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ABSTRACY

The rainfali-runoff transfer has been simulated by linear, nonlinear, time invariant and time variant
deterministic models. Most of these models, particularly those based on the linear analysis concept, use
the rainfall excess as the input. The weakest link in the rainfall-runoff transfer models is the proper
estimation of the input, the effective vainfall. The principal cbjective of this study was the development
and testing of methods of estimation of the rainfall excess. The other objectives of the study were the
testing of linear and nonlinear systems models in the determination of the response of watersheds at differ-
ent stages of urbanization and the development of a model of the rainfall excess-direct runoff transfer.

The data for the study were obtained from eleven watersheds in Indiana, Texas and ITlinois.

Several evaporation models were tested and evaluated to detevmine their suitability for the estimation
of the evaporation Tosses from urban watersheds. The van Bavel and the Kohler models, both based on a com-
bination of the diffusion and the energy balance approaches, were compared. The fmportance of the relative
humidity in the evapotranspiration empirical estimators was analyzed by comparing the Blaney-Criddle and the
Blanay-Morin estimators, although these formulas were not originaily developed for the estimation of short
term evapotranspiration. The van Bavel formula was found to be the best model, and the Blaney-Morin model,
which incorporates the effect of relative humidity was found to give good results when the radiation and
other meteorological data reguired by the van Bavel formula are unavailabie.

The constant diffusivity form of the unsteady flow eguation for the flow in porous media was solved
making use of the linear systems approach, and an impulse response function was obtained for the relative
5011 moisture change. This unsteady flow squatich is also the theoretical basis for the first two of the
five models which were tested to estimate the rainfall excess in urban watersheds. These are the MIT model,
the Minnesota model, the Holtan model, the Multicapacity Basin Accounting model and the Antecedent Retention
Index model. A1l the modelé were modified in view of their application to urban watersheds. Sowe of the
parameters of these models were optimized. The performances of these models were evaluated and the sensi-
tivities of their parameters were analyzed. The Antecedent Retention Index model gave the best estimate of
the total rainfall excess and the MIT model gave the best prediction of the time distribution of the rainfall
BXCess.

A guasi-linear model of the rainfall-runoff transfer was developad. A dimensionless linear kernel was
obtained. The instantaneous unit hydrograph (IUH} for a specific storm on a specific watershed may bhe ob-
tained by rescaling the dimensionless kernel by usiug the peak discharge of the IUH, the time lag of the wa-
tershed and storm characteristics. The peak discharge of the IUH and the time Tag of the watershed are ob-
tained by the given regression relationships. The model was tested by predicting the direct runoff of an
urban watershed the data from which were not used for the calibration of the medel and the performance was
found to be very satisfactory.

A nonlinear deterministic model involving two kernel functions was used to compute the direct runoff
from the rainfall excess. The model performance was tested by predicting the direct runoff of an urban wa-
tershed for storms not used in the identification of the kernels.
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1. OBJEE?IV?S OF THE STUDY

There is an abundance of madels of the rainfall-runoff transfer which have been published in the Tit-
erature, They can be deterministic or stochastic, distributed or lumped, Tinear or noalinear, time variant
or time invariani. This report is concerned with Jumped time invariant deterministic models. Most of these
models, particufarly those based on the Tinear systems analysis concept, use the rainfall excess as the in-
put. The methods of computation of the rainfall excess are arbitrary as well as those for the separation of -
the base-flow from the total hydrograph. Tt appears that the weakest 1ink in the rainfall-runoff transfer
modei 15 the proper estimation of the input, which is the rainfaill excess. Censequently the main objective
of the study is the development and testing of methods of estimation of the rainfall excess from the total
rainfall.

The majority of the existing rainfall-runoff models used in urban watersheds are linear and determinis-
tic. The application of nonlinear systems analysis has been concentrated on rural basins. Therefore, it
appears desirable to explore the possible improvements that may be obtained through the use of nonlinear
system madels of the rainfali-runoff process.

The specific objectives of the present study are thus as follows:

1. To study different evaporation models and to evaluate thelr performance so that they may be used to
estimate the evapotranspiration losses from an urban watershed.

2. To study, develop and improve models to estimate the rainfall excess in urban watersheds. This includes
the study of the sensitivity of the parameters and the evaluation of the performance of the models.

3. To use the linear system analysis method in the determination of the response of watersheds at differ-
ent stages of urbanization due to a singie storm event. '

4. To develop a regional madel for the rainfall excess-direct runoff transfer by retating the model paraw

maters to storm and physiographic characteristics of urban watersheds. C

Te test the model by using data from watersheds other than those used for the caTibrat1on of the mode1.

To explore the application of nonlinear system models to the determinat10n of the response of urban

watersheds due to a short sequence of storm events.




2. DATA USED FOR ANALYSIS

2.1 Meteorclogical Data

The meteorological data used for the present study were measured at the Purdue Agronomy Faym located
approximately six miles northwest of Lafayette, Indiana, and were obtained from the office of the state cli-
matologist. The following data were used in the present study.

a. Maximum and minimum daily air temperature, °F

b, Maximum and minimum daily relative humidity, percent

c. Average daily wind velocity 20 feet above ground, mph

d. Daily evaporation from a class A pan, in.

e, Daily direct solar radiation, langley

f. Dajly soil temperature at 4 inch depth under sod cover, °F.

The radiation and wind data were read from charts which run from midnight te midnight. A1l other data were
recorded at 8:00 a.m. EST.

Some data of daily air temperature, relative humidity, wind velocity, class A pan evaporation and di-
rect solar radiation were missing. Direct soiar radiation data for as Tong as a month were at times found
missing. The missing daily solar radiation data for one day were estimated from data for part of the day
whenever such data were available. The solar radiation data which were found missing for one or two days
were estimated by linear interpolation. Whenever the data were missing for more than a few days the solar
radiation data from Indianapoiis Airport were substituted. A similar procedure was adopted for the missing
average wind velocity data.

7.2 Hydrological Data

The hydrologic data were acquired for eleven watersheds. Some of the characteristics of these water-
sheds are given in Table 2.1.

Table 2.1 List of Watersheds

Watershed Area Stream Stream % Area Avg, Lag Description
Tength sloba
mi. mi. ft/mi impervious hr. in ref. No,
1. Rass Ade Upper, W. Lafayette, 1IN 0.0455  0.6613 1312.000 38.0 0.210 2.1
2. Waller Creek at 38th St., Austin, TX 2.3100 4.3700 47.000 27.0 1.440 2.2
3. Waller Creek at 23rd 5t., Austin, TX 4.1300 B.2300 47.000 37.0 1.580 2.2
4, Wilburger Creek, near Austin, TX 4.6100  3.1670 45,940 0.0 2.89G 2.2
5. Lawrence Creek at Ft. Benjamin Harvrison,
IN 2.8600 1.7080 32.210 0.0 2.050 2.1, 2.3
6. Bear Creek near Trevlac, IN 7.0000 3.8640  39.070 0.0 5.440
7. Bean Blossom Creek near Bean Biossom, IN 14.6000 6.4400 32.740 3.0 6.560 2.1, 2.3
8. Little fagle Creek at Speedway, IN 19.3100 11.3000  23.230 2.1 9.340 2.1
9. Pleasant Run at Arlington, Ave., Indiana-
polis, IN 7.5800 3.8220 12.670 15.5 3.570 2.1
10. Pleasant Run at Brookviile Rd., Indiana-
polis, IN 10,1000 5.6440  14.260 156.5 3.720 2.1
11, Boneyard Creek, Urbana, IL 4,70 2.840 9.504 44,1 1.152 2.6

The hydrologic data of the Ross Ade upper watershed were used for studying the rainfall excess models.
The rainfall and runoff data recovded continuously an a 20 inch chart were digitized at one-minute intervals.
The rainfall and direct runoff values were then computed at 15 minute intervals fer the period of April
through December 197G and 1971. The storm of April 18, 1970, for which the rainfall and runoff data were
available at 15 minute intervais, was used for the parameter sensitivity analyses of the several wodels.

The method of estimating the direct funoff and the rainfall excess data used for the Tinear and non-
linear system analyses are given in Chapter I1I of the reference 2.1.

Table 2.2 Data Used for Ross Ade Upper Watershed
Rainfall and Runoff Characteristics

1970 1871 4/18/73
No. of storms in sequence 66 63 1
Measured direct runoff, in. 4.36%5 5.0749 1.164
Volume of rainfall, in. 25.90 27.16 4.617



Physiographic Characteristics

: _ Pervious Impervious
Area, acres 18.170 14.690
Static storage, in. 0.25 0.0625
Initial depression storage {for sensitivity analysis), in. 0.25
Impervious area draining divectly to storm sewer, acres 4,180
Impervious area draining over pervious area, acres 6.810

2.3 S0ii Data

The locations of the principal sojls in the Ross Ade uppevr watershed ave shown in Figure 2.1 which was
taken from reference (2.4} and enlarged. The types of s50ils in the watershed are given in Table 2,3.

Tabte 2.3 Soils Types in Ross Ade Upper Watershed

Symbo1l _ S0l Type Depth of top layer, in. Area, % Effective Depth
A B of storage, in.
Ax3B
Ec Eel silt Toam 0-3% siope 6.0 to 8.0 16 1.12 in
Ms Miami silt Toam 3-8% slope 3.0 to 8.0 13 0.71
Mr Miami silt loam 3-8% slope 7.0 12 0.84
Ch Crosby silt loam 0-3% slope 7.0 5 0.35
M Miami silt joam 12-25% siope 3.0 to 8.0 5 0.27
My Miami silt loam 12-25% slope 8.0 to 12.8 . 49 4.90
Avg. Depth 8.19 in

The soil moisture was measured once a week at Ross Ade upper watershed near the Hydrologic Station at
6, 12, 18, 24, 30 and 36 inch depths using soil moisture cells placed at these depths. The cells were manu-
factured by Soil Test., Inc. The soil moistures at the same depths were also measured by means of a Troxler
Neutron Probe. Attempts were wade to measure the hydraulic conductivity of soils from the Ross Ade upper
watershed using an apparatus and a method very similar to those described by Klute (2.5). A suction of up
to 27 inches of mercury was applied to the sample and the pressure on the water was about 5 inches of
mercury, for about seveh days. As there was no flow through the sample and as only the top layer of the
sample was wet it was concluded that the hydraulic conductivity of the soil samp1es From this watershed
could not be measured by this methed. Consequently, three types of soils were selected, the characteristics
of which were close %0 the average soil properties of the watershed: the Guelph loam, the Ida siit icam and
the Yolo Tight clay. Figure 2.2 shows plois of the hydrauiic conductivity vs. the seil moisture content hy
volume along with the siopes of the curves, p', for these sofils. Other properties of the Guelph Toam
and Yolo light ctay are listed in table 2.4,

Tabie 2.4 Soil Characteristics and Other Constants for Infiltration Models

Sgil Characteristics - Guelph Loam Yolo Light Clay
Porosity, vol. volll . 0.523 0.499
Saturated hydraulic conductivity, in. hrf1 0.5202 0.01743
Moisture Diffusivity, ind et 6.665 0.279
Effective soil storage, in. 3.50
Area under SwKr curve, Sav’ in. 12.55 8.80

Other Constants

Basal area of plant stems, a, percent G.90
Constant rate of infiltration after prolonged wetting, fc’ in hr._] 0.15
Exponent n' in Holtan's formula . 1.40
Free water, G, in. S/2.74
Available moisture capacity, AWC, in. 5S-G
Soil storage capacity, S, in. 3.5
Ratio AWC/G 1.74
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3. ESTIMATION OF EVAPORATEION AND EVAPQTRANSPIRATION LOSSES

3.1 Introduction

The evaporation and evapotranspiration losses affect the runoff from a watershed hy controlling the di-
rect loss of water into the atmosphere and more importantly by affecting the infiltration process. There-
fore, an estimate of evapotranspiration Josses s important in estimating not only the evaporation but also
the infiltration losses. Several models have been proposed to estimate the evapotranspiration ratas from
watersheds, although an analysis of their comparative performance is not availablie. In the present chapter,
the prediction performance of the modified Penman eauation (3.1) as developed by van Bavel (3.2, 3.3) and
Kohler et al. (3.4} are compared with the objective of selecting the better of the two models. The impor-
tance of the role played by the relative humidity in the evapotranspiration estimation is analyzed by con-
sidering the Blaney-Criddle {3.5) and B1aney~Morin (3.6) evaporation estimators, although it is recognized
that the Blaney-Criddle and Bianey-Morin estimators were not originaily developed to estimate evapetrans—
piration losses on a daily basis.

3.2 Estimation of Evaporation by Using the Modified Penman Equation

3.2.17 van Bavel's Approach

The modified Penman's equation (3.1, 3.2) was used by van Bavel fo estimate evaporation from different
surfaces. The approach taken in the present study follows van Bavel’s. The modified Penman equation is
given 1in eq. 3.1.

1 (&/'Y) (G/AS} + LB(GSZ - 92)

rn G+ T) 3.1

The following variables are used in eg. 3.1: E{om./min.}: evaporation. a/y {Dimensionless): parame-
ter dependent on the air temperature at height 22‘ § {cat. minfT): sum of all energy inputs at the surface
exclusive of the sensible heat and of the latent heat of vaporation. A (cmz): water surface area. L {cai.
ng}): latent heat of vaporization. B (cmf] min.}: the turbulent traﬁsfer cogfficient and is given by eq.
3.2. esz{mb}: saturation vapor pressure at temperature T2(°C) at elevation Zz(cm). 'ez(mb): vapor pres-
sure at temperature T, and elevation Z,. Py {gm. cm?s): density of evaporated water. a(mb. °C“]) =
(eS - 952)/(T - T2) where e (mb) is the saturation vapor pressure at the surface temperature T (°C) and
esz(mb) is the saturation Vapor pressure at elevation Z, a short distance above the surface where the tem-
perature is T ( Y. v = CBp {mb °¢” } where p {mb) is the surface atmospheric pressure intensity and

B (°c” } is the Bowen Constant {C K 1/(0.622 L Kw ) where Cp (cal gT u °C ]) is the specific heat of
the water vapor, K (cm min_ ) is the therma] diffusivity, and Kw (m m1ﬂ ) is the vapor diffusivity.

The parameter B in eq. 3.1 is a turbulent transfer coefficient (cm min) and is given by eq. 3.2

B = R mmgrforee %2 (3.2)
n (22/23)

In eg. 3.2, K = 0.622 Kwp/(Kmp C%), where K_ (cm2 sec'l) is the kinematic eddy viscosity, U, {cm minf]) is
the wind speed at height 22, and Z1 {cm) is the surface roughness parameter.

The data recuired for computation are summarized in table 3.1 along with the values of the physical
constants used in the present study. Computational details involved in using van Bavel®s approach may be
found in ref. 3.7, and a discussion of the method is found in ref. 3.2.

Plots of the daily Class A pan evaporation measured at the Purdue Agronomy farm and the evaporation es-
timated by using eqs. 3.1 and 3.2 are shown in fig. 3.1. Most of the estimates are close to the measured
values except for very few days when they are substantially different. These discrepencies are caused by
{a) substitution of solar radiation values observed at the Weather Bureau station in Indianapolis for the
Agronomy farm data to make up the missing data at the Agronomy farm, {b} interpolating the observed values
to estimate missing data, and (¢} possible errors in the measurement of evaporation.

Some of the statistics of the measured and estimated daily evaporation values are given in table 3.2.
The variance of the estimated evaporation is larger than that of the measured evaporation and, in general,

4




the statistical parameters indicate that the estimated values are very close to the measured ones.

Oha of the parameters which must be empirically estimated in eg. 3.2 and hence in eg. 3.1, is the
roughness parameter qu The sensitivity of the potential evapotranspivation estimation to the changes in Z
was analyzed by varying the Z1 values for the data of the years 1967-71. The different Zg values used were
taken from ref., 3.2. The results of the analysis are shown in fig. 3.2, in which: the ratio of the potential

H

evapotranspiration {PET) to the measured (class A pan) evaporation is plotted against the natural Togarithms
aof Z] where ZI is in cm. The ratio of PET to the measured evaporation is not sensitive to variations in Z1
if the Z1 values are small. When Z] is larger than about 15 cm, which corresponds to small bushes (1.3m =
4.3 ft. tall), the estimated PET will be much larger than the measured values, Thus for water surfaces,
grass, most crops and bushes, the calculated evapotranspiration is insensitive to the choice of Z]. However,
the calculated evapotranspiration will be very sensitive to Z] for the values attributed to trees and forests

{50 om < Z1 < 300 em). Some of these results are summarized below.

Table 3.4 Percentage Errovr in Average PET with Change in Z Values and Ratio of
Average of Calculated PET to Average Pan EvaporatTon at the Agranomy
Farm (West Lafayette, Indiana} for the Years Indicated.

Z_i _ Zj PET Zi - PET Ei
% BYPOR = et 30 1)
e e PET l
1967 1968 1969 1970
0.081 (.005 0.66 0.82 0.66 0.71
0.001 0.02 1.51 1.74 1.52 1.73
Z, {em) PET Z]/ﬁff '
0.001 ¢ 1.080 0.977 1.056 0.885
300 {9,597 10.173 9.809 9,847
PET Zi = mean of computed daily potential evapotranspirations
with Z? in eq. 3.2 equal to Zi for the year shown
{number of days of observation listed in Table 3.2)
MET = mean of measured class A pan evaporations for year
shown.

3.2.2 Kohler's Approach

A graphical correlation between the meteoroiogical variables and the datly water surface evaporation
was obtained by Kohler (3.4). This graphical correlation is based on the functional form of Penman's egua-
tion (3.1). An analytical form of this correlation is given by Lamoveux (3.8) as eg. 3.3.

Exp(T, - 212.0) (0.1024 - 0.010661 1n R)] - 0.0001 + 0.0105 a0 880,37 + 0.0041 )3

- (3.3)
0.015 + (T, + 398.36) 2 (g.8554) 10°9 Exp[-7482.6/(T, + 398.36)]

(3.4}

[ '
Ap = 6.41326 x 105{Exp -7482.6 )\ 7482.6 )5

Expt
T, * 398. 36} Ty ¥ 398.36)]

In egs. 3.3 and 3.4, R {langley) is the net so]ar radiation, Ta (°F) is the mean daily air temperature,

T {°F) is the mean da11y dew-point temparature, U (miles day E) is the wind veleocity at 2 ft. above the
surface and £ {inch day } is the evaporation from free water surface.

Equations 3.3 and 3.4 give estimates of the evaporation from a free water surface of extended pro-
portions, without advected heat transfer and assuming no change in the heat storage in the underlying water
body. The data required for computing the evaporation from eq. 3.3, which are summarized in table 3.1, are
much less than the data required to use the van Bavel's method.

The measured daily class A pan evaporation and the values computed by using eg. 3.3 are shown fin fig.




3.3. Some of the statistics pertaining to the measured and the computed evaporation values are given in
tabie 3.2. Kohler's method, which is a functional form of Penman’s equation, also gives good evaporaticn
predictions, as seen by the results given in table 3.2. The reasens for some of the large discrepancies
between the computed and the measured values in Kohler's approach were the same which gave large discrepan-
cies in van Bavel's method. These have been discussed in the previous section.

3.3 The Significance of Relative Humidity in Evapotranspiration Estimation

A numerical experiment was conducted to determine the significance of the relative humidity in the eva-
potranspiration computations. The Bianey-Criddle (3.5) and the Blaney-Morin {3.6) evapotranspiration medels
were used for this purpose. The original objective in the development of these formulas, however, did not
include the estimation of evapotranspiration on a daily basis. However, they were investigated in the pre-
sent study to test the effect of relative humidity and to defermine their capabilities to estimate the daily
evapotranspiration.

3.3.1 Blaney-Criddie Model

The original Blaney-Criddle evapotranspiration model is given in eg. 3.5.

U= KF=1xK F, = x(Ki t; p§/100) (3.5}

In eq. 3.5, U {in} is the estimated evapotranspiration for the season, K is an empirical seasonal coef-
ficient, F is the sum of the monthly evapotranspiration factors defined'in terms of Fi’ F% = ti pi/ise,
where t; {°C) is the mean monthly temperature, p; Is the mean monthiy percent of annual daytime hours, and
Ki is an empirical monthly coefficient.

In the present study, eq. 3.5 has been put in the form of ag. 3.6 to compute the daily evaporation from

a water surface:

E = Ké AT (3.6}

In ey, 3.6, E (in.) is the estimated daily evaporation, KE is an empirical constant, T {°F} is the mean
daily temperature, A is the monthly percentage of daytime hours of the year for the latitude of the place
divided by the number of days in the month. The empirical constant K5 is assumed %o be unity for cpen water
surface,

The measured evaporation and the evaporation computed by eq. 3.6 are shown in fig, 3.4. Some of the
statistics of the measured and the computed evaporation values are given in table 3.2. From the results
presented in fig. 3.4 and table 3.2, it is ¢lear that the B1éney~€r1dd2e model can give evaporation esti-
mates which can be taken only as average values and that the model s not sensitive to the day to day varia-

tions,

3.3.2 Blaney-Morin Model

The Blaney-Morin model, given in eq. 3.7, is different from eg. 3.6 only in the relative humidity term
R'.
E = Kb AT{114 - R') (3.7)

In eq. 3.7, £ {in) is the estimated daily evaporation, Kbg is the empirical consumptive use coefficient,
assumed to be 0.0164 (ref. 3.6), A is the monthly percentage of daytime hours of the year for the place di-
vided by the number of days in the month, T (°F) is the daily mean temperature (°F), R' is the daily mean re-
tative humidity (%). The data required to use the Blaney-Morin model 1is summarized in tablie 3.1.

The pan evapovation computed by using eq. 3.7 and the measured values are shown in fig. 3.1 and some
statistics relevant to evaporation estimation are given in table 3.2. The cutstanding featurs, between the
resyltis obtained from using Blaney-Criddie {fig. 3.4) and Blaney-Morin (fig. 3.1) models is that the Blaney-
Morin model predicts the daily evaporation much better than the Blaney-Criddle model. Consequently, it can
be concluded that the relative humidity term is very significant in estimating the evaporation from humid
areas. Furthermore, the differences between the measured and computed evaporation values {table 3.2) for the
Blaney-Morin model are of the same order, or are less than the values obtained by Kohler's model. In fact,




the performance of the Blaney-Morin model is comparable to that of Konler's model.

The coefficients Kg and Kb in eq. 3.6 and 3.7 must be estimated empirically. Blaney and Morin have
suggested a few values for Kb' If the Blaney-Morin model is to be used at locations where the Kb values are
unknown, they may be estimated by using eq. 3.7. The value of Kb assumed in the present study is very ap-
proximate and it appears that the predictions can be improved by using betier 2stimates of Kb valyes. An in-
vestigation of the variation of the mean error in evaporaiion prediction with a variation in Kb indicated

that the mean error reached minimum for a vaiue of Kb equal to 0.015 (3.7},

3.4 Evaluation of Evaporation Models and Discussicn

The following statisticat measures, which are also shown in table 3.3, were used 0 evaluate the rela-
tive performances of the various evaporation madels: (a) The correlation coefficient of the measured and
computed evaporation, {b) the special correlation coefficient, {c) sum of the squares of errors, (d) the
sum 0f errors and {e). the variance of the computed and measured evaporation. The model which gives the most
favorable values of the statistics cannat necessariiy be selected as the best model because some of the
parameters (such as Kb in the Bianey;Morin model) ave selected by trial and ervor. In spite of these sub-
jective considerations, the statistics such as those indicated in fable 3.3 give a measure of the perfor-
mances of the different models.. ‘

The overall correlation coefficients between the measured and the computed evaporation values are high-
er for the van Bavel and the Kohler methods than for the Blangy-Criddie and the Blaney-Morin models. Ac-
cording to the results in tables 3.2 and 3.3, the evaporation estimates obtained by Kohler's method are
sometimes better than those obtained by van Bavei's method. However, Kohier's method can be used only to
estimate evaporation from open water surfaces. van Bavel's method gives better evaporation estimates than
all the other models, in general, and it has the advantage that it can be used to compute the potential eva-
poration from any type of surface. As one of the objectives of the present study is to arrive at better me-
thods of the computation of losses from urban areas, the van Bavel model is selected as the best model.

However, a considerable amount of data is required to use the van Bavel model. Where such data are not
available, especially where the cVimate is humid, either Kohler's model or the 81aﬁey—Mqrin model may be
used. The Blaney-Morin model has the advantage that it is one of the simplest models and, therefore, it can
be used where net solar radiation data are not available. It must be noted, however, tha the parameter Kb
in the Blaney-Morin model must be carefully selected.
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Model CofreI.

E

- . 1970

- Note:

EB1aney—Cr%dd%e 7

Blaney-Morin

Table 3.3 Statistics for the Evaluation of Evaporation Models'

Sn. Coréél. Sum of Sq. Sum of .Per. of  Mean of Var. of

Daily evaporation computed

Coeff. Coaff. of Error Error Error . Abs. Error Mes. fFv.
Evan Bavel
1967 L7495 _ .951¢% ' . 8599 -2.853 - 7.07. .0484 L0074
1968 L7196 ,9454 . 8088 40 0 1,09 - L0480 . 0064
1964 .7268 . 9367 .8824 -2.1%11 - 5.87 . 0497 . 0063
1970 .7814 L9571 L6647 113 0.32 . 0456 .0077
Exohter ) .
1687 L7413 ©.9582 L7501 1.076 2.66 0.449 L0074
1968 .7233 .9426 . .348% 5.520  15.09 .0480 .0064
1963 .7370 .9384 .8598 7.080  20.05 L0474 .0063
1970 8156 .9626 . .5808 3.836 . 11.03 .0418 L0077
‘ Blaney-Morin
1967 L7661 . 9559 L7909 -5.076 -21.89 - . .0473 .0074
1568 .6584 . 9431 T L8430 -2.645 -'7.23 .0508 . 0064
1969 .6996 .944T_. . 7833 -3.989" -13§28'"‘ L0462 .0063
1970 L7448 .9568 L6744 -2.398 - 6.89 L0462 .0077
Blaney-Criddie o ) _
1967  .8275 . 9456 o . 5697 L1470 0,36 . 0507 L0074
" 1968 .5053 .9234 - 1.1222 -4,732 -12.93 . 0566 . 0064
- 1969 . 6652 ©.9344 ¢ L9140 -5.780 -}6.35 L0510 L0063
.6075 .9382 L9858 -2.650 - 7.73 . 0556 L0077
gvan Bavel Dai]y‘evaPQraticn computed by van Bavgi_methed, inch.
EKoh]er Daj]y evaporation computed by Koh}gr method, inch.
E Paily -evaporation computed by Blaney-Morin model, inch.

by Blaney-Criddle model, inch.
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FIGURE 3.2 VARIATION OF THE RATIO OF CLASS A
PAN EVAPGRATION TO VAN BAVEL EVAPORATION WITH




“NOTLENDJHAT NIHON ATIH0 JHL 40 GNH  NOTit¥RdHAT Ngd b 85470 ATIHO 3HL 40 L071d £7E 3dN3ld

A 3L

[ 134 p.ﬂg D.@.E n.%.— a.*_hn a.u_: D.;mq c-n_m— m-m_m~ @ wsn anﬂw o H.m‘ ) W&ﬂ m.m_aw 3 w_bw u.@_m m.% o.ﬂ nw-mwb n'»_h a.m»u G.W—F Q Mv. aww_ﬂ a.mmm ﬂ.wu m.w_ o+ -
Y : 2
| P
: P 000" -
026! HOLLGMGRA HTTHON % NGLIGNOMSND QEMSUM
fog: W'Jm c-ﬂw w-*u a.v_ﬁ.u _w.w_f.— m-ﬁu . D.ﬂ,— uyﬁ&n a* __m__n w-%ﬂ c‘ﬂ_ua m'ﬁm o m.: Aug %_ME.W i3 mpm [:) ﬂz o.n_ﬁ g m—h n. Jm D.% ﬁ.ﬂm» .Q.D_w« ki w_m o.—wu D.ﬂwu avm_ B0 -
ARV T, _ T S R A
A T A \l}\/\c . : _ /\ \ 3
! P /7 y ; iy Lo B
Y .. N\ _, " \/ 2
Y [} . m
‘_ . ! . I+ B0 .m
]
6961
o
[g:1 o.1 n..n.ﬂm =.a&—. D.R_ﬁ _u.wrﬁ.— . c.%— o.ﬁn o w_wﬁ w.JZ n.ﬁaﬂ n.mn a.ﬂ.ﬁa a.mm: Aua W..Wb.m o ﬂ a;* a.& oa ohg 0°ee o'sh Qb o' ihe [:11 ors o
. i1 1 L L L 1 3 1 L 1 - oaeh"a
A hx 10 < i p I
v/ O )‘ _,_ ] - AY R
P P A A LN A M s
‘ ‘f\ Al A rIV N A/ W A \ Y R'Ya | 3
V% j . . \ ’ . ’ «/ LY R vit Tand M
v . A v \ 2
\ i 3
. . m
8961 =

NI*HQLiBMOJHAZ




[ =28

"NOTLENOEAT 3700183 AINGTE ATTIY0 3HL 40 ONG NQILBYDJEAT NUd U GGHT ATIHO 3HL 40 107 ¥TE F¥NSld

. . . . ABOT LT . .
ool g oLt o' a5t [clez 1 &' At 0 gt o403t i 13 134 o'6s [epi:3 2o oTes 008 07gh o'8e o3 oot a'g
I3 1 1 I3 i i (1 L 3 i 1 1 k3 L L HO0O" 0
m
==
- Bega” ﬁ
=3
=
n
o
ca
ookt E
z
0lel NBiivdodEna g
KOLLEMBJHAT d3unSH3ad 0"

0633
[vuagi
™
|- nonz” M
2
k=
L coon Z
696! HOLIMNOJEAT ADNG ® =
NOLLHMESHAZ U38NSHIN -
o..nwm o'o13 s 4] a'9sl * el ool & oal [rads 13 Q' 0hl o'osl oot swmommm_zw.w 4001 o o6 fils -] Q'oE ot m.ﬂ o' .
i 1 1 i i 1 A 1 1 3 i 1 1 I3 i O00GT0
T v N AT o v ‘ 3
3
: =
- OOGh" =
896! NOliBuodtAS AJNgE ¥
NG1i8E0JEAD OR0SEIH T e
. L] a Em .g_bn D.D_m_“ o.o_md 9.9_5 a.a,mn o.n_mﬂ wm_mﬂur_m._. .c_om nnnm i) 1174 oos Q'8 0"oh o ) oo o at [141]
A i 1 ] ] 13 1 L 1 [Svrag]
,. . , | N :\. Moran
. a’ = ‘J».v. <, . b!. ‘4 ‘ f §I( ol e
A%l 4 il f 7 Y 4 f
. . oo
2961
NOILUNDJAT ABNdRE ¥
| NOLLGMGJHAZS O3S T
08"

Ni‘ NG iu¥0dEAZ






4, DETERMINATION OF THE RAINFALL EXCESS

The estimation of the rainfall excess depends on the determination of the interception loss, of the in-
filtration loss at the surface, of the loss in the static storage, of the evaporation and transpiration
losses and of other losses from the watershed. In an urban watershed the interception loss may be very -
small compared to the cther losses and thus it may be neglected. For estimating the infiltration loss. both
the gain of soil moisture due to the rain and the lesses of moisture from the soil must be taken into ac-
count. As the rate of rainfall exceeds the infiltration rate at the surface, the excess water begins to ac-
cunutate in the static surface storage. When ithe static storage capacity 15 exceeded the surface runcf{ be-
gins. In a sewered area the water infiitrated through the soil surface cannot reappear as runeff. Conse-
quently, the total direct runoff measured at a gaging station in the sewer may be taken to be equal to the
total rainfall excess generated during the corrvesponding storm.

In this chapter the theoretical eguations governing the infiltration phenomena are discussed first.

The constant diffusivity form of the unsteady flaw equation for the flow in porous media is solved by making
use of the linear systems analysis approach. An impulsive response function is obtained for the soil ﬁeisw
ture change. This is followed by the investigation of five models for estimating the rainfall excess. The
first of these models is based on the theoretical infiltration equations discussed in the first section, the
second is semi-empirical, the third is completely empirical and the Tast two are conceptual in nature. ATl
the models were modified for their application to urban watersheds.

4.1 Theory

4.1.1 Governing Equations

The equation o . continuity for the soilwater system can be expressed as

dloay)  Bloayd alea) i)

ax By 8z t {4.1)

where 9; = flux of water transmitted in the i direction, i = x, y or z, the z-coordinate being positive up-
ward; p = density of water; 6 = volumetric water content; t = time.
The movement of water in an unsaturated soil can be expressed by the Buckingham-Darcy equation:
3h' .

] ant, - g (o) 30 - (e 2
g = K)o s e (o) S g, = K (e) (4.2)

where Ki(e) = hydraulic conductivity in the i-direction expressed as a functian of sofl water content, 1 =

i

X, y or z; h' = z—hs = hydraulic head; where z = elevation head and hs = guction head.

Assuming that the wedium is isotropic, then K (8) = Ky(e) = K (6) = K{8). Expressing h' as a sum of
the elevation head, z, and the suction head, h_, and as h = hs(e), then & = e(hs), K(g) = K[e(hs)} = K{hs)'
Assuming p = constant, equations 4.1 and 4.2 can be combined to foym the hswbased Richards' equation in the

H

following form:

sh ah 7 r sh v aK(h.)
8 y 81 4.2 S - S st 28
ax[K(hs’ X } * By(%(hs) 3y J - az\F(hs).az j a9z at (4.3)
The above equation can also be written in terms of the water content, or g-based equation as
B Grey 88T 4 2 ey 287 4 2iproy 280 £ 2K L 20
axﬁD(e) Bx} * 3y h(e) By} Y P(e} 9z Tz Bt (4.4)
Bhs}
where D{g) = ~-K(8) - el is the moisture diffusivity as a function of the water content.

Considering that the infiltration is the flow in the z-direction and using Z = -z, the one-dimensional
Richards' equation can be writteh as

“é%“[[’(ﬁ) ES_J L L ‘ (4.5)

Detailed treatments of the developmenti of Richards' equation have heen given by Swartzendruber (4.1)
and by Childs (4.2).
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4,1.2 Solution of Richards' Equation

The foitowing development differs somewhat from the classical presentation in that a linear system ap-

proach is used and an impulsive response function is cbtained for the relative sofl moisture change, C.

(Ses eg. 4.7a for definition of c). The constant diffusivity form of "the unsteady fliow equation for the

flow in porous media can be written as

38 _ 9 ]y 38 _ 3K

9 Iy 38] | 3%
T A LY 87

where & = nS K = Hydraulic condgctivity in the Z-direction
n = Porosity D = Constant moisture aiffusivity
$ = Degree of saturation Z = Vertical coordinate (+ downward}.

For semi-infinite depth of soil the following boundary conditions are considered:

6 =83 t=0;z>0and&=9;;1t >032=20

The following transformations have been used as in references 4.2 and 4.3.

. 9 - 8 . let

1
Let = p' = constant ; ¢ = ——>i T = Bk £ = gﬁg

g%

(4.6)

(4.7a)

Taking the derivatives with respect to ¢, t and £, respectively, on both sides of eqs. 4.7a the fol-

lowing equations are obtained:

- 2
c % " % aT _p'”

36 z> s D’
{ee m en}

s

The derivatives appearing in Richards' equation are now evaluated as follows:

3K . 3K 38 _ ., 38 . B oapl . 3c
57 " %8 37 0P aL 37 0 5 {8y - 0) 52
2 .
3B 0 - 3 R . g ) 8C
5= 0 (B = ) T 8 5 5e LelBg - &) 5
2 2

20 _p' - ac = B . 3’c
57y (8 - 8} 5E s 5 (8 - o) N

The boundary conditions given in eg. 4.7 may now be written as eq. 4.9.
¢=03;T=0:¢>0andc=1;T>0;E=0.
By using the transformations given in eq. 4.%a,

G = e (B2 -TIA) yelt/2 - T/4)

equétion 4.8_can he written as egq. 4.10,

T
aT ag2

ar

and the boundary conditions 4.9 change to those given in eg. 4.11.

u=10; T=20; £ >0 and u = eT/4 ; T>0; £=0

(4.7b}

(&.7c)

{4.8)

(4.9)

(4.9a)

(£.10)

(4.11)

By taking the Lapiace transform of eq. 4.10 and using the initial condition, eq. 4.11 can be written as

eq. 4.10a.
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E.%., pu = 0 (4.10a)
1a
where & is the transform of u.
Substituting q2 = P, eq. 4.10a can be written as eq. 4.12:
2
ﬁw% - qzu = ( (4.12)
B

with the boundary conditions given in eg. 4.13, which are devived from eq. 4.11.

N =0 R N -
u= 03 T=0; £>0and u = PRI T>0, £=10 (4.13)

The solution of eq. 4.12 subjected to the boundary conditions (eq. 4.13) is given by eq. 4.14,

. o~0E
u = 5*:—T7E (4.14)
and the transfer functicn in the frequency domain is given by eg. 4.15.
B= el (4.15)
Taking the inverse transform of eg. 4.15 the impulse response function, h, is obiained:
he & BT (4.153)
2/5 T3/
The response u to an input 8 is given by convolution integral
U= j hg,z) &{9, T-t)dr {4.15b)
0
where ¢ is a dummy variable.
Substituting back the values of u and h, eq. 4.15b becomes, for an input u = eT/t1 at £ = O
T ¢ P4 (T-)a | _(e/2 - T/4) T ~(r-£)%/a
c = J —gyy v e - e -8 dt = J ey e e dr {4.16)
0 2v7 0 2/7 - 1
The impulse response function of ¢ is thus given by I',
27
o £ -{T-£)
I' = . Exp[ b {4.17)
Z/E'TS/g a4

Substituting the values of £, T into eq. 4.17 the impulse response function of ¢, 1* can be written
as eq. 4.18. '

C_ W2 )]
I = T (4.18)
2ttt J

0, i.e., Z =0, the response of ¢ is given by the convolution inte-

For a constant input ¢ = 1 at &

gral
t 1/2 T it V2]
¢ = J B B e (4.19)
02vn o' T L T
where ¢ i5 a dummy variable which stands for t.
Substituting the value of ¢ from eg.4.7a and solving for 6 the foilowing eguation is obtained.
t 7 nl/2 Mg 2
] =(p' -7}
g =6 + (8, =8) J - Exp dt (4.20)
I T P Y iV |~ a6 )

Equation 4.20 gives the water-content distribution within a semi~infinite region.
The fiux of water through the surface (Z = 0} or the infiltratien capacity can be written as
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=l i-Kllz=0 (4.21)

where KZ s the hydraulic conductivity of the surface layer. Differentiating eq. 4.20 with respect to Z
one obtains:

t /2 ., . ) 2 : t 1/2 {

38 _ D z -{p'1=7) 2(o'v-7) D ~{p'1-2)}
=== (8, - 8 ) {J « Exp , dr + e s e ExpL e dr
By 0" ' il ZV;Ap,z 372 ahT 40t 0 2¢a'p'2 372 v |

At the surface, i.e., Z » 0, the previous equation becomes eq, 4.22.
1 212\
i R

[-F3

i

8 . Jt pl/2

£ : - Exp
o a/i 't 22

57 - 8, )dr (4.22)

The fiux of water through the surface is given by eq. 4.23 which is obtained by substituting eq. 4.22
into eq. 4.21:

e -8 )d{} - K {4.23)
2 n 8] Z
0 g 02 312 . Exp{qur) |

. gjt 032

k

For solving equation (4.6) at Z = O subjected to the boundary conditions {eq, 4.7}, the following assump-

tions were made:

The moisture d¢iffusivity is constant.

The depth of the soil is semi-infinite.

The slope of the hydraulic cenductivity vs. soil moistura curve is constant. (See Figure 2.2).
The water content at the surface is constant.

The soil mass is homogeneous.

- P Q. O U om

The hydraulic conductivity has a constant value.
Figures 4.1 and 4.2 show the plots of the impulse response function, %' (eq. 4.18), and of the in-
filtration capacity, f {eq. 4.23), for different types. of soil and initial moisture conditions respectively.

4.2 Rainfall Excess Medeis

Five models for estimating the rainfall excess in urban watershaeds have been studied. The MIT model is
based on the theory discussed in the preceding section. The Minnesota model is based oh Darcy's law in con-
sunction with some empirical assumptions. The Holtan model is empirical. The mu]ticapacitywbasfn accounting
model and the antecedent retention index model may be classified as cdnceptual models. These models were
originally formulated for rural watersheds. They were modified in the present study for application to urban
watersheds. The basic eguations, the data requirvements, and a sensitivity analysis of the parameters are
given for each model along with the evaluation of their respective performances based on an application to the
Ross Ade upper watershed. The models are then compared and evaluated for their application to urban catch-

ments.

4.72.17 wodifications of the Models

The modals discussed in the following sections have been modified in order to meet the following two
objectives: (a) to estimate the rainfall excess from continuous vecords of rainfall events and from esti-

" mated infiltration and other losses and (b) to keep an accounting of the soll moisture exfiltrated by the
gvaporation processes. The Tive modifications of the models are as follows,

a. A loss of 1716 inches was assumed for each storm o account for the water reguired to moisten the
streets and sidewalks and also to fi11 the static storage in the small depressions of the paved areas. The
deductions are made for streets, sidewalks and parking lots which drain directly into the storm sewer.

b. Some of the runoff from the impervious areas does not drain directly into the storm sewer but runs
over lawns and other pervious areas. The imperviocus areas not connected to the storm sewer are expressed as
a percentage as shown in Figures 4.3 and 4.4.

¢, In the pervious areas, when the rate of rainfall exceeds the infiltration rate, the excess water be-
gins to collect in the surface storage, which is assumed to be 0.25 inches for each stovm. The local static
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storage must be filled before any rainfall excess is generated. At the end of & storm, water in the static
storage will infiltrate and the exfiltration phase will start only when static storage becomes empty.

d. To keep an accounting of the soil moisture carried over from one storm to another, an effective
depth for the infiltrated soil moisture has been introduced. The total effective storage for the soil water
is equal to the effective depth multiplied by the porasity of the sgil. It is assumed that the moisture
goes into storage by infiltration, and leaves the storage either by exfiltration or by percoiation into the
Jower layer at a constant rate equal to the hydraulic cenductivity of the Jower soil layer. When the exfil-
tration starts, it is assumed that there is no toss from the effective storage layer into the lower layer
due to percolation. Therefore, either after a storm, before a dry period or just befoere a storm the initial
meisture content of the soil layer can be computed from the moisture content in the effective storage and
the depth of the storage.

In the calculations of the infiltration and exfiltration rates {(e.g. by egs. 4.25 through 4.28) an equi-
valent rainfall intensity is used instead of the actual intensity. It is computed by adding the amount of
rainfall during the time interval, At, to the amount of depression storage available at that time divided by
the time interval, At.

4.2.2 Calibration and Verification of the Models

The models described in the following sections were tested by using the data of the Ross Ade upper wa-
tershed listed in Chapter 2. The models were calibrated and verified by using the rainfall and runoff re-
cords of 1970 and 1971, respectively. The storm of April 18, 1970, was used for the parameter sensitivity
analyses of the models.

4.3 The MIT Model

The original mode! was suggested by Eagieson {3.2) and was incorporated in the MIT catchment model by
Harley et al. (4.4). It is based on the constant diffusivity form of Richards' equation. '
The infiltration rate and the volume of infiltration or exfiltration up fo time t are given, vespec-

tively, by:
p 12 2(e; = 85)° D
f=(o5-0y) [mg) K 3 VE—— (4.24a,b)
The infiltration rate is calculated by:
o) -
a fin = {g, -~ n) oy - Kq it {£.25)
. iy /2 .
b, fin =9 = (ei - eo) g%?ﬂ - Kqy otherwise (4.26)
and the exfiltration rate is calculated by
911/2
a. fo, = (8; - 0) B -k PE > f . (4.27)
51172 _
b. f, = PE= (o) - &) B -k atherwise (4.28)

where: 61 = initial moisture content in soil profiie, 8y = surface moisture content at t » 0, K0 = hydrau-

lic conductivity of the surface layer, f. = infiltration rate, in hr'g; fay = axfiltration rate, in hr'l;

i = rainfall intensity, in hrnl; and¢ PE = potential evapotranspiration rate, in hr“i.

4.3.1 Computational Procedure

A Fortran IV program was written to compute the rainfall excess at 15 minute intervals making use of
the modifications described in Section 4.2.1 The computational procedure is presented in Flow Chart 4.1 for
the pervious avea and in Flow Chart 4.2 for ihe impervious area in which the following notations are used:

6., &

i
S

0 initial moisture content in the seil profile, and on the surface respectively.

at Degree of saturatien.
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f

Porosity.

DEP, MDEP Depression storage on the pervious avrea, and the maximum value of DEP.

AXS Saturated hydraulic conductivity of the soil.

t, 4t Time count and the time step.

P Rainfall intensity.

XKS Yolume of rainfall during at.

EDEP Equivalent depth of rainfall.

fin’ fex Rate of infiltration and of exfilttration, respectively.

Vft’ \J’1c Volume of infiltration up to the end of the tth or t+Atth time step from the beginning

t+at of storm period, respectively.

AV?, AVe Volume of infiltration and of exfiltration in time aAt, respectively.

St’ St+At Moisture storage value in the effective depth at the end of the tth and t+Atth time
step, respectively. .

PE Potential evapotranspiration value during time step at.

Ve » V Volume of exfiTtration up to the end of tth or t+Atth time step from the beginning of

t t+rat the dry period, respectively.

RE Rainfall excess volume in time step At from the pervious area, after satisfying the
depression storage.

ER Excess of rainfall volume over the infiltration volume in time step AL from pervious
area, before satisfying depression storage. 4

REVt, REVt+at Rainfall excess volume at the end of tth or t+Atth time step from the pervious area,
respectively.

EGPTH Effective depth of storage.

MLOSS - Maximum value of the static storage on the impervious area.

LOSSt, LOSStmt Static storage available on the impervious arvea at the end of time step t or t+at,
respectively,

REXCt Rainfall excess volume from the impervious arez during time step f.

RVOLt, RVOLtMt Total rainfail excess volume at the end of time step € or t+at. respectively.

"The'da{a‘required for implementing the MIT model aré'given in table 4.1.

4.3.2 Implementation of the Medel and Sensitivity Analysis of the Parameters

In addition, the
value of the moisture diffusivity., D, was optimized to give the best fit between the total measured direct
runoff and the total computed rainfall excess for the &6 storms of 1970.
content, 81’ at the beginning of the period of interest was taken equg] to the poresity if the seil was com-

The model was tested by using the Upper Ross Ade watershed data given in Chapter Z.
The uniform volumetric moisture

pletely saturated, equal %o zero for a dry soil or estimated from the degree of saturation and the porosity.
The effective soil storage value, S, was taken from Holtan's model where it had been cptimized (see Section
4.5.3). The petént1a1 avapotranspiration input was computed by van Bavel's model (Section 3.2.1).

A sensitivity analysis of the parameters of the modified MIT model was made using the rainfall data of
April 18, 1970, and the soil characteristics data of the Gueiph loam and of the Yolo light clay.
of the parameters that remained fixed were taken from Tables 2.2 and Z.4, those which varied took the ranges

The values
of values shown in Fig. 4.5, Figure 4.5 also shows the values in percent of the difference between the wea-
. sured direct runoff and the computed rainfall excess. Isoerror lines, i.e., the contour of the same percent
of error, at an interval of 100 percent are shown in fidures. .

The values of the maximum and initial depression storage and of water dif-
fusivities are given in tables 2.2 and 2.4, For 0.4 < 85 < 0.5 for the Guelph loam and 6, > 0.35 for the

Yolo 1ight clay the zero isoerror line is nearly vertical showing that within this range the nfiltration

a. Hydraulic conductivity.

rate is very sens1t1ve to the values of the 1n1t1a1 mo1sture content and practically insensitive to the val-
ues of the hydraulic conduct1v1ty

b, Diffusivity D. The values of the maximum and initial depression storages and of hydraulic conduc-
tivities are given in tables 2.2 and 2.4. For the Guelph toam the iscerror iine remains horizontal for
0 < o, < 0.2 and 0.01 < D < 0.7. For 0.2 < 8y < 0.4 and
0.7 < D < 2.7 the iscerror Tine is approximately a 45 degree line showing that in this range the model is

The model is very sensitive to D in this range.

16




equally sensitive to both variables. For ei > 0.4 and B > 2.7 the iscerror line becomes nearly vertical
thus showing an insensitivity to the D values. For the Yolo light clay the zerg isoerror line is approxi-
mately a 45 degree line for 0.10 < 81 < 0.35 and for 0.02% <D < 0.2, For 0.35 < By < 0.4 the zero isoer-
ror line becomes vertical showing that the model is insensitive to D within that range.

¢c. Maximum static storage, MDEP. The value of the initial depression storage, water diffusivities
and hydraulic conductivities are given 1in tables 2.2 and 2.4. For the Gueiph Toam the zero iscerror line is
nearly horizontal for 0.02 < MDEP < 0.045 and 0 < 61 < 0.36. For 0.37 < ei < 0.42 the zero iscerror line
becomes nearly vertical. The model is very sensitive to MDEP values. The later statement is true for Yolo
light clay for o, > 0.3. '

d. Static storage {before the storm), DEP. The values of the maximum depression storage, hydraulic con-
ductivities, and water diffusivities are given in tabigs 2.2 and 2.4. For 0.42 < 61 < §.47 for Guelph loam
the zero iscerror Iine becomes vertical. For Yoto light clay this is true for 0.35 < By < 0.4, This means
that the model is very sensitive to 9y for 8, > (.42 for Guelph loam and 8y > 0.35 for Yolo 1ight clay and
not at alt sensitive to DEP within that range.

4.3.3 Evaluation of the Resulis

Out of the three types of soils tested, it was found that the Gueliph Toam gave the best it between the
measured direct runoff and the computed rainfall excess foyr the 66 storms in the year 1970. The minimum of
the sum of squares of the ervors was taken as the criterion for the selection. The model was then run with
the rainfall data of 63 storms for the year 1971 to predict the rainfall excess at 15 minute intervals. The
scatter diagrams of the computed rainfall excess plotted against the measured direct runoff of each storm
for the years 1970 and 1971 are shown in Figure 4.6. Table 4.2 gives the statistics of the rainfall excess
computed by the modified MIT model. Figure 4.7 gives the distribution of the differences between the mea-
sured direct runoff and the computed rainfall excess for each storm for the years 1870 and 1977.

The computed rainfail excess volume compares fairly well with the measured direct runoff for the year
1970. For the year 1970 more than 75 percent of the error is between -0.02 and .02 in. This percentage
decreases to about 65 percent for 1971. The erroy in the computed rainfall excess volume for the whole year
is 1.90 percent for the year 1970 but for the year 1971 it is 11.30 percent. The reason for this increase
in error may be explained as follows:

The total amount of rainfall for the eleventh storm in the year 1971 was 3.59 inches whereas the divect
vunoff was Q.44 inches.. The amount of direct runoff seems small compaved to the direct runoff from similar
amounts of rainfall under approximately similar watershed conditions. The computed rainfall excess for the
storm was 1.12 in. which explains about 58 percent of the sum of sguares of error for the year 1971. It
should also be pointed out that iniets exist along the Ross Ade upper watershed boundary which are part of
a combined sewer system which does not pass through the gage. During large storms these inlets may be over~
topped, causing runoff to flow inte the watershed {4.5). Consequently the area of the watershed contri-
buting rainfall excess was variable for excessive storms.

4.2 The Minnesota Model

Russel G. Mein {4.8} at the University of Minnesota developed and tested thé Minnesota infiltration mo-
del for computing the infiitration rate for a single rainfall event of uniform fntensity. The model is based
an Darcy's Taw and is philosophically identical to the Green-Ampt equation 4.7.  The following assumptions
are made:

a. The soil is homogensous throughout the profile.

h. The initial moisture content of the soil profile is uniform.

c. The rainfall over the surface is uniform.

d. The initial moisture content befaore a rainfall event is small so that the relative hydraulic con-
ductivity £Kr = K(B)/Ks] is close to zero.

The rainfall intensity is greater than the hydraulic conductivity.
There i3 an abrupt wetting front with the so0il beyond at the initial meisture content, the sail be-

~h D

hind at saturation.
g. At the moment of surface saturation, the infiltration rate is equal to the rainfall rate.
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There are three cases of infiltration under different rainfall conditions:

a. The rainfall intensity, I, is less than the saturated hydraulic conductivity, KS.

b. The rainfall 1ntensity,_1; is greater than the saturated hydraulic conductivity, Ks’ but less than
the infiltration capacity,_fp, which can be defined as the maximum rate at which soil can absord
water through the soil surface.

¢. The rainfall intensity, I, is greater than the infiltration capacity, fp'

The original model was proposed for infiltration of constant intensity rainfall, I » K into a soil of uni-
form moisture content, By The mode] deais with the cases b and ¢ above. The hypothetical soil moisture
profiles at the time of saturation and after the runoff has begun are shown-in Figs. 4.8a and b, respective-
iy.

4.4.7 Modifications of the Model

The Minnesota infiltration model was medified to allow for a non-uniform rainfall intensity, to estimate
the time of surface saturation, to compute the infiltration losses for a series of the rainfall events in-
terspaced by dry periods and to allow for combinations of pervious and impervious surfaces. As a result
the model had to be medified to take care of both the infiltration and the exfiltratien phases. Tha model
was modified in the following way.

a. To allow for a non-uniform rainfall intensity and o estimate the time of surface saturation. The
rainfall volumes that would infiltrate up to the surface saturation are Fs1, Fsz, Fss, Fsa corresponding to
rainfall intensities of'I1, 12, 13, I4 respectively (see Fig. 4.9). Up to the time of surface saturation
the infiltration rate is equal te the rainfall dintensity. The volume that would infiltrate up o surface

I
. ) 29 3!
14 be the sequence of rainfall intensities of duration Xys Kgs Xgy X ahd t}, tz,‘t3, t4 be the correspond-

saturation for a particular rainfall intensity may be calculated by using equation 4.30. tLet 11, I

ing times to saturate the surface. For the duration x]'< ty the amount of rainfall that would infiltrate is
Fx] < Fs1. The rate of infiltration during this duratien is egqual to the rainfall intensity. For the dura-
tion Xo < tg, the amount of rainfall that would infiltrate is 5x2 where Fx1 + sz < Fsz. "For the duration
Xg < t3 the amount of rainfall that would infiitrate is Fx3 where Fxq + sz + ?xg 3AFS3A If duration Xy =
Xy = Xy = ] minute, then the surface would be saturated at the third minute. To find the time of surface
saturation, subtract Fx1 + Fx2 from 553. Let this be equal to A54. Compute At3, by dividing As3 by 13.
The actual time of surface saturation is then equal to Xyt Xy F At3 from the beginning of the rainfall e~
vent. Once the surface is saturated, the infiltration rate may be computed by using equation 4.31.

b. To aliow for the exfiltration phase. It has been assumed that equation 4.31 s applicable to pre-
dict the exfiltration rate by changing F, the infiltration volume, to E, the exfiitration volume and re-
placing the moisture deficiency, XIMD, py the moisture content during the exfiliration phase XEMD {= 6; - 90).

The only constraint is that the value of f_ should not exceed the rate of evapotranspiration.

¢. To allow for the perviocus and impgrvious areas. The tnclusion of static storages for pervicus and
impervious areas and the use of an equivalent rainfall intensity for handling the case of an impervious area
drainfng on a pervious area are described in section 4.2.1.

d. Soil moisture accounting. An effective depth of storage has been introduced as described in sec-

tion 4.2.7.

4.4.2 Basic Equations

The equations required to estimate the infiltration or the exfiltration are as f0110w;:
During a storm period: '

Fip = L until F = £ (4.29)
5., ¢ XD '
FS - I/KS 7 . ) ‘I > KS | (4-30)
[ s (xmMp)) ' '
f,o=f sk N+l F>F (4.31)
in P 5\ OF $ }
i I> fp
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f. =1 otherwise {4.32)

During a dry period:

5, (XEMD)
K1+ -2

H
ax E§

it

PET > fe (4.33)

X

fex = PET gtherwise

in (in. hrf]) = infiltration rate, ¥ {in.
ex (in. hrT]) = axfiltration rate, T {in. hrT]) = average intensity of the
r?infa11 excess, Sav = area under the capillary suction vs. relative hydraulic conductivity curve: Sav =
IG S.dKr; YEMD = THETAL - THETAO: XIMD = initial moisture deficit; THETAI (vol. vo]fi} initial moisture
content of the soil; THETAD = moisture content at surface, assumed zero; K {in. hrT})

where Fs {in.)} = infittration volume up to surface saturation, f
hrf1) = infiitration capacity, f

B

H

5 saturated hydraulic

conductivity.

4,4,2 Computational Procedure and Data Requirements

A Fortran IV program was developed to compute the rainfall excess at 15 minute intervals. The average
daily evapotranspiration was supplied as an input. The computational procedure is presented in Flow Chart
4.3 in which the foliowing notation is used.

THETAI, THETAS Initial and saturated moisture content of the soil profile, respectively.

ERR Equivalent rainfall intensity.

XivMD Moisture deficiency.

AR Depth of rainfall in time step at.

fin’ fex Rate of infiltration, of exfiltration, respectively.

F, FS Volune of infiltration up %o the current time step and up to surface saturation, re-
spactively.

MDEP Maximum depth of static storage.

St’ St«At $011 motsture storage value at the end of the tth or t—Atth time step, respectively.

AKS Saturated hydrautic conductivity.

TAt, TAt—At Volume of rainfall excess at the end of the tth or t~Atth time step, respectively.

AAt Rainfall excess during the step At,

PET Potential evapotranspiration rate.

Et’ EtuAt Volume of exfiltration at the end of the tth or t—Atth time step, respectively.

Eat Volume of exfiltration during time step At.

XEMD Moisture coatent of the soil during the exfiltration phase.

n Porosity of the soil.

DEPT Effective depth of soil stovage of the watershed.

DEP Static storage during the current time step.

ER cxcess of rainfall volume over the infiltration volume in fime step At from pervious

area before satisfying depression storage.
The data required for the implementation of the modified Minnesota model are given in fable 4.1.

4.4.4 Implementation of the Model and Sensitivity Analysis of the Paramelers

The model was implemented for the Ross Ade upper watershed using the data given in tables 2.2 and 2.4.
The effective soil storage value, §, was taken from doltan's model as discussed in section 4.5.3. The soil
properties for the Guelph loam gave the best rasult as was the case for the MIT model. The sum of squares
of differences of measured direct runoff and computed rainfall excess for each stovm was the criterion for
the testing.

The model was run with different values of the saturated hydraulic conductivity to evaluate its effect
on the sum of squares of errors between the measured direct runoff and the computed rainfall excess for the
1970 data. The sum of sguares of errors was found to be minimum for a hydraulic conductivity of 0.13 for
the Guelph locam.

Sensitivity analyses of the modified Minnesota model to changes in Sav’ in the hydraulic gonductivity, in
the maximum depression storage and in the depression storage before the storm were made using the rainfall
data of the storm of April 18, 1970. The results are shown on the Figs. 4.10 and 4.17. The values shown on
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the figures are percentages of the difference between the measured direct vunoff and the computed rainfall
excess. lspervor lines, at an interval of 100 percent are shown in the figures. In ail cases the depres-
sion storage before the storm was 0.0 in.

a. Area under 5-K_ curve, Sav' The valuas of the maximum depression storage and the hydraulic conduc~
tivities are given in tables 2.2 and 2.4. For the Guelph loam there is no zero isoerror Iine for the range
of values used. For the Yolo light clay the zero iscerror line is a vertical Tine for 0.0 < XIMD < §.05 inch
and 0.8 < Sav < 8.8. The model is very sensitive to XIMD and insensitive to Sav wWwithin this range of values.

b. Hydraulic conductivity, K. The values of SaV and of the maximum depression storage are given in
tables 2.2 and 2.4. For the Guelph loam the zerc isoervor makes about ten degrees with the x-axis for
6.05 < XIMD < 0.4 and .047 < i < .14 wheveas for the Yolo light clay the zero isoerror becomes a vertical
Tine for 0 < XIMD < 0.05 and .0016 < K < .017 which shaws that for the Yolo Tight clay the model is very
sensitive to change in XIMD and insensitive to K values for the range of values used, whereas the opposite
is true for the Guelph loam.

c. Maximum static storage, MOEP. The values of the hydraulic conductivities are given in table 2.4.
There is no zere isoerror value for the sets of data wsed for Guelph Toam. For the Yolo Tight clay the zero
isoerror line is a vertical line for 0 < XIMD < 0.05 and 0.023 < MDEP < 0.25. The model is very sensitive
to XIMD values but insensitive to MDEP values for this range of values.

d. Static storage, DEP, (before a storm)i The value of the maximum depression stovage and of the hy-
draulic conductivities are given in tables 2.2 and 2.4. There is no zero isoerror line for the Guelph loam
for the range of the data used. For the Yolo light clay the zero isperror line becomes vertical for
0 < ¥MID « D.05 and 0.023 < DEP < 0.25. For these range of values the model is very sensitive to ¥IMD val-
ues and insensitive to DEP values.

4.4.5 Evaluation of the Results

Scatter diagrams of the computed rainfall excess plotted against the measured dirvect runoff of each
storm for the years 1970 and 1871 are shown in Figure 4.6. The statistics of the computed rainfall excess
calculated by the modified Minnesota model and the measured direct runoff for the year 1970 and 1971 are
given in Table 4.2. The distributions of the differences between the measured direct runoff and the com-
puted rainfall excess for each storm for the year 197C and 1871 are given in Figure 4.7. In general, the
computed rainfall excess volume compares fairly well with the measured divect runoff for the year 1970 (see
Fig. 4.6 and Fig. 4.7). The percentage of error for the whole year and the sum of squares of the ervors
are somewhat larger for 1971 than for 1970, This increase is due in part o the error in the direct runoff
of tha eleventh storm of 1971 {(already discussed in section 4.3.3) and in part to the approximate values of
the porosity, the saturated hydraulic conductivity and Sav of Gueiph loam used in the model, Nevertheless
a little over 77 percent of the error is between -.02 to .02 inches for 1970 and this decreased to a little
over 56 percent in 1971. The sensitivity analysis shows that soil chavacteristics significantly affect
the performance of the model.

4,5 Holtan Model

H. N. Holtan (4.8, 4.9, 4.10) proposed the following empirical infiltration model: {see Fig. 4.12a)

£ = als-A)" ¢, (4.34)

where £ = infiltration capacity, in hel

a = percent basal area of plant stems.

s = soil storage capacity = G + AWC, in.

F = accumulated infiltration volume, in the overlying stratum, in.

n' = a constant for a given soil,

fc = constant rate of infiltration after proionged wetting, in hrfT,

6 = free water, in.

AWC = available moisture capacity, in.
The following assumptions have been incorporated in eq. 4.34.
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a. The volume of rainfall, P, at rates in excess of the infiltration capacity, f, must f{11 the sur-
face depressions, Vd’ before direct vunoff can occur.

b. The greatest intake s in the vicinity of the plant stems. The percent basal area, a, of the plant
stems 15 an index of the effective area of most rapid infiltration.

c. The final near-constant rate of infiltration, fc’ is associated with the impeding layer of goil.

d. The infiltration rate, f, appreaches fc when the storage, S, is exhausted by the accumulated infii-
tration, F, in the overlying soil strata.

e. When the rainfall ceases, the infiltration will continue to the extent of the depression storage.

f. When the rainfall ceases, the free water, G, will drain through the underiying strata at a constant
rate, f.. This provides an infiltration recovery. '

g. Ouring the periods of no rainfall the availadble storage, S_, recovers through evapotranspiration to
the extent of the available water capacity, AWC.

4.5.1 HModifications of the Model

In order to estimate the rainfall excess from an urban watershed the model has been modified as dis-
cussed in Section 4.2.2.

4.5.2 Computational Procedure

The final near-constant rate of infilttration, fc, may ‘be estimated from the hydrelogic grouping of
soils as the SCS5 Handbook (4.7} or from the Handbook of Applied Hydrology {4.12). The storage in the over-
1ying horizon, S, may be computed as the total porosity in the A-horizon minuys the moisture at a suction
of fifteen bars. This may be found in USDAHL-70 model of Watershed Hydrology (4.13) and alse in referance
4.12. The available soil moisture capacity, AWC may be estimated from the soil texture as in reference
4.10. The free or loosely held water, G, is estimated as the difference betwsen S and MWC, The value of a
15 found to corralate with the density of vegetation and may be estimated by using Table 3 in reference 4.10

A Fortran IV program was written to compute the rainfail excess at b minute intervals using the pro-
cedure given in Flow Chart 4.4. The average daily evapotranspiration input was computed as indicated in
section 3.2. The foliowing notations are used in Flow Chart 4.4:

DELP Volume of rainfall in the current time step, At.
DELF Volume of infiltration in the current time step, at.
¥D Depression storage in the current time step, at.
DPE Excess rainfall in the current time step, at.
S Soil storage capacity.
F Accumutated infiltration volume in the overlying strata up to the current time step.
c Constant rate of infiltration after prolonged wetting.
Free water.
AWC Available moisture capacity.
ft’ ft-At Infiltration capacity in the tth and t—Atth time step, respectively.
Sa S-F
PE Total excess rainfall for the storm.
RE Rajnfall excess in the current time step. .
BELF Average volume of infiltration for two consecutive time steps.
ET Evapctranspiration in the current time step.

Tor the impervious area the procedure is the same as in section 4.3.1 and Fiow Chart 4,2,
The data required for the implementation of the modified Holtan model are given in table 4.7,

4.5.3 Implementation of the Model and Sensitivity Analysis

The data used for the impiementation of the model are given in Tables 2.2 and 2.4. The values of MDEP,
fc’ a, G, AWC were taken from references 4.9, 4.11, and 4.12, for the types of s0ils and vegetation in the
Ross Ade upper watershed. An average weighted value for each of the above parameters was then estimated.
The value of S was optimized to give the best it between total measured direct runoff and total computed
rainfall excess for the 66 storms in the year 1970. The value of § equal to 3.5 in. gave the best fit. The
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minimum sum of sgquares of error was the criterion for the selection.

A sensitivity analysis of the parameters of the modified Holtan model was made using the rainfall data
of the storm of April 18, 1970. The results of the sensitivity analysis are shown in Fig. 4.12b. The values
shown on the figures are the percent of difference beiween the measured direct runoff and the computed rain-
fall excess. Isoerrer lines at intervals of 100 percent are also shown on the figure.

a. Available storage, Sa = 5-F. The values of n', Vd and AWC/G are given in table 2.4, and fc = 0,25,
For 1.0 < Sa < 2.0 and 0.5 <5 < 10 the zero iscerror line is nearly hovizontal. Thus the model is insensi-
tive to S in this range. When 0 < S < 1.0 and 1.5 <5, < 10 the zerc iscervor line becomes vertical show-
ing that the model is insensitive to Sa in this range but very sensitive to §.

b. The final near constant rate of infiltration, f.. The values of n', V,, ANC/G, and S are shown in

Table 2.4. The zero isoerror line is a 45 degree line fgr 0.02 < fc < 0.25 and 1.3 <_Sa < 3.5. Thus the
medel is sensitive to both S and Sa values in this range.

¢. Ratic of the available moisture capacity to free water capacity, AWC/G. The values of n', Vd, S,
and fc are shown in Table 2.4. The zero iscerror line is horizontal for 0.2 < AWC/G < 0.4 and O < Sa < 3.5,
thus indicating that the model is insensitive to Sa in this range, but appears to be very sensitive to
AIC/G.

d. Exponent, n'. The values of Vd’ S, fc, and AMC/G are shown in Table 2.4, For 1.0 <n' < 1.1 and
0 < Sa < 3.5 the zero isoerror line is nearly horizontal. Thus the model is very sensitive to n' and insen-
sitive to Sa in this range.

. Maximum depression storage, Vd' The values of S, fc, AWC/G and n' are shown in Table 2.4. For
values of 0.0 < Vd < 0,25 and 0 < Sa < 1.3 the isoerror Tine makes-an' angle of approximately 20 degrees,

indicating that the model is more sensitive to 'V, than to Sa within this range.

4.5.4 Evaiuaticn of the Results

The scatter diagrams of the computed rainfall excess plottad against the measured direct runoff of each
storm for the years 1970 and 1971 are given in Figure 4.6. The distribution of the differences between the
meastyred direct runoff and computed vainfall excess for each storm for the year 1970 and 1971 are shown in
Figure 4.7. The statistics of the rainfall excess computed by the modified Holtan model are given in Table
4.2, The compuied rainfall excess volume compares well with the measured divect runoff for the year 1970.
The percentage of error for the whole year is 0.46 percent in 1870 and for the year 1971 it becomes 1.98
percent. The reason for at least a part of this increase has been discussed in Section 4,.3.3. It szems
that although the total ervor for the prediction year 1971 is small yet the variation of computed rainfall
excess from storm to storm s gquite high as evident from the variance of the ervor and from the sum of the
squares of the errors,.

The mode! appears to be semsitive to n' and AWC/G and has a varying degree of sensitivity to S, fc and

4.6 Multicapacity Basin Accounting Model

M. A. Kohler and M. M. Richards (4.14) develeped a model for computing the runoff from rainfall events
based on the concept that the usable moisture capacity varies from point to point over a watershed, and that
the distribution of the meisture capacity may be simulated by several reserveivrs with different storage ca-
pacities which correspend to different parts of the watershed {see Fig, 4.13). Accounting computations are
carried independently for each of the several reservoirs. The loss, i.e. the rainfall minus the runoff, is
equal to the rainfall at the beginning of the storm and it approaches the deficiency assymptotically as
the rainfall continues. The relation may be expressed as

g = (p"+ MM - g (4.35)

where Q = rainfall excess volume; d = integrated index of initial moisture deficiency in the reserveir; p =
rainfali; n = ¢ + K'd; ¢ = constant; (see Fig. 4.13) and K' = constant. The deficiency in a reservoir at
the end of a time interval may be computed from the continuity equation:

pypp =dp - (P-0Q) +E  0=<d . <5 (4.36)

22




where dt’ d = Moisture deficiency in the reservoir at the end of time periods t and t+at, rvespectively.

t+at

i, = Rainfall excess volume (equal to direct runoff veolume for a particular storm).
E = fctual evapotranspiration losses during time period At.
3 = Maximum storage capacity of the reservoir.

A Tinear regression equation can be developed using the measuved dirvect runoff as the dependent variable
and the computed direct runoff from the reservoirs as the independent variabies:

i=m
Q= €+ iz} C; O _ {4.37)

th

where C, Ci = constants; Q. = computed direct runoff from the 17 reservoir; m = number of reservoirs; and

"
QM = measured direct runoff.

4.6.1 Computational Procedure

A set of reservoirs of different capacities is selected and the initial deficiencies of the reservoirs
are assumad.
The £low Chart 4.5 iilustrates the sequence of the calculations, in which the foilowing notations are

used;
Si = maximum storage capacity of the ith reservoir.
di = deficiency of the 1th reserveir.
Q. = computed divect runoff from the 1tﬁ reservoir,

REi = rainfall excess from the 1th reservair.
The only data required apart from the rainfall and the direct runoff are the evapotranspiration esti-
mates at specified time intervals.

4,6.2 Implementation of the Model

The model was tested using the Upper Ross Ade watershed data given in Chapter 2. The daily evapotrans-
piration computed by van Bavel's method {Section 3.2.1) was used in the multicapacity basin accounting mo-
del. As the watershed is urbanized, it includes a vange of perviousness which is simulated by reserveirs
naving a large range of storage capacities. A smail storage capacity is used to represent the static
storage in the impervious avea and large values are used for the static and the seil moisture storages for
the different types of soils in the pervious part of the watershed. Therefore, five sets of reservoirs
cach containing five reservoirs with the capacities shown in the Tower part of Figure 4.14 were selected to
compute the rainfall excesses. The initial deficiencies were also varied from zero to the maximum storage
of the reservoirs in Five equal steps. The reservoirs having capacities of 0.20, 0.40, 2.0, 4.0, 7.0
inches and initial deficiencies equal to 1/4 of the maximum storage capacities of each of the reservoirs
gave the highest multiple corvelation coefficient of 0.9923 and the following regression eguation:

Qi = (0.00496 - 0.11064 . Q1i + 0.38107 - in - 0.39095 - Q3i + 1.47071 - Q41 - 1.30406 - Q51 {4.38)

where Qi = total rainfall excess of the ith storm. Q1i, GZi, Q3i’ Q&i, QSi = rainfall excess values of the
1th storm computed from the reservoir with storage capacities of 0.2, 0.4, 2.0, 4.0 and 7.0 inches, respec-
tively. The continuous record of April through December, 1670 was used for developing the above regression
equation. During the menth of April, 1970, the watershed was nearly saturated, so the regression eguation
was developed using initial deficiencies equal to 1/4th of the maximum stovage capacity of each reservoir,
The model was run to compute rainfall excess in each reservoir for 63 storms and the intervening dry
pericds of 1971. The predicted rainfall excess for each storm was then computed by substituting the values

of the vainfall excess calculated from each reservoiv into the ragression eguation.

4.6.3 Evaluation of the Results

The statistics of the rainfall excess computed by the Multicapacity Basin Accounting model and the mea-
surad direct runoff for the calibration year of 1970 and for the prediction year of 1971 are given in Table
4.2, Scatter diagrams of the computed rainfall excess plotted against the measured direct runaff of each
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stoym for the years 1970 and 1971 are shown in Figure 4.6. The distribution of differences hetween the mea-
sured divect runoff and the computed rainfall excess for each storm fovr the years 1870 and 1971 are plotted
in Figure 4.7, It is evident from Table 4.2 and Figures 4.6 and 4.7 that, in general, the computed vrainfall
excesses compared well with the measured dirvect runoffs both for 1970 and 1971. In 1970 nearly 70 percent
of the errors are between -0.01 and 0.01 whereas in 1971 this decreased to about 50 percent. The ratio of
computed rainfall excess to measured direct runcff is approximately one for 1970 and becomes 0.88 in 1971.
The maximum ervor of 0.078 inch in a single storm in 1970 increased to 0.45 inch in 1971, The reason for
this increase has already been discussed in Section 4.3.3.

4.7 Antecedent Retention Index Model

Keith E. Saxton and Arno T, Lenz (4.15) suggested a modified antecedent precipitation index model for
s0il meisture accounting which may be writien as

ARI; = (ARI, ; + Ry 1)K {4.39)

i

where AR, = antecedent retention index for the 1th day; Ry = rvetention = rainfall - runcff; t = time in
days; £y = recession factor less than 1, assumed constant.

A Tinear regression eguation can be developed correlating the rainfall excess volume of each storm,
RE, as the dependent variable and the following independent variables: the antecedent retention index
values before each storm, ARI, the daily soil temperatures before each storm, T, and the precipitation

volume of each storm, P.

REi = 0+ 2 Pi *a, ARIi toag Ti (4.40)

whera 81> dps 24 and ¢ are constants and the subscript 1 refers to the ith storm.

4.7.1 Computational Procedure

A Fortran TV cempu%er program was written to compute the ARI values before each storm, and to deveiop
a Tinear regression equation, to compute the muitiple correlation coefficient and the standard ervor of
estimate.

The initial value of ARI may be estimated from the measured value of the soil woisture at different le-
vels of the soil profile at the beginning of the pertcd of interest. If there is no measured soil wmoisture
data, the computation may stert from a day when the soil moisture is near the field capacity, that is, after
a heavy rain or soon after a snowmelt. The computational procedure is summarized in Flow Chart 4.6. The
data required for implementing the model are given in Table 4.1.

4,7.2 Implementation of the Mode!l

The model was tested using the Upper Ross Ade watershed data given in Chapter 2. The soil moisture
was measured by using a Neutren meter at 6, 12, 18, 24, 30 and 36 inches below the surface at the Ross Ade
upper watershed near the gaging station for the year 1971. The average values of the soil moisture for the
top 12 inches were computed. For the year 1970, the average daily soil temperature 4 inches from the sur-
face under sod at the Agronomy farm near West Lafayette were used. The first average value of the soil
moisture was taken as the initiat ARI value beth for years 1970 and 1971. The model was calibrated by using
rainfall and direct vunoff and soil temperature data for the year 1970. A recession factor of 0.992 gave
ART values before each storm with the maximum multiple correlation coefficient of 0.9637 and a standard
error of estimate of 0.0441 in the linear regression equation for the rainfall excess volume of each storm:

RE = 0.01009 + 0.21778 - P - 0.00845 - ARI + 0.00054 - T (4.41)

4,7.3 Evaluation of the Results

The regression equation deveioped using the 1970 data was used to predict the rainfall excess of each
storm of 1971. Figure 4.5 shows the scatter diagrams of the computed rainfall excess plotted against the
measured direct runoff of each storm for the years 1970 and 1971. The statisties of the rainfall excess
vaiues computed by the model are given in Table 4.2. The distribution of the differences between the mea-
sured direct runoff and the computed rainfall excess for each storm for the years 1870 and 1971 is shown in
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Figure 4.7. 1t is evident from the distribution of error and the scatter diagram, Fig. 4.7 and Fig. 4.6,
respectively, that except for the eleventh storm of 1971, in general, the compuied rainfall excess volume
compares fairly well with the measured direct runcff for the years of 1970 and 1971.

For the data of 1970, about 65 percent of the ervor is between - .02 and .02 inches. For the data of
1671, this decreases to about 59 percent. The variations of the weasured direct runoff and of the com-
puted rainfall excess are in general very similar from stom to stoym. This is also evident from the vari-
ance of error (see Tabie 4.2).

4.8 . Evaluation of the Models

The comparison of the five rainfall excess predictors has been based on the following criteria:

a. The sum of the scuares of the differences between the values of measured direct runoff and the com-

puted rainfall excess.

b. The sum of the differences between the values of measured direct runoff and the computed rainfali

eXCess. '

¢. The variance of the values of measured direct vunoff and of the computed rainfall excess.

Out of the Five rainfall excess predictors, the modified MIT model, the wodified Minnesota model and
the modified Holtan model compute thé time distribution of rainfall excess during a storm whereas the Multi-
capacity Basin Accounting model and the modified Antecedent Retention Index Model compute the total volume
of rainfall excess of each stomi. The pertinent statistical properties of the measured direct runcff and
the computed rainfall excess by the five models are shown in Tebie 4.Z2. Tha overall sum of the sguares of
the error for the Multicapacity Basin Accounting (MBA) Model and antecedent Retention Index (ARI) Model
are lower than those of the modified MIT Model, Minnesota Model and the Holtan Model for the period of
study. The sum of the squares of the errors for the ARD model during the calibration year of 1970 is 3
times that of the MBA Model, whereas for the prediction year of 1971 the sum of the squares of the errors for
the ARI model is 0.33 percent less than that of the MBA model. The percentage of errer in the MBA model in-
creases from .03 percent in 1970 to 11.50 parcent in 1971. In the case of the ARI model the percentage of
error decreases from 11.27 in 1970 %o 3.31 in 1971. The variance of the error for the prediction year is
nearly the same for both the modeis. Aithough the sum of the squares of the ervor for the Holtan Medel duy-
ing the calibration year of 1970 is smaller than that for the ARI Model, for the prediction year of 1871 the
modified Holtan Model has the highest sum of the squares of the errors among the five rainfall excess pre-
dictors considered.

Mmong the three rainfall excess predictors which are used to compute the time distribution of rainfall
excess within a storm, the sum of the squares of errors of the modified Minnesota Model for the prediction
year of 1971 is the least, followed by the modified MIT model. But the pe?centage of ervors for the Minne-
sota model is quite high. It increases from 13.36 percent in 1970 to 22.57 percent in 1971, whereas for the
modified MIT HModel the percentage of error increases from 1.9 percent in 1970 to 11.30 percent in 1971. It
may be noted that the overall percentage of error for the modified Heltan Model is the least among the five
rainfall excess prediciors considered in the present study.

4.9 Selection of Rainfall Excess Model and Biscussion

Among the five total rainfall excess predictors, the MBA Model, which is a conceptual model and the ARI
Model, which is based on a simple soil moisture accounting gave better results. These two models can be
used to compute only the total volume of rainfall excess of the storm. Consequently, the use of these mo-
dels is limited.

0ut of the three rainfall excess models: the modified MIT model, the Minnesota model and the Holtan
model, which may be used to compute the time distribution of the rainfall excess, the modified MIT model
gave the best result if the sum of the squares of error and the percentage of error are used as criteria for
evaluation. Although the sum of the sguares of errors was the least for the modified Minnesota model the
percentage of errors both for 1970 and 1971 was quite high. If only the sum of the squares of errors is con-
sideved, the performance of the modified Minnesota mode] was the best. Thus the modified Minnescta model,
which is a simple algebraic equation based on Darey's law, predicts fairly weil the rainfall excess of storms
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from urbanized watersheds.

The modified Minnesota model uses the same equation both for computing the infiltration after surface
saturation and the exfiltration. The value of the hydraulic cenductivity parameter of the wodel is assumed
to be constant and equal to the value of saturated hydraulic conductivity both for infiltration and exfil-
tration phases. Moreover, unlike the modified MIT model or the modified Holtan model, none of the parame-
ters in the Minnesota model was optimized. The medel was run with parameter values of three types of soils,
The soil type which gave the minimum sum of the squares of errors'was accepted as the average soil type of
the watershed. The sum of squares of errors could be decreased by uwsing the measured average vatues of the
parameters. This is also true for the modified MIT model.

The modified MIT model gave the best result as expected because it is based on the constant diffusivity
form of the unsteady flow equation for flow in porous media. . Actually, it was expected to give the least
value of the sum of squares of errors. The reason for not obtaining the least value of the sum of squares
of errors may be due to the type of soil data used fer the model which may be considered as a gross approxi-
mation. The variance of the rainfall excess for the prediction year of 1971 was 63.8 percent more than the
variance of the direct runoff for the modified MIT model, whereas for the modified Minnesota model this was
?2.7 percent and for the modified Holtan model this was 182.8 percent. Although the sum of sgquares of er-
rors of the modified Holtan model for the year 1970 was smaller than that obtained by using the modified
MIT model or the ARI model, for the prediction year of 1971 the modified Holtan Model gave the highest sum
of the squares of error. Consequently, it appears that for predicting the rainfail excess over an urbanized
watershed, the modified Holtan model may not be a good choice. Out of the MBA and ARI models, the ARI model
gave a slightly smaller sum of the squares of error, but the percentage of error for the MBA model was 248
percent more than that of ARI model for the prediction year of 1871. Considering both the percentage of er-
rors and sum of squares of the errors, it seems that the ARI model is better than the MBA model for predicting
rainfall excess values of storms over urbanized watersheds such as the Ross Ade upper watershed.

The selecticn of the rainfall excess modei depends also on its ultimate use which in the present study
is the identification of the tinear and non-Tinear kernels of the watershed. If only the total volume of
vainfall excess is reguired for the rainfall excess-direct runoff transfer model, the use of the ARI model
is recommended, whereas ¥ the time distribution of rainfall excess is reguired, the MIT model is suggested.

In an urban watershed the percentage of impervicus area of the watershed which is directly connected
to the storm sewer is an important parameter. The losses in the impervious areas are véry smali. Moreover,
it was found from the results obtained by the rainfall excess predicters that the contribution of the per-
vious area to the total rainfall excess was small, except for large storms. In view of these factors, it
appears that for an urban watershed with a high percentage of impervious area directly connected fo the
stovm sewers, the precise measurement of this area may be as important or more important than the measurement
of the soil parameters of the watershed. Table 4.3 gives, as an example, the ratio of the computed rainfall
excess to the measured divect runoff in terms of hypothetical percentages of the impervious area directly
cornected to the storm sewer for the storm of April 18, 1970, on the Ross Ade upper watershed (see Table
2.2). The total impervious area is assumed to cover 50 percent of the watershed area and the initial meis-
ture content is taken as 0.0. As can be seen from this hypothetical example, the ratio of the computed
rainfall excess to the measured direct runoff is veéry sensitive to the percentage of area directly connected
to the storm sewer.
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Table 4.7
Data Reguirements of the Rainfall Excess Models

Modified MIT Model

Percentage of impervicus area in the watershed.

Percentage of impervious area draining directly to the storm sewer.
Static storage for the impervious area, in.
Static storage for the pervious area, in.
Poresity., n, of the soil.

The cohstant moisture diffusivity, D, in% bl

The hydraulic conductivity, K, in. hr .

1.

The initial moisture content of the soil, vol. vo?fl.

Rainfall data at specified time intervals, in.hr'1.

Potential evapotranspiration data at specified time intervals, in-hr“W.

Effective storage of the top soil Tayer of the watershed, S.

Modified Minnesota Model

Porosity, n.

Initial moisture content of the soil profile, THETAL = ngsat’ vol. vo1“].

Area under the capiilary sucticn vs. relative hydraulic conductivity curve belween Kr = 3,01 and
Kr = 1. r

Saturated hydraulic conductivity of the soil, in hr . _
Maximum value of static storage both for impervious area and pervious area, in.

Percentage of pervious area of the watershed.

Percentage of impervious area to the total area directly connected with the storm sewer.

Percentage of impervious avea to the pervious arsa not directly connected with storm sewer. Runoff
from this area ruhs over the pervious area.

Effective storage of the top soil layer of the watershed, 5, in.

Potential evapotranspivation rate at the specified time step, in hr"}.

Rainfall data at specified time interval, in hr™ .

Modified Holtan Model

Percent basal avea of plant stems, a.

Seil storage capacity, S.

Free water, G.

Available moisture capacity, AWC.

Constant rate of infiltration after prolonged wetting, fc.
Exponent n' assumed to be constant for a given soil.

Potential evapoiranspiration data at the same time interval as rainfall, PE.

Maximum depression storage ch the pervious area, MDEP,

Maximum depression storage on the impervious area, MLOSS.

Percentage of impervious area of the watershed which drains divectly inte the storm water,
Percentage of impervious avea of the watershed which drains over the pervious area.
Rainfall data at specified time interval, Af.

Mutticapacity Basin Accounting Model

Evapotranspiration at specified time intervals.
Rainfall data at specified time intervals.
Runoff data at specified time intervals

Antecedent Retention Index Model

The initial value of the antecedent retention index,

The recession coefficient, Ky.

The rainfall and direct runoff data of a seguence of storms and time between storms.
The temperatures of the top layer of the soil profile before the storms.
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( ASSUME MLOSS, LOSS

i

(kEAD ? AT INTERVAL At

i’

K3 = P * At

FIRST TIME STEP

YES

t t

- O

LOSSt+At = LOSSt - XKS

%
REXCt =0

0
REXCt = @
RVOLt+At = RVOLt + REXCt

Flow Chart 4.2 The Modified MIT Model - Impervious Arez

31




(B0 FIOUBRITK poT;

LU0I¥Id
WIGLS S0 TRE

_ aesisyy - T3y 4 W .

M dadd = aHa ﬁ

AW = agd
daaw - qua = ¥y

'ﬂ\\\mu.:umm

LYINO
J0 pES A0 oNE

®w .Gﬁ 4+ dHC + JH

wa = Wy

vr "Era
HOLLJES RI SY SWYS
HEL ST QaUSHILYM

a¥i §IAG S5IIXI S3
VIVANINY DNILOGWGD
d04 FEANGED0HE FHEI
395075 - wam) = wa “
F
1
_ wig = Ty _
T8Iy PIUTQUOD BU3 Jog saa
TE® ’ gy "0a
HOILDAS NI 5Y IWUS (-3

THL SI JWAEIO0Hd ML BRISH ~'F HIWINOTVD

@ ‘

vy snotelddul Ay 103

& IS0

BOE BLE ETh 329UD MGt o= mma
¢ ="'y
_ g = "'y

v T wEa up
dI$ TWIL IS¥IJ

_ d¥ BHLER0D _

IV1IAHL
AL = aWIx

INIHGD 3Hl NE
QRIVUGLEE ZIRIHOS \m

AMIS WIE w

—BY,

SR

T

IMLEHL = OWIX . _

zaza/ts = resan

©®, EALS IVLEBL m
T*p'r TOSS NI Y ROIT -
~VEOLYS ZOVIEGS O
-&0 HOTLWMETiIdNL 30
ERGT0A JHL AINAROD

LOUIEAS FUG ¥ dHLaV
e GAIS TWIL LESUTA -~ REA

ot

e

e ’ 1TE7% HOILD3S

HI GIERGIINGH 5%
RUNY SQOIAME 3L
BIAG AIISHILNI TI¥d
—HIVE GHL 35VITHIRY

E==0

& INITHL-SYLEEL & IR w

od FIOEN0D

53Rk

TTEARALHY 3T I
VEUE TIVARIVE q¥vTd

5aY ‘U CEVLEty
‘HALMEOIV TYGY
A0 SAOTYA FHL UNEY

i

gev om IR ' TVLAHL
ORISR %3 HL0dWos

40 S20TYA ZHL SWOssY

TELEHE = (WEX 1_

S84

ZIRLS BITL LBMIL

3R




ESTIMATE THE VALURS OF fc, 8, G, AWC AND ‘a‘, : i

ABSUME THE VALUE OF STATIC STORAGE FOR ) .. COMPUTE EVAPOTRANSPIRATION
’ PERVIGUS ARFA. ET AT INTERVAL DT

9 ]
@

( READ RAINFALL AT INTERVAL At ]
: :

! DELP = VD + DELP i

¥

a 1
5, = « DE + * -
I N LF + £, AtJ | S = 8, - DEL¥ v = vp + pom
[N |
1
T : ] _ PE = PE + DPE -
[ ft a.sl + fc l
== - *
{DELF (£, % £ =, 0 /240

YES

DELF = DELF - DX } . . RE = EP,_ - EP
i

¥y
l DPE = DELP -~ DELF I

®

Flow Chart 4.4 Holtan's Model Pervious Areas

END OF THE STORM?Z YES

POT EP = 0
ISTART A NEW STORM

®

The flow chart for the impervious area 1s the same as Flow Chart 4.2.
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READ THE RAINFALL, DIRECT RUNOFF DATA
OF EACH STORM. READ THE DAILY
VALUE OF EVAPOTRANSPIRATION.

y . ' {éi)

COMPUTE 'RE! FOR EACH RESERVOIR BY USING EQ. 4.35

UPDATE 'd' FOR EACH RESERVOIR BY USING EQ. 4.36

NO LAST STORM?

DEVELOP REGRESSION EQUATION
4.36

¥

COMPUTE THE MULTIPLE CORR. COEFF.

KD OF THEE SETS YES
CONSIDERED?

NO

ASSUME ANOTHER SET OF RESERVOIR )
OF DIFFERENT CAPACITIES AND
INITIAL DEFICIENCIES

5

FIND THE REGRESSION EQ. HAVING THE
HIGHEST MULTIPLE CORRELATION COEFF.

-1
C END )

rlow Chart 4.5 Multicapacity Bacin Accounting Mo@el
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ASSUME THE INITIAL
VALUE OF ARI

<§i> 3

ASSUME A VALUE: OF
THE RECESSION CONSTANT, K

a READ RAINFALL, P
AND DIRECT RUNOFF,

Q0 DATA OF THE STORM,
DURATION OF THE
STORM AND TIME

BETWEEN STORM
]
READ SOIL TEMPERATURE
OF TOP SIX INCHES OF SOIL

Y

COMPUTE THE VALUE
OF ARI BEFORE
THE STORM USING
BEQ. 4.39.

END OF THE SET
OF STORMS?

DEVELOP? THE LINEAR
REGRESSION EQUATION
USING DIRECT RUNOFF
AS THE DEPENDENT
VARIABLE AND RAINFALL,
SOIL TEMPERATURE AND
ARI BEFORE THE STORM
AS INDEPEKDENT
VARIABLES.

COMPUTE THE VALUE OF
MULTIPLE CORRELATION
COEFFICIENT.

ND OF THE SET
OF X VALUES?

FIND THE VALUE OF K AND THE
CORRESPONDING REGRESSION EQU-
ATION WHICH GIVES THE MAXIMUM
VALUE OF MULTIPLE CORRELATION
COEFFICIENT. J
¥

( END )

Flew Chart 4.6 Antecedent Retention Index Model
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YOLD LIAHT CLAY
VARIATION OF INFILTRATION RATE WITH VARIATION OF INFILTRATIAON RATE WITH
CHANGE I INITIAL MOISTURE CUN?ENT CHANBE IN VALUES OF DIFFUSIVITY

3006 - - ) 4500

2600 el ey
L2000 3000
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. 1800

1000 ~ 2 1B00

INFILTRATION RATE.IN/MIN (X10°1)
INFILTRATION RATE.IN/MIN (X101

L6500 750

0.0000 - : ¢ 00000 — S
0.00 2.00 qu.i?iﬁE«NIN.s‘w 8.0 10.0% C.00 20 - quﬁ%.ﬁIN.E.ou .00 10.20
WYDRAULEC CONDECTIVEITY, K 18 miwt DIFFUSIVITY, n’}nz newt
INITIAL MOISTURE #, POROSITY = N4 ko= 0
VARIATION OF INFILTRATION RATE WITH VARIATION OF INFILTRATION RATE WITH
CHANGE IN VALUES OF RHO .. . CHANGE IN VALUES OF DIFFUSIVITY
3000 4500
2608 ~

37604
L2000 .3000
L1600

2880 1

1000 B0 —

INFILTRATION RATE.IN/MIN
INFILTRATION RATE.IN/MIN (X107

.G600
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FIGURE 4.2 INFILTRATION CAPARCITY FOR DIFFERENT VALUES OF
THE PARAMETERS
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5. ESTIMATION OF DIRECT RUNOFF FROM RAINFALL EXCESS

Direct runoff may be estimated from rainfaill excess by using deterministic or stochastic models which
may be linear or nonlinear. In the present study, deterministic linear and nonlinear models were used to
astimate the direct runoff from rainfall excess. The Yinear model based on the instantaneous unit hydro-
graph theory will be discussed first. An exploratory study of a nonlinear model is taken up next, which is
followed by a general discussion of both types of models.

5.1 Linear System Approach

The relatipnship between the input (rainfalil excess), x(t), and the cutput (direct runoffl, y(t} is given
by the convolution integral (eq. 5.1) when the rainfall excess-direct runoff process is considered as a
Tumped linear system. In eq. 5.7, h{t) is the kernel function or the instantaneous unit hydrograph {IUH).
Several different methods are available fo estimate the IUH from rainfall excess and direct runoff data.
The Fourier transform method of determination of the IUH which was used in the present study is discussed in
detaii by Blank et al. (5.1} and Rao and Delleur (5.2). It is sufficient to note for purposes at hand that
the impulsive response function h(t) is given by eg. 5.2, where H(w) is the Fourier transform of h{t). How-
ever, some problems arise in the determination of the IUH when the sampling intervals, &t, are small. Exam-
ples of these problems are the selection of optimum time step to estimate the IUH and the presence of oscilla-
tory kernels. Some of these problems and the methods used to overcome them are discussed below. The use of
the kernel functions to predict the direct runoff and the effects of urbanization on the TUH and on the di-
rect runoff are discussed in the following sections.

The basic mathematical relationships governing tumped linear systems are:

t .
y{t) = JD %{t) h{t-t}dr (5.1)

e = [ ) eI s ) = Rye) + 5 o) = (5.2)

mmplitude of H(w) = [RE(w) + %2(s)1'/? (shown as AMPLITUDE in fig. 5.1), where X(u) and Y(u) are the Fourier
transforms of x(t) and y{t), respectively; and Rh(w) and Xh(m) are the real and imaginary parts of H{w}.

5.1.1 Selection of Optimal Time Step

A numerical experiment was conducted to determine the appropriate fime step, At, at which the rainfall
excess and the direct runoff values must be sampled. The experiment consisted of an examination of the
variations in the line specira of the kernel functions and of the regeneration performance. The rainfall
axcess and the direct runoff values were sampled at 15, 10, 8, 6, 4,.2 and 1 minute intervals. The corres-
ponding Fourier Yine spectra, the ITUH, and the original and regenerated hydrographs of the storm of April 20,
1970, on the Ross Ade watershed are shown in fig, 5.1. At large sampling intervals, at, the ampiitude spectra
of the response functions either do not decay to zero values near the Nyquist frequency, or they approach a
constant value near the Nyguist frequency after attaining a large spurious peak value. As 4t decreases, the
ampiitude spectra approach zero value near the Nyquist freguency. The kernel functions are smooth for large
AT values but oscillate increasingly with decreasing At values. The regeneration performance is not affected
by the sampling interval.

The reasons for the presence of large spurious peaks in the Tine spectrum and the presence of large val-
yes near the Nyquist frequency obtained with large sampling intervals, At, can be expliained by an examination
of the amplitude spectra of the inputs and the outputs, a sample of which is shown in fig. 5.2. When Y{u),
the Fourier transform of the output, does not become zero but remains at a finite value, similar to the
Fourier Transform of input X{=), the Fourier transform of the IUH [H(w) = Y{w)/¥{w}] can take large values.
Such is the case in figs. 5.1a, b, and ¢. This effect is reduced when the At values are small, although at
smail values of At the noise in the data creates oscillations in the kernel function as shown in figs. 5.7e,
f and g. Since a sampling interval which does not introduce spurious peaks in the amplitude spectrum or
which does nhot create oscillatory kernel functions is desirvable, a sampling interval At of four winutes was
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selected for the analysis of the data from the Ross Ade watershed.

5.1.2 Smeothing the Oscillatory Kernel Function

Aithough an optimal sampling interval At may be obtained by following the analysis discussed in the
foregoing, the kernel oscillations were found to remain when data of some storms were analyzed. These 0s-
cillations must be reduced if not altogether eliminated, 1f a generalized analysis is to be performed by
using these kernels. Such a generalized analysis is discussed in the next section. Three metheds, {1)
smoothing the kernel function by successive averages, (2) filtering the original data, and (3) increasing
At may be used to reduce the oscillations in the kernel functions.

The results of smoothing by successive averages clearly show (fig, 5.3) the ineffectiveness of this
procedure when the kernel functicn is smoothed only é few times, and the distortions which result with re-~
peated smoothing. When the Modified Jenkins filter (MJF) (5.2) is used to smooth the raw estimates of h(t)
values, the filter may hot reduce the oscillations when the order {M) of the filter is small, and will cause
some loss of information when M 1s large as shown in fig. 5.3. Indeed 2M data points are lost for each se-
lected value of M, When the sampling interval At is increased, the high frequency cscillations in the ker-
nel function are gradually transformed into low frequency oscillations after a sufficiently large value of
at is reached, the kernel functions become oscillation-free as shown in fig. 5.3,

None of the three methods of reducing the osecillations in kernel functions may work satisfactoriiy by
itself, but a combination of increasing at and filtering appears to give the best resuTt. This conclusion
was reached by Rac and Delleur {5.2) also. However, in order to minimize the computatienal effort, only
the At values were varied in the present study and the smallest At which gave a "smooth” kernel function
was used. Anralyses similar to the one presently discussed can be found in Rao and Usul {5.3) and Kavvas
and Schulz {5.4) also. '

5.2 Estimation of the Peak Discharaes of the Instantaneous

Unit Hydrographs and.of the Watershed Time Lags

In order to use the linear system medels for the prediction of the direct vunoff from the rainfall ex-
cess, the instantaneous unit hydrograph must be estimated. A number of previous studies have pointed out
the variabitity of the IUH's from siorm o storm (5.1, 5.2) thus invalidating the linear theory. As a re-
sult a quasi-Tinear appfoach similar in principle to that reported by Rao et al. (5.5) is proposed herein,
in which equations 5.1 and 5.2 vremain valid for each individual storm, but the IUH is allowed to vary
from storm to storm. For this purpose a dimensionless IUH was developed along with the predictive rela-
tionships for the two scaling parameters used in the development of the dimensionless IUH. The peak dis-
charge of the TUH's and the time lag were used as the scaling parameters. The time lag used in this study
is defined as the time elapsed between the centroid of the rainfall excess hyetograph and the centroid of
the direct runoff hydrograph.

The time tag and the maximum ordinate of the IUM were related to the variables listed in table 5.1 by
means of nonlinear regression eguations. The resulting equations, for the data from watersheds Ho. 1. 2,
3, 4, 9, and 10 and Table 2.1 are given as egs. 5.3 and 5.4 in table 5.7, A1l the variables in egs. 5.3-
5.6 shown in table 5.1 are significant at the 5% level.

in order to investigate the importance of the role of the variables representing the antecedent condi-
tions another set of regression relationships was established by omitting the variables representing these
antecedent conditions. The data from Lawrence Creek, Little Eagle Creek, Bean Biossom Creek, and Bear
Creck in addition to the data from the watersheds mentioned earlier {watersheds 1 through 10 of Table 2.1)
were used for the second set of relationships given as eqs. 5.5 and 5.6 in table 5.1, From the multiple
correlation coefficients and from the standard errors of estimates associated with these equations shown
in table 5.1, it can be seen that the variables associated with antecedent conditions are not very sigpi-
ficant. It is also ssen that the antecedent conditions tend to mask the effect of imperviousness on the
peak discharge. In egs. 5.5 and 5.6 the maximum ordinate of the IUH increases and the time to peak de-
creases with an increase of the fraction of impervious area in the watershed, as is expected. Consequently,
2qs. 5.5 and 5.6 were used in the following analysis.
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5.3 [Dimensionless Instantaneous Unit Hydrograph and Its Use in Prediction

The [UHs computed by the Fourier Transform method were nondimensionalized by divéding the abscissa
{time) by the time lag of the stowm and the ordinates by the maximum ordinate of the IUH. The dimension-
Jess unit hydrographs so obtained were combined together and a smooth curve was drawn through them to ob-
tain the dimensionless unit hydrograph shown in Fig. 5.4,

For any given rainfall excess volume, the maximum ordinate and the time lag of the IUH can be estimated
by using egs. 5.5 and 5.6 respectively, provided the other variables are known. An IUH appropriate for the
storm can be developed from the dimensiontess IUH by muliiplying Tts ordinates by the maximum ordinate of
the IUH given by eq. 5.5 and by multipiying the time {abscissa) by the time lag value given by eg. 5.6. The
area under the IUH generated by this procedure should be -adjusted to unity. The area under the IUH was ad-
justed to unity by varying the ordinates on the vecession and rising Timbs but by keeping the maximum ordi-
nate of the IUH the same as that obtained by eq. 5.5. This procedure was adopted because the prediction
results, especially the prediction of the peak discharge, were sensitive fo changes in the maximun ordinate
of the IUH computed by eq. 5.5. The IUH so obtained is then convolved with the hyetograph of rainfall ex-
cess by eg. 5.7 to obtain the direct runoff hydrograph.

The above procedure was tested by both regeneration and prediction studies. For the vegeneration per-
formance analysis, several rainfall:excess hyetographs which were used to develop egs. 5.5 and 5.6 were con-
sidered, the IUH's were estimated and the direct runoff hydrographs were computed and compared with ob-
served direct runoff hydrographs. Examples of the results obtained by this analysis arve shown in fig. 5.5.
The errors in the regeneration of peak discharge, the time %o peak discharge, were analyzed and the fre-
quency distribution of these ervors 1is shown in fig. 5. 6 ‘for some of the watersheds. The percentage ervor
in peak discharge is given by {(Q Q )/Q x 1083, the time to peak error is computed by [{T Tpc)/
Tp x 1001 and the error in time to peak in DT is given by {? - T ) The subscripts o and ¢ refer to the
observed and computed quantities. The percentage error 1n the t1me to peak can be very large even if the
time to peak s missed by even a single time step AL, espec1a3§y if the observed time to peak is very small.

An examination of the results presented in fig. 5.6 demonstrates that the regeneration performance of
the present method is good. The percentage of erver in the peak discharge regeneration is most frequently
within + 10% and the percentage error in time to peak regeneration is within + 8%. The time to peak is off
by + At most frequently. Further resiultts such as those shown in fig. 5.6 may be found in ref. 3.7.

In egs. 5.3 to 5.6, the average.iime lag for a watershed is also considered as an independent variable.
As in urban sewered watersheds the natural drainage system will be substantially altered; the 1enoth {L)
and slope (S) variables in egs. 5.3-5.6 cannot be estimated correctly unless a detailed analysis of the sew-
er system characteristics is undertaken. Instead of conducting an analysis of the length, slope and rough-
ness characteristics of sewer systems, the average time lag value was used as & composite characteristic
representative of the response of sewered areas. Carter (5.6), Eagleson (5.7) and Van Sickle (5.8) have
shown that the average time lag vajues are dependent upon the length and slope of sewers. However, for
watersheds which do not have the average time Jag information available. eqs. 5.7 and 5.8 can be used with-
out losing any accuracy.

The prediction performance of the present method was tested by using the data from Boneyard Creek,
Urbana, I11inois, which were not used either to develop the regression eqs. 5.5, 5.6 or the dimensionless
IUH. For several storms the maximum ordinates of the kernel, and the time Tag were computed by eqs. 5.5
and §.6 and these were used to obtain the corresponding kernel fuactions. The kernel functions were convolved
with the known rainfall excess to compute the direct runoff hydrographs. The computed direct vunoff hydro-
graphs were then compared with the observed direct runoff hydrographs. The errors in estimating the peak dis-
charge, and the time to peak discharge are given for some storms in table 5.2. The error freguency distri-
butions for the same characteristics are shown in fig. 5.7. Most frequently, the peak discharges were un-
derestimated by -10 to -20%, whereas the time to peak was wissed by * At. The rvunoff volume predictions,
as can be expected, were very good.

The estimated kernels and the direct runoff vatues obtained by eq. 5.7 and 5.8 with different levels of
urbanization on Lawrence Creek at 38th Street watershed are shown in Fig. 5.8. It should be pointed out
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that with the increase in urbanization the amount of rainfall excess for a storm would also increase. This
aspect, however, has rot been considered in the present analysis.

5.4 MNonlinear System Approach

In the previous sections it was shown that there is no unigue IUH for any of the watersheds studied as
the IUH varied from storm to storm. This Tack of uniqueness in the watershed response has been attributed
by Amovocho {5.9) to the possible “misinterpretation of the basin by a Tinear medel™. The inherent nonlin-
earity of the processes of mass and enerqy transfer in the runoff cycle suggests the consideration of non-
Tinear models of hydrolegic systems. Among the several possible nonlinear models the application of the
general representation of the hydrologic system by a functionhal series was selected because 1t is the di-
rect extension of the Tinear kernel method used in the previous sections. The second order nonlinear func-
tional modet may be represented by

t t ot
y(t) = JD hy(sy) + x(t-sq)dsy + JO JO holsys $5) x(t=s;) « x(t-s,)ds; ds, (5.9)

where x{t) and y(t) ave the rainfall input and runoff output, and h1(s1) and h2(s1, 52) are the first and
second order kernels, respectively. These kernels characterize the system. Amovoche and Brandsteter (5.10)
have evaluated them by an expansion in finite series of orthogonal functions. As the function hz(s], 52} is
a three-dimensional surface it is difficult to quantify its characteristics by a small number of parameters
that could be related to physiographic or climatologic basin characteristics.

In order to extend the Tinear system analysis to include some of the second order effects while retain-
ing a tevel of simplicity similar to that of the linear kernel, it was decided o evaluate a wodel proposed
by Boneh and Diskin (5.11) which considers only the second order kernel, hz(t;t) atong the diagonal in the
(51, 52) plane. This kernel is a plane curve which can be characterized in 2 manner similar to that of the
IUH. The following sections contain an exploratory study of this approach and the possible merits of its
application to urban hydrology.

Boneh and Diskin (5.11} have shown that #f an isolated impulse of a positive magnitude such that

X(t) = 0 for t # 03 Vim x(t) = o3 j x(t) - dt = A (5.10)
t->0 S

is appiied at time = § as the input to a second crder system, the ouiput obtained by substituting equations
{5.10) into (5.9} is expressed by

y(t) = e hy(e) + A% L hp(t,t) (5.11)

Mass conserving systems must, in addition, satisfy the following conditions:

[ (e)at = 1,05 J hy(t,E)dt = 0 (5.12,13)
Ip 0

5.4.1 Identification of the First and Second Order Kernels

If the input and output functions are replaced by sets of pulses at equal and constant time intervals,
eq. (5.11) can be written for each pulse. For short duration storms the following set of equations can then
be written

~ 2 .
Yij = Xi Hj + Xi Gj, i=1,2, ....n (5.14)

and soived for Hj and Gj subject to the following constraints:

H

Y

i3 CH.o= .G, =0 5.15,16,17
520 forall Js ZJ Hy =1 ZJ 5 ( )

#

where n = number of storms used, where n > 23 Hj = discrete ordinate of the first order kernel function; Gj S

. . . .t .
discrete ordinate of the second order kernel function; Yij = the Jth ordinate of the i f ocutput function

.th th

{direct runoff); X o= the i input function (total rainfall excess of 17 storm).
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The solution of equations 5.14 subject to the linear constraints 5.15 through 5.17 uses a sub-
routine which calculates a best least square solution of a system of linear equations by an iterative re-
finement procedure based on the Gram-Schmidt method (5.12}. The procedure is designed to satisfy the con-
straints 5.16 and 5.17 only. In order to satisfy the constraint 65.75 the negative Hj ordinates were
wade aqual to zero, provided the values of the negative ordinates were very small compaved o the positive
ordinates. Kernels with large negative Hj values were discarded. The Hj ordinates were then adjusted to
meet the constraints 5.16. In order to verify that the solution obtained was the least square solution,
the Hj and Gj were systematically perturbed and the- sym of squared deviations between the observed and pre-
dictac outputs were computed. The procedure reguires a-substantial central memory space. For mere than two

storms, it usually required in excess of 150 K “words"™ on the {BC 6500 computer.

5.4.2 Implementation of the Model

The first and the second order Kernels were identified from the rainfall excess and the direct runoff
data of pairs of storws for the first 10 watersheds of table 2.1. The identified kernels were used to re-
generate the direct runoff. The sum of squared deviations between the measured and the regenerated divect
runoffs were computed. The pairs of storms which gave high sums of squares of error (usually greater than
0.02) were rejected. Figure 5.8 shows the first and second order kernels and the measured and regenerated
runcffs of two pairs of storms. The distribution of the error of the regenerated peak runoffs and of the
times to peak for Waller Creek at 38th Street are given in Figure 5.9.

5.4.3 Effect of the Time Step and of the Number of Storms on the Kernels

The pair of storms of September 6, 1962, and October 21, 1958, on WalTer Creek at 38th Street with di-
ract runoff values of 0.4922 and 0.1830 inches respectively were selected to evaluate the effect of the time
step on the kernels. The kerneil functions were computed for time steps of 15, 22.5, 30, 37.5, 45 and 60 min-
utes and are shown in Figure 5.10. In general the kernels become smoother as the time step is increased.

A set of eight storms which occurred during the year of 1670 on Ross Ade Upper Watershed was
selected to study the effect of the number of storms on the kernels. The effects of increasing the number
of storms are shown on Fig. 5.11. The peak value of the kernels and the shape of the kernels are seen to
change with the number of storms censidered. It appears that the kernels obtained with 2, 3 and 4 storms
vary considerably but that the kernels seem to reach a stable shape as the number of storms is increased
as cah be seen in the case of 6, 7 or B storms.

5.4.4 Average Dimensioniess Kernels

The number of storms that could be used to compute the first and second order kernels were, in most
cases, no more than two because of the Targe central wemory veguirement of the procedure used, thus not per-
mitting a satisfactory identification of H and G. The dimensionless kernels were then developed to overcome
this difficulty.

The data of watersheds no. 1 through 10 (table 2.1) were used to compute the first and second crder
kernels for pairs of storms. The kernels were made dimensioniess by dividing the ordinates by the respec-
tive peak ordinate and the abscissa by the respective time to peak {see fig. 5.12). The dimensicniess ker-
nels were plotted for all the pairs of storms for the 10 watersheds and the smoothed average first and se-
cond order kernals were obtained graphically. The kernals so obtained are the average dimensionless kernels.

The first and second order kernals may be specified by six parameters: the peak ordinate and the time
to peak ordinate of the first order kernel; the peak ovrdinate and the time to peak ordinate; the minimum or-
dinate and the time to the minimum ordinate of the second order kernel (see fig. 5.12}).

5.4.6 Computational Procedure

The ordinates of H and & are computed by muttiplying the dimensionless ordinates of the dimensionless
first and second order kernels by the respective peak ordinatgs, the abscissas {time) are obtained by multi-
plying the dimensiontess abscissas by the values of the respective times to peak. The ordinates of the ker-
nels are adjusted to meet the constraints 5.312, 5.13 and 5.15.

The computational procedures are summarized in Flow Chart 5.7. The following notations are used:
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H First order kernel.

G Second order kernel.

HAMY  Maximum ordinate of H.

GAMYX  Maximum ordinate of G.

TMAXT Time to maximum ordinate of H.
TMAXZ Time to maximum ordinate of G.
TMIN  Time to minimum ordinate of G.

5.4.6 Regeneration Performance

The distribution of the differences between the measured aﬂd'the regénerated values of the peak dis-
charge and of the time to peak discharge in percent for 5 watersheds is shown in Figure 5.13. The per-
centages of error in the time to the peak discharge were calculated by the relationship:

Measured time to peak - Computed time to peak
Measured time to peak -

x 100

If the measured time to peak is one time unit, and the computed time ‘to peak is two time units the percants-
ages of error in time to peak discharge is 100 percent giving an apparent large percentage of error. The
actual error in this case is one time unit. For most storm pairs there were no differences between measured
and regenerated storm volumes.

5.5 {omparison of Diréct Runoffs Computed by Linear and . Nonlinear Methods

A set of six storms on Ross Ade upper watershed was. selected. {August 10, 1966, December 5, 1946,
August 2, 1967, 5:17 p.m., August 18, 1967, 8:35 p.m., and August 26, 1967, E:31 p.m.). The Tinear kernels
were computed by the Fourier fransform method from which an average lingar kernel was obtained. The first
and second order kernels were estimated by the méihod given in Section 5.4.7. The direct runoffs of the six
storms were regenerated by convolving the average linear kernel with the estimated rainfall excess of the
storm and also by eq. {5.14) with the estimated total rainfall excess for the nonlinear method. Figure 5.14
shows the average linear kernel, the first and second order'kérne?s of the nonlinear method and the regen-
erated runoffs using both methods. Figure 5.15 shows the distribution of the errors by both methods for
the peak discharge and for the time to peak for storms not used in developing the kernels but on the same
watershed. The regenerated direct runoffs obtained by thé nonlinear method ap@eaf to be less accurate than
those obtained by the average linear kernel.

5.6 Discussion

The first and second order kernels identified from data of two storms yielded a good regeneration per-
formance {Fig. 5.8, 5.9) whereas the regeneration performance of kerneis identified from six storms was
poor {Fig. 5.14, 5.18). The regeneration perférmance appears to depeﬂd in part on the data used and pos~
sibly or the computational procedure. ' ' '

The time step has an influence on the stability of the first and second order kevnels (Fig. 5.10).
Larger time steps usually yield smoother kernel functions. There was no change in the regeneration perfor-
mance of the kernels obtained with different time steps. The first and second order kernels appear to
change with the number of storms used (Fig. 5.11). This change is expected as the kernels are obtained as
a least scuare fit to the observed direct runoff values. Thus there is no unique set of kernels for a
given watershed. It may be inferred that the quasilinear method appears to be the most satisfactory ameng
the methods studied. '
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READ RAINFALL EXCESS AND DIRECT RUNOFF
DATA OF TWO STORMS AT INTERVAL aT

»

[ COMPUTE THE TOTAL VOLUMES OF RAINFALL EXCESS

|

SOLVING EQS. 5.14, 5.15, 5.16 and 5.17 COMPUTE
THE ORDIMATES OF HAND G: ... .—

PERTURB ORDINATES OF H AND G, COMPUTE SUM OF SQS. OF |
ERROR TO FIND THAT THE LEAST 90. SOLUTION IS OBTAINED. |

!

[ FIND THE VALUES OF HMAX, GMAX, GMIN, TMAXI, TMAXZ, TMIN |

READ ORDINATES AND AESCISSAS OF REGIONAL " ’
| o " DIMENSIONLESS H AND G o

MULTIPLY ORDINATES OF H AND & BY HMAX AND GMAX
RESPECTIVELY. MULTIPLY ABSCISSAS OF H AND & BY
TMAX] AND TMAXZ RESPECTIVELY.

TUSE SPLINE INTERPOLATION TO FIND ORDINATES OF
h AND G AT TIME INTERVAL aT

'

SUBSTITUTE THE VALUES OF HMAX, GMAX, GMIN, TMAX1, TMAXZ
TMIN FOR THE SIX PARAMETERS. ADJUST THE ORDINATES
OF K AND G TO MEET THE CONSTRAINTS 5.15, 5.16, 5.17.

v
? USING EQ. 5.14 REGENERATE THE DIRECT RUNOFF. |

Fiow Chart 5.1 Calculation of First and Second Order
Kernels Using Average Dimeénsiontess Kernels
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FREQUENCY ,PERCENT

WALLER CREEK AT 38 TH ST.
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FIGURE 5.9 DISTRIBUTION OF ERROR OF REGENERATED DIRECT RUNGFF
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- FIRST ORDER KERNEL FUNCTION(H)

‘5000..._ a5torms
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FIGURE S.11 EFFECT OF NUMBER OF STORMS

ON H AND G
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6. CONCLUSIONS

i, Four evaporation models were evaluated, They were originally proposed by van Bavel, Kohler,
Blaney and Morin and by Blaney and Criddle. van Bavel's model gave the best results, closely foilowed by
Kohter's model. Both are based on the mass transport and energy balance theories. The other two models
are empirical and were not originally intended for the estimation of evaporation at short time intervals.
Nevertheless the Blaney-Morin model gave reasonable evaporation estimates because of the inclusion of a hu-
midity term. This model is useful in urban hydrology when the radiation and other meteorologic data re-
quired by the van Bave] and the Kohler models ave not available. The Bianey-Criddle model could not correct-
1y predict the evaporation in a humid climate.

i1. Five rainfall excess models were studied: the modified MIT model, the modified Minnesota model,
the modified Holtan model, the Multicapacity Basin Accounting {MBA} model and the Modified Antecedent Reten-
tion Index {ARI) madel. The first three predict the time distribution of the rainfall excess, the last two
the total rainfall excess volume of a storm. OFf the five models the ARI model gave the best estimates of
the total rainfall excess volume and the MBA model was the next best. Among the three modeis which predict
the time distribution of the rainfall excess, the modified MIT model gave the best results. The Minnesota
model, however, is simpler to use. The initial moisture content of the soil profile for the pervious area
was the most sensitive parameter for the three models. In an urban watershed, the percentage of impervious
area directly connected to storm sewer is an important parameter. The loss from this area s small, nearly
all of the rainfall over this area is converted into vainfall excess. In an urbanized watershed connected
to storm sewers, the corrvect identification of the impervious areas is, at least, as important as the esti-
mation of the soil parameters of the pervious area.

1i1. The instantanecus unit hydrographs were found to vary from storm to storm on a given watershed.
The stability of the IUH depends upon the time inierval used in the discretization. Larger time intervals
yield smoother IUH curves. The combinaticn of the use of the proper time interva] and digital filtering
give the most satisfactory vesults. A guasilinear model of the rainfall excess-direct runoff is proposed.

A dimensionless linear kernel was obtained. The IUH for a specific storm on a specific watershed can be
obtained by rescaling the dimensionless kernel by using the peak discharge of the IUH and the time lag to
watershed and storm characteristics. Good predictions of the direct runoff weve obtained by convolving the
TUH with the estimated rainfall excess. The variations in the IUH and in the direct runoff due to changes
in the urbanizatien characteristics (primarily increase in imperviousness) can be computed by the proposed
quasilinear model.

jv. In the nonlinear system model which was studied the rainfall excess was assumed to consist of a
sequence of isolated impulses. The direct runoff output is given as a function of a first and a second or-
der kernel, both of which are plane curves. The first and second order kernels varied with the number of
storms used. There was no unique set of kernels for a given watershed. The regeneration performance obtain-
ed by the first and second arder kernels calculated for pairs of storms was better than that obtained with
kernels computed from six steorms. The regeneration performance depends in part on the particular set of
data used and was not as good as that of the quasiltinear model. The predicted runcff hydrographs are sen-
sitive to errors in the second order kernel as the latter is multipTied by the square of the input values.
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