstable
periodic solution of repressilator-type networks with an even number of nodes
can be stabilized with random walk noise (Strelkowa and Barahona (2010)).
This suggests that oscillations is more widespread than expected by the study
of the deterministic system and the probability of oscillations are enhanced by
a brownian noise.
Determining the conditions for robust oscillations has attracted a renewal of
interest with the emergence of synthetic biology (Elowitz and Leibler (2000);
Stricker et al. (2008); Gardner et al. (2000)). It has become possible to con-
struct in the laboratory a biological system according to ’design specifications’
derived from analytical and/or computational approaches. Networks of inter-
acting species (mainly gene networks) are shaped in order to perform a given
function, oscillation being the primary target due to its central role in cellular
functions (Elowitz and Leibler (2000)). The calculation of the probability of
having oscillations when fluctuating parameters are considered is of particular
interest in this engineering-based approach. Despite the fact that parameters of
a real biological system are probably not uniformely distributed with indepen-
dent distribution, our approach suggests a way to tackle this issue. Moreover
one of the macroscopic data directly available in the in-vivo implementation of
synthetic oscillators is the percentage of oscillating cells that can, in turn, gives
an estimation of the parameter distributions.
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The sufficient conditions for oscillations derived in the present study are based
on steady states analysis. The strong correlation between the global dynamics
and the properties of the system that arise by steady state analysis has already
been pointed out by Smith (1987). The striking fact is that the local study
inherent in fixed point analysis reveals the global dynamics of the system. The
sufficient conditions thus obtained are necessary if we assume that the existence
of a stable steady state precludes the existence of a stable limit cycle. It is
known that such a bistability-exclusion can be broken by additional interac-
tions that modify the cyclic nature or the monotonicity of the model and allow
for multistability between a fixed point and a limit cycle, chaotic solutions or
dynamics not allowed in R2. For instance bistability may occur in two-side in-
teraction systems, i.e. there exists j such that ẋj = fj(xj , xj−1, xj+1) (Li et al.
(2012)). However due to the generalization of the Poincaré-Bendixson theorem
of Mallet-Paret and Smith (1990) to the two-sided interaction system, chaotic
solutions are not allowed (Elkhader (1992)). If the monotonicity property fails
then chaotic solutions may appear (Cera et al. (1989)). Moreover a subcritical
Hopf bifurcation generating bistability can be obtained in monotone negative
feedback systems with a variable self-feedback loop (Hasty et al. (2002)) indi-
cating that bistability-exclusion probably requires monotonicity conditions on
the self-interaction term. However bistability often occurs in a narrow region
of parameter space (see Hasty et al. (2002) for instance) and one can expect
that the probability of oscillations derived from steady state analysis would be
a good approximation.
We did not consider explicitly delay, an important element present in many
biological systems. It is suspected that an effective form of time delay is, in
many situations, only the result of a cascade of reactions and cellular processes
that occur in the cell and therefore are implicitly taken into account by the
cyclic structure of the model (Stricker et al. (2008)). Many properties obtained
for monotone cyclic feedback systems also hold in the presence of delays and
similar dynamics is expected (Mahaffy (1980); Smith (1987); Mallet-Paret and
Sell (1996)).

A The Jacobian matrix

For the negative feedback-only oscillator, the jacobian matrix is given by

JNo =











−k1 − k2S1(C) 0 −
k2n1K

n1

1
Cn1−1

(K
n1

1
+Cn1)2

A

−
k4n2K

n2

2
An2−1

(K
n2

2
+An2)2

B −k3 − k4S2(A) 0

0 −
k6n3K

n3

3
Bn3−1

(K
n3

3
+Bn3)2

C −k5 − k6S3(B)











.

where it is easy to see that each term is negative. For the NN and PN oscillators
only the term in the first row and first column differs and we have

(JNN )11 = −k1 − k2S1(C) − k7
(n4 + 1)Kn4

4 An4 + A2n4

(Kn4

4 + An4)2
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that is always negative and

(JPN )11 = −k1 − k2S1(C) + k7
n4K

n4

4 An4−1 − (n4 + 1)Kn4

4 An4 − A2n4

(Kn4

4 + An4)2

which has a positive term. Other components are given by (JNN )ij = (JPN )ij =
(JNo)ij for (i, j) 6= (1, 1)

B The piecewise linear oscillators

Our analysis is based on the observation that each parameter Ki defines a
threshold plane that divises the phase space into rectangular boxes, the so-
called regulatory domains. Inside each regulatory domain the system is linear
and the analysis is straightforward.

B.1 Fixed points

The three different oscillators may admit fixed points depending on parameter
values. Due to the discontinuity of the vector field, it is convenient to distinguish
between two classes of fixed points (Glass and Pasternack (1978a); Mestl et al.
(1995a); Snoussi and Thomas (1993)): ’regular’ steady points and ’singular’
steady points. Regular steady points are defined following the well-established
theory of smooth dynamical systems. Singular steady states are characterized
by the fact that at least one of its components lies on a threshold and thus
require a specific treatment (Filippov (1988)).
Let Xss = (Ass, Bss, Css) be a fixed point. The regular fixed points of the
No-oscillator and the corresponding conditions of existence are given by

Ass = 1 for Css < K1 and Ass = K∗

2 otherwise,
Bss = 1 for Ass < K2 and Bss = K∗

3 otherwise,
Css = 1 for Bss < K3 and Css = K∗

1 otherwise.
.

It is easy to show that when a regular fixed point exists it is stable. Each
species, A, B and C, can formally admit two different values at its resting state
and thus we can distinguish between eight analytically different regular fixed
points. The different possible steady states are the so-called focal points (Glass
and Pasternack (1978a,b); Mestl et al. (1995a)) of the associated regulatory do-
main. If the focal point is inside its regulatory domain, it is a stable steady state
of the system. Otherwise the system will leave the current regulatory domain
and enter a new one that may have a different focal point.
The steady state Xss is a singular fixed point if 0 ∈ F(Xss) where F is
the multi-valued function obtained when the Heaviside function of the com-
ponent value that lies on its threshold is allowed to vary in (0, 1). For the
No-oscillator, the only singular fixed point is (K2, K3, K1) that exists when a
solution (ΘA, ΘB, ΘC) ∈ [0, 1]3 can be found to the following system

k1(1−K3)−k2K3ΘC = 0, k3(1−K3)−k2K3ΘA = 0, k5(1−K3)−k2K3ΘB = 0.
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We obtain the conditions

K∗

1 < K1 < 1, K∗

2 < K2 < 1, K∗

3 < K3 < 1,

that (as we will show hereinafter) coincide with the conditions for oscillations.
The state (K2, K3, K1) is the so-called loop characteristic state (Snoussi and
Thomas (1993)) of the No-oscillator. We show in appendix B.4 that this singular
fixed point is always unstable.
For the NN-oscillator, the values and the conditions for the existence of regular
fixed points are identical to those obtained in the No-oscillator model for the
two components Bss and Css. For Ass we get

Ass = 1 for Css < K1 and K4 > 1,
Ass = K∗

4,b for Css < K1 and K4 < K∗

4,b,

Ass = K∗

2 for Css > K1 and K4 > K∗

2 ,
Ass = K∗

4,a for Css > K1 and K4 < K∗

4,a,

and, as for the No-oscillator, a regular fixed point, when it exists, is stable.
Singular steady points with at least one component on a discontinuity plane
may exist. As previously the loop characteristic state (K2, K3, K1) is a singular
steady state, and for K4 > K2, the conditions of existence remain the same
than for the No-oscillator. If K4 < K2 conditions of existence become

K∗

1 < K1 < 1, K∗

4,a < K2 < K∗

4,b, K∗

3 < K3 < 1.

We show in appendix B.4 that this singular fixed point is always unstable.
Moreover an additional singular fixed point may occur on the discontinuity
plane Ass = K4. This singular fixed point is induced by the additional self-
feedback loop and defines a second loop characteristic state of the oscillator. It
is easy to show that this steady-state exists and is stable for K∗

4,b < K4 < 1
and Css < K1 or for K∗

4,a < K4 < 1 and Css > K1. The A-component of the
steady-state, Ass, can formally take five different values, so that we distinguish
between twenty analytically different stable fixed points for the NN-oscillator.
For the PN-oscillator, the steady state values Bss and Css and the corresponding
conditions of existence remain the same. For Ass we obtain the following values
and conditions of existence

Ass = 1 for Css < K1,
Ass = K∗

2 for Css > K1 and K4 > K∗

2 ,
Ass = K∗

4 for Css > K1 and K4 < K∗

4 .

The singular fixed point (K2, K3, K1) when it exists is unstable (see appendix
B.4). Moreover, as for the NN-oscillator, the additional self-feedback loop may
induce the existence of a singular fixed point on the discontinuity plane Ass =
K4. It is easy to show that this singular fixed point is always unstable. To
sum up, the PN-oscillator has twelve different forms of stable steady states. It
is worth noting that for Css > K1 the two stable fixed points Ass = K∗

2 and
Ass = K∗

4 can coexist when K∗

2 < K4 < K∗

4 .
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To summarize, when a regular fixed point exists, it is stable. In addition,
singular fixed points may exist but are unstable except the singular fixed point
of the NN-oscillator satisfying Ass = K4. It is worth mentioning that, for a
given set of parameters, a stable fixed point, when it exists, is unique except for
the PN-oscillator where two stable fixed points may coexist.

B.2 Oscillations

Based on the fixed points analysis done in Appendix B.1 it is possible to derive
analytically the conditions on parameters of the system for the existence of
stable fixed points. These conditions are monitored by the relative location
between Ki, the unity, and the associated critical value K∗

i . For instance, for
the No-oscillator, it is easy to check that when K1 < K∗

1 , K2 > K∗

2 and K3 < 1,
the point (K∗

2 , 1, K∗

1 ) is a stable fixed point. It is thus possible to derive exactly
the sets of parameters for which there are no stable fixed points taking the
complementary of the sets for which stable fixed points exist. These sets are
given by (13), (14) and (15) for the three different oscillators, respectively. Since
a trajectory cannot escape from the box D = [0, 1]3, an oscillatory pattern exists
inside the box. It is suspected that this oscillatory activity corresponds to a limit
cycle (see the discussion in the section “Remarks on the oscillatory activities”).

B.3 Calculation of P (K2 < K
∗

4,a)

We can easely check that

P (K2 < K∗

4,a) =
1

K̄2k̄1k̄2k̄7

(

G(k̄2 + k̄7) − G(k̄7) − G(k̄2) + G(0)
)

(32)

where

G(u) =

k̄1
∫

0

x(x + u) ln(x + u)dx.

Integrating by parts we obtain

G(u) =
(k̄1 + u)2

3
(k̄1 −

u

2
) ln(k̄1 + u) +

u3

6
ln(u) −

k̄1

36
(3k̄1u − 6u2 + 4k̄2

1)

that completes the analytical expression of P (K2 < K∗

4,a).
Let rc = k1/k2 and rs = k1/k7, analytical calculations give

P (K2 < K∗

4,a) =
1

K

(

1

3
+

rs

6r2
c

ln rc +
rc

6r2
s

ln rs +
rcrs

6

( 1

rc

+
1

rs

)3
ln

( 1

rc

+
1

rs

)

+
rs

3

( 1

rc

+ 1
)2(1

2
− rc

)

ln
(

1 +
1

rc

)

+
rc

3

( 1

rs

+ 1
)2(1

2
− rs

)

ln
(

1 +
1

rs

)

−
1

3

( 1

rc

+
1

rs

+ 1
)2(rs

2
+

rc

2
− rcrs

)

ln
(

1 +
1

rc

+
1

rs

)

)
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B.4 Stability of the origin

For the No-oscillator, the stability of singular steady state (K2, K3, K1) is de-
termined by the stability of the origin of

ẋ = k1(1 − K2 − x) − k2(x + K2)Θ(z),

ẏ = k3(1 − K3 − y) − k4(y + K3)Θ(x),

ż = k5(1 − K1 − z) − k6(z + K1)Θ(y).

which is given by the study of the trajectories of the system

ẋ = k1(1 − K2) − k2K2Θ(z),

ẏ = k3(1 − K3) − k4K3Θ(x),

ż = k5(1 − K1) − k6K1Θ(y).

We define

αi = k2i−1(1 − Ki+1),

βi = (k2i−1 + k2i)Ki+1 − k2i−1,

for i = 1, 2, 3 where we set here K4 = K1 for conveniance. Conditions for the
existence of a singular fixed point at the origin lead to αi > 0 and βi > 0. The
dynamics can be rewritten as

ẋ = α1 if z < 0 and − β1 otherwise,

ẏ = α2 if x < 0 and − β2 otherwise,

ż = α3 if x < 0 and − β3 otherwise.

and we have sgn(ẋ) = −sgn(z), sgn(ẏ) = −sgn(x) and sgn(ż) = −sgn(y). Note
that a similar system is studied in (Farcot and Gouzé (2009)) but with different
assumptions on the parameters. Here we will show using basic calculus that the
’local’ system is unstable.
The trajectories make revolutions around the origin and pass many times into
the plane x = 0, intersecting it for y > 0 (and z < 0) and for y < 0 (and z > 0)
for one revolution. After possibly a transient, the sign of the components defin-
ing the trajectory will follow the cycle (+, +,−) → (+,−,−) → (+,−, +) →
(−,−, +) → (−, +, +) → (−, +,−) (see figure (6) where 1 corresponds to + and
0 to −).
The trajectory of the system defines a mapping of the half plane P0 (x0 = 0,
y0 > 0, z0 < 0) into itself. The solution with initial value x0 = 0, y0 > 0, z0 < 0
lies first in the region (110) i.e. (x > 0, y > 0, z < 0), where the solution has
the form

x(t) = α1t, y(t) = y0 − β2t, z(t) = z0 − β3t.

The trajectory intersects the plane y = 0 at time ta = y0/β2 at the point

xa = α1/β2y0, ya = 0, za = z0 − β3/β2y0,

36



and enters into the domain 100. Using similar arguments, we compute the
different reaching times, ta, . . . , tf , of the different regions (101, 001, 011, 010
and 110, respectively) together with the corresponding intersection points. We
find that from the point x0 = 0, y0 > 0, z0 < 0 in P0 the trajectory first goes
back into P0 at the point xf = 0, yf , zf where

(

yf

zf

)

=

(

a11 a12

a21 a22

) (

y0

z0

)

(33)

with

a11 = 3 + u1 + u2 + u3 + u1u2 + u1u3 + u2u3 + u1u2u3 +
1

u1
+

1

u3
+

1

u1u3
,

a12 = −
β2

β3

(

2 + u1 + u2 + u1u2 +
1

u1
+

1

u3
+

1

u1u3

)

,

a21 = −
β3

β2

(

1 + u3 +
u3

u2
+

2

u2
+

1

u1u2
+

1

u2u3
+

1

u1u2u3

)

,

a22 = 1 +
1

u2
+

1

u1u2
+

1

u2u3
+

1

u1u2u3
,

where we set ui = αi/βi.
Equation (33) defines a 2D-linear mapping. Let λ1 and λ2 be the two associated
eigenvalues. Since we have |λ1| + |λ2| ≥ |λ1 + λ2| = |a11 + a22| > 4 then at
least one eigenvalue is greater than 1 in absolute value. Therefore, the origin is
unstable. Numerical investigations suggest than one eigenvalue is large whereas
the other is less than one , in absolute value, indicating a saddle configuration
and the existence of a stable manifold associated with the origin.
For the two others oscillators, the NN-oscillator and the PN-oscillator, the situ-
ation remains the same for K4 > K2. When K4 < K2 we define α1,NN = α1 −
k7K2 and β1,NN = β1+k7K2 for the NN-oscillator and α1,PN = α1+k7(1−K2)
and β1,PN = β1 − k7(1 − K2) for the PN-oscillator. Conditions for the exis-
tence of the singular fixed point (K2, K3, K1) give α1,NN > 0, β1,NN > 0 and
α1,PN > 0, β1,PN > 0. Study of stability proceeds along the same lines than
for the No-oscillator and we show that the origin is unstable.

C Choice of the random parameter sets

For the numerical simulation of the smooth oscillators we used the same param-
eter distributions as in (Tsai et al. (2008)). All parameters are dimensionless
and (H) holds (see (21)) with:

• K = 4, i.e. we used Ki ∼ U(0, 4), i = 1, 2, 3, 4,

• k = 10, i.e. we used k1, k3 ∼ U(0, 10),

• kc = 1000; i.e. we used k2, k4, k6 ∼ U(0, 10)
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except for k5 that has been fixed to 1. For the NN-oscillator and PN-oscillator,
we used k7 ∼ U(0, 100). Each Hill coefficient follows an uniform distribution
over (1, 4).
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