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Freezing-and-Thawing Durability of Concrete Bridge Deck Overlays with Corrugated Steel Deck

Forms

Implementation Report

The objective of this study was to evaluate the frost resistance of concrete bridge decks with stay-in-

place galvanized steel deck forms. The evaluation included specific aspects related to the potential for

D-cracking in concrete bridge decks with these forms.

The experimental approach was based on freezing-and-thawing test of concrete specimens with and

without steel deck forms. The concrete contained coarse aggregate susceptible to D-cracking. Two
kinds of specimens have been prepared: (a) large 22%"xl7 l

/4"x5'/4" slabs, and (b) small 3"x4"xl2"

beams. The specimens were conditioned to different moisture contents.

The results of this study suggest that corrugated steel deck forms may promote the damage of concrete

made with D-cracking coarse aggregate due to freezing-and-thawing action. The coarse aggregate

used in this study could by itself promote extensive cracking and consequent scaling of concrete cast

either with or without steel deck forms.
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SECTION 1

INTRODUCTION

1.1 Background

One of the most popular methods of bridge constructions consists of prestressed concrete or

steel girders supporting a roadway deck. Although timber decks were used originally, reinforced

concrete is the most popular material today because of its unique properties like workability, strength,

and durability. During the past 12 years the construction cost of concrete bridge decks in the state of

Indiana has been reduced by the use of stay-in-place galvanized steel deck forms. Their use results in

considerable labor savings over that needed with timber formwork. Stay-in-place galvanized steel deck

forms have rapidly emerged as a viable cost effective bridge construction system.

The galvanized steel deck forms are designed to carry the weight of the concrete slab, their

own weight, and construction live load. After the deck has been completed, the galvanized steel deck

is not considered to serve a useful structural function. These stay-in-place forms are very light (from 2

to 4.5 psf), and relatively easy to place on their hanger system attached to the beams. The corrosion

problems which have been experienced in some instances with steel forms, and the fact that the bottom

of the deck cannot be visually inspected are probably the principal reservations engineers have when

considering the use of stay-in-place steel deck forms. In Indiana, additional concerns have been raised

with the use of these forms in regard to the possibility of the concrete damage due to freeze-thaw

action in the bridge deck. Improper drainage of the concrete slab due to the presence of the steel deck

form could cause the problem with cracking in the slab propagating from the bottom up. The presence



of water accumulated at the bottom of the slab could make the damage a critical one if the concrete

was made with coarse aggregate susceptible to D-cracking.

1.2 Objective of the study

This research report contains only Phase 1 of the planned research study. Phase 2 of the study

should follow successful completion of Phase 1, as has been suggested in the research proposal. The

Phase 1 ofthe proposed research study has been focused on the following objective:

Evaluation of frost resistance of concrete bridge decks with stay-in-place galvanized steel deck

forms. The evaluation includes specific aspects related to the potential for D-cracking in

concrete bridge decks with these forms.

1.3 Research approach

The proposed experimental program was aimed at assessing the frost resistance characteristics

of concrete bridge decks cast on stay-in-place steel forms as a function of relative humidity (%RH) of

concrete. The possibility of existence of a %RH threshold level above which laboratory panels would

be susceptible to D-cracking was investigated. An extensive series of preliminary tests have been run

for this purpose.

The experimental program has been set up so that the real parameters of the bridge deck

overlays and the environmental conditions could have been modelled. This approach led to the

production of large size specimens, actually slabs, where the concrete was cast onto large fragments of

galvanized steel deck forms. The forms were the same as those used in the field. The concrete mix
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composition also was the same as used in the field, provided by INDOT (Table 2.2) The concrete mix

was made with a crushed limestone coarse aggregate which might be susceptible to D-cracking.

1.4 Experimental problems

Two major problems have been resolved while carrying out this research project. The first one

referred to the reliability of%RH measurements in concrete. The other problem was a long duration of

freezing-and-thawing cycles required for adequate testing of large slab specimens.

As a result of an extensive search for possible means of%RH measurement, several techniques

have been chosen. Preliminary tests done on these techniques have shown their relatively low accuracy

at high levels of %RH (*80% and higher). Thus, the moisture condition of the concrete was

established by means of direct gravimetric determination of the moisture content, along with the

measurements of%RH

To resolve the problem of long freezing-and-thawing cycles (42 hours per cycle) required for

large slab specimens, an alternative experimental program has been worked out This program has

been approved by INDOT. It has been completed in a relatively short time, while the-freeze-thaw

testing of large slab specimens was still in progress

This report is divided into three parts containing the description and the results of three major

experimental programs, as follows.

1

.

Methods of measuring %RH and moisture content in concrete (Section 2).

2. Freezing-and-thawing testing of large concrete slabs (Section 3).

3. Alternative freezing-and-thawing test of small specimens carried out according to the

expansion- extension research program (Section 4).
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SECTION 2

METHODS OF MEASURING %RH

AND MOISTURE CONTENT IN CONCRETE

2.1 Introduction

Part of the experimental program related to frost resistance of concrete bridge decks with steel

forms was aimed at indicating a %RH level in concrete, above which the bridge decks might be

susceptible to D-cracking. Also, the experiments were intended to clarify the possibility of moisture

accumulation in the bottom part of the decks cross section, close to the interface between concrete and

steel form.

For these purposes, it was proposed to create a range of five %RH values in concrete

specimens: two below, one similar and two above the %RH level that presumably might occur close to

the concrete-form interface. The program included the preparation of concrete specimens cast in

wooden molds with fragments of corrugated steel deck forms. The specimens were to be (a)

conditioned for different levels of%RH, (b) sealed when desired levels of%RH were achieved, and (c)

subjected to freezing-and-thawing cycles in a computer controlled chamber. To carry out this

program, two major experimental questions had to be answered:

1

.

how to measure the %RH in concrete;

2. how to establish a range of certain levels of%RH in concrete.

Water or moisture content in a "young" hardened concrete is usually high (up to 5-8%), which implies

that %RH in its pores is close to 100%. This level can be kept at least as long as the concrete
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specimens are moist cured for two or more weeks. However, the establishment of desired %RH levels

lower than 100% by artificial means in a limited time can be a difficult task.

Numerous techniques have been developed elsewhere for the measurements of %RH, being

however suitable for the applications in open air spaces, rather than in small pores within the concrete.

The accuracy of such measurements is usually ±2-3% when relative humidity becomes higher than 70-

80%RH.

These problems have been discussed during a joint meeting with INDOT on November 10,

1992. A survey of relevant literature and %RH measurement techniques was reported at the meeting.

It was suggested to run a series of preliminary tests. The results of these tests are represented herein.

2.2 Preliminary testing procedure

The objectives of this part ofthe experimental program were:

1. to clarify the possibility of reaching certain desired %RH levels in concrete;

2. to determine the duration of time needed to reach each of the %RH levels;

3. to establish a proper method of%RH measurements.

It was suggested that relative humidity at levels lower than 100%RH could be controlled by

accelerating the evaporation of moisture from the concrete. This could be done by means of moderate

heat applied to a concrete specimen at its top and/or bottom surface. Suggesting that heating of a

bottom surface might be more efficient and thus should not take a long time, a technique was

developed and represented to INDOT A plywood box with four light bulbs was situated under the

specimen (Fig. 2.1). The other possibility, i.e. heating the concrete surface at the top of the specimen,

was explored using the same box (Fig. 2.2).
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The %RH of concrete should be measured before and during heating in order to evaluate the

efficiency of heating for evaporating moisture out of concrete. The measurements could be taken in

one ofthe following ways, as described in the literature:

inside the mass of concrete, when a RH sensor is embedded directly (i.e. cast), or inserted into

a small sealed cavity (1,2);

outside the concrete specimen, when a portion of the material is collected in a sealed testing

container where an RH sensor is situated (3).

Extensive survey of commercially available %RH measurement systems have been done. Several

systems based on different concepts, are described in Table 2.1. A few other systems using the same

concepts were available, but could not be applied in this project. Actually, the RH sensors offered by

numerous manufacturers can be divided into three groups: (a) capacitance sensors, (b) resistance

sensors, and (c) dew point sensors (Table 2.1). According to the technical information available, both

capacitance and resistance sensors are more accurate at normal temperatures (60-80°F), and when the

%RH is lower than 70-80%. At higher RH levels, their accuracy could be ±3%, i.e. quite low. Dew

point sensors are more accurate, but can work only in relatively large, open spaces. Failure of

resistance sensors could be expected at about 100%RH. The sensors and other devices listed below

have been chosen for this program:

1. Relative Humidity & Temperature Piercing Probe, HMP-36, manufactured by Vaisala Inc.

The probe is equipped with a capacitor type RH sensor (Humicap-) and a resistor type (RTD)

temperature detector.

2. Survivor II, a combined Relative Humidity & Temperature sensor. The %RH is measured

using a tiny capacitor.
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3

.

Mini Cap-2, a capacitor type Relative Humidity sensor.

4. Hand made capacitor type sensor, assembled in Purdue CE labs.

Two 16"xl6"x5" concrete specimens were cast as part of the testing procedure. The concrete mixes

were prepared in accordance with the composition provided by INDOT (Table 2.2). The specimens

contained fragments of corrugated galvanized steel deck forms at their bottom part. The depth of the

corrugations was 2 inches.

The first specimen was cast with four "pre-fabricated" deep cavities, sealed by nuts (Fig. 2.3).

The specimen was kept in the mold and cured by wet covering for 14 days. During this period, the

%RH was registered using both techniques mentioned above, i.e. inside the cavities and outside the

concrete specimens.

The %RH inside the concrete, at the bottom part of the specimen, was measured through the

"prefabricated" cavities shown in Fig.2.3. Specially designed sleeves, supplied by the manufacturer

(Vaisala, Inc.), were used for creating relatively small sealed spaces within the cavities (Fig. 2.3). In

addition to "prefabricated" cavities, the %RH was measured in a few others, drilled by a 5/8" concrete

drill bit (Fig. 2.4).

The concrete powder obtained while drilling was collected as shown in Fig. 2.4. The %RH

was measured above the powder sample in a sealed container (Fig. 2.5). The container was designed

and constructed at Purdue, as well as some other items shown in Figs. 2.4, 2.5. The powder was put

into the container as quickly as possible, in about half a minute. The whole procedure of powder

sampling and ofthe %RH measurements in a sealed container was developed at Purdue.
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Starting at the age of 14 days, the concrete was subjected to moderate heating for two days,

while the specimen was mounted on top of a plywood box with four 90 watt light bulbs as the heat

source. Then the heating was stopped, and the box was mounted on top of the specimen surface Thus,

the heat was applied above the concrete. In eight days, the box was removed, and the specimen was

cooled until the concrete temperature equilibrated with the ambient laboratory temperature. The %RH

and temperature measurements have been taken periodically.

At this stage of the testing procedure, the %RH was measured by a HMP-36 probe with a

Humicap capacitor type RH sensor. Temperature of the powder, and of the air inside cavities, was

measured by the same probe.

The second concrete specimen was cast with different capacitance and resistance sensors

embedded in its bottom part, close to the steel form (Fig. 2.6). Readings of %RH were taken using

these sensors, and by HMP-36 probe following the concrete powder preparation procedure.

2.3 Results

2.3.1 Techniques of %RH measurements „•
JtuVed i^ Hi

The %RH values inside the concrete specimen, obtained by the Yfy v

prefabricated cavities of the 1st specimen, were similar in all 4 cavit
:<3sDe/?^

relatively narrow range between 95%RH and 98%RH. These es ive-

°*
tb,e

e
<%e'Jed

orientations or on the depths of these cavities. However, when
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in the same specimen and the %RH of the concrete powder was measured outside in a sealed

container, quite different results were obtained (Table 2.3).

Table 2.3 The %RH profile in concrete at the end of curing period

Depth

(inches)

Relative Humidity, %

Powder out of the cavity

(in sealed container)

Inside the

cavity

1 81 ._

2 87 _.

3 47 ._

4 79 94

5 77 78 82 96 98 98

At the depth of 4-5 inches, measurements were taken by drilling additional cavities; the results are also

shown in Table 2.3. As a rule, the %RH above the powder was lower than the %RH measured in the

cavity, which implies that significant loss of moisture occurred in a short time of about half a minute,

before the powder was sealed in the container. This could take place if the powder temperature

changed, inasmuch as the temperature factor strongly affects the relative humidity. Indeed, a fast

temperature decrease was observed during the powder sampling tests, as shown below:

A B C D E
The drill bit,

when drilling

The cavity,

immediately

after drilling

The cavity,

1-2 min

after drilling

The powder in

the container,

1-2 min

after drilling

Ambient

temperature

in the lab

Above

212°F 162°F 95°F 79°F 72°F



13

The temperature in the cavity could become high during drilling, but could drop quickly after that. For

the powder collected out of the cavity, the rate of cooling should be even higher. The increase of the

surface area of solids, when the concrete was crushed into powder, also could cause loss of moisture.

Therefore, the results shown in Table 2.3 for the powder taken out of the concrete might be incorrect.

On the other hand, the %RH values obtained by the HMP36 probe situated inside the cavities

could be incorrect either. The nature of moisture is such that it tends to move through the concrete

towards the surfaces. The temperature rise may accelerate this movement so that the %RH in the

cavities can become significantly higher then in the mass of the concrete. This suggestion was proved

by the %RH measurements taken when the specimen was heated.

Table 2.4 The %RH profile in concrete, obtained when the

specimen was subjected to heating

Depth

(inches)

Relative Humidity, %

Powder out of the cavity

(in sealed container)

Inside the cavity

1 7 —

2 70 100

3-4 75 100

5 70 102 101 103

These results, as measured by the %RH sensor mounted on the HMP-36 which is situated in the

cavity, indicate that the water vapor pressure in that cavity has reached the saturation level. This might

not correlate with, i.e. could be higher than, the real moisture content or %RH in concrete. Similarly,
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the results obtained inside the cavity without heating the specimen ,shown previously in Table 2.3, also

could be incorrect. That is, the %RH values measured inside cavities could be higher than they

normally should be in the concrete mass.

The third possible way of taking RH measurements in concrete was by means of

capacitance sensors embedded in the mass of concrete. Three of such sensors, representing the major

types available in the market were tested, as shown in Fig. 2.6. The results obtained in the curing

period indicated that the relative humidity was RH>100%, as it probably should be in a water saturated

system. Some of the results could not be properly interpreted. The application of embedded

capacitance sensors for air dry concrete may be more successful, however it requires considerable

experimental work on establishing their suitable parameters, calibration and measuring procedures, etc.

This task is, of course, out ofthe scope ofthe current research project.

2.3.2 Relative humidity versus moisture content

As shown in the previous section, the measurements of %RH in concrete meet considerable

difficulties. The presence of water or moisture in the pore system implies that %RH in any small space

(or in a void) should be high and should tend to reach values, higher than 70-80%RH. These values

may be even close to 100%RH. The accuracy of %RH sensors available is relatively low (±2-3%)

when the expected values of%RH are higher than 70-80%. The processes leading to the deterioration

of concrete due to freezing and thawing require the presence of water, or moisture, in concrete. This

can be true for several other processes affecting the durability of concrete, such as alkali-aggregate
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reaction, etc. Therefore the correlation between the actual moisture content and the results of%RH

measurements can serve as a valuable parameter.

The following test has been carried out in order to clarify the character and the range of

correlation between a given moisture content and a corresponding %RH. The technique used for this

test was the same as in the case of taking %RH measurements above a powder sample situated in a

sealed container (Fig. 2.5).

Eight powder samples, each prepared with a given water content, have been tested for %RH in

the sealed container shown in Fig. 2.5. The percentages of water content were chosen so that their

range (between 0% and 8% by weight) was covering the typical moisture content in hardened

concrete. The results of this test are shown in Fig. 2.7. The correlation curve obtained here can be

divided into two major sections:

at the first section, a very wide range of %RH (20% to 85%) corresponds to a very low

moisture content (up to 1%);

in contrary to that, at the next sction, the %RH increased in a narrow range from 86% to only

90%, although corresponding to a very wide range of moisture contents (between 1% and

8%).

Taking into account that the moisture contents in air dry concrete, as well as in water saturated

concrete, usually are more than 1-2%, one could conclude that the correlation between %RH and

moisture content for these concretes might be not quite satisfactory. The difference obtained between

the lowest (86%) and the highest (90%) values of%RH is 4%. Actually, it is similar to the range of

accuracy (±3%) of an RH sensor at high %RH levels. These findings imply that %RH measurements
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taken alone, without a justification of results by means of alternative techniques, might not represent a

real mousture condition of concrete. Thus, it can be suggested that a direct measurement of the

moisture content in concrete, taken along with the measurement of%RH, can serve as a valuable tool.

These results have been reported at the ACI Fall 1993 Convention in Minneapolis (4).

2.3.3 Conditioning the concrete to different moisture contents

Prior to the conditioning, the concrete was wet cured and so it was moisture saturated. The

purpose of conditioning was to reduce the moisture content to a required level by means of drying.

Two possible ways of conditioning the concrete to a required moisture content have been developed

and compared, using a plywood box with four 90 watt light bulbs as a heater(Fig. 2.2). At first, the

box was situated on top of the specimen, thus imitating a natural in-situ situation where the bridge

decks are heated by the sun radiation (Fig. 2.2). Then the specimen was put on top of the box, so that

the moderate heat affected the bottom surface of the specimen. In both cases, the measurements of

%RH were taken periodically, indicating changes in the moisture state of the concrete. The results are

shown in Table 2.5 and in Table 2.6. Each value of%RH was obtained by drilling the concrete and

taking a measurement above the powder situated in a sealed container, as shown in Figs. 2.4, 2.5.

Apparently, the evaporation of moisture took a very long time when the concrete was heated at

the top surface of the specimen (Table 2.5). This technique was considerably less efficient, in

comparison with the results of heating the bottom surface of the specimen situated on top of the box

2.6). On the other hand, heating the bottom surface did not represent the in-sity situation.

The optimum way of conditioning the concrete could be, therefore, by heating both top and
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bottom surfaces simultaneously. That's how the conditioning has been done in this project (see the

description in the next chapter).

~/tf<?'/

Table 2.5 Conditioning (drying) the concrete

by heating its top surface

Depth %RH (powder sampling)

(in)

Before heating In 2 weeks In 6 weeks

1-2 94 73 86

2-3V2 94 91 85

3'/2-5 94 97 91

"lOO'F

Table 2.6 Conditioning (drying) the concrete

by heating its bottom surface

Depth

(in)

%RH (powder sampling)

Before heating In 2 days

1-2

2-3 Vi

3'/2-5

84

83

82

74

72

73

2.4 Summary

A. The moisture content of concrete can be controlled as the moisture evaporation out of concrete

can be accelerated by moderate heating of the specimen. When a constant heat is applied, the duration

ofheating (until certain reduction of%RJI is achieved) depends upon the following factors:
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a. specimen volume and geometry;

b. concrete porosity, or its initial water-cement ratio.

Regarding a relatively large size of the specimens used in this project and a low water-cement ratio of

concrete (w/c=0.4), the reduction of moisture content, forced by heating, can take a long time. From

this point of view, heating the concrete bottom surface can be more effective than heating its top

surface. However, the latter way, i.e. heating the top, can better represent the real situation of the

bridge decks. Both ways can be applied simultaneously.

B. None of %RH measurement techniques available for the use in this project can provide

sufficient accuracy needed for controlling the heating procedure. Thus, it is not possible to reach and

maintain different levels of %RH in different concrete specimens. Also, the interaction between the

temperature distribution and moisture profiles in concrete can make this task difficult.

C. Although each of the %RH measurement techniques has its own disadvantages, some of them can

be used for indicating the extreme conditions of the concrete specimens, such as "wet" and
"
dry" . This

can be done by taking %RH measurements using a Vaisala HMP-36 probe situated above the concrete

powder in a sealed container, along with direct moisture content measurement. This technique may be

more efficient when applied for the field evaluation of the wetness of real concrete bridge decks.
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Fig. 2.1 Suggested specimen size for preliminary tests,

and concrete heating technique
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Fig. 2.2 A concrete slab specimen heated at the top surface:

1 - "heater", a plywood box with four 90w light bulbs mounted
inside;

2 - dimmer used for controlling the temperature inside the box;

3 - thermometer (not visible).
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Fig. 2.3 Measurement of %RH in a prefabricated cavity,

within the concrete:

1 - relative humidity and temperature probe HMP-36;

2 - relative humidity and temperature indicator

(shows 89.2%RH at 24.1°C);

3 - standard sealing sleeve used to create a sealed space

when inserted into a cavity;

4 - nuts used for sealing the prefabricated cavities;

5 - drilled cavities.
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Fig. 2.4 Collection of the powder while drilling a cavity in the concrete:

1 - 5/8" concrete drill bit;

2 - vessel where certain portion of the powder is collected;

3 - container where the powder is sealed;

4 - protective cap designed to fit the relative humidity and

the temperature probe; the cap provides efficient

sealing of %RH and T° sensors in the container,

above the powder sample.
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Fig. 2.5 Measurement of %RH above a sample of the concrete powder

in a sealed container:

1 - relative humidity and temperature probe HMP-36;

2 - relative humidity and temperature indicator;

3 - sealed container with the powder sample;

4 - vessel where the powder was collected;

5 - paper cone used for transferring the powder into the container
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Fig. 2.6 Situation of capacitance type %RH sensors in the mold prior to casting the

concrete specimen:

1 - Survivor II® %RH & T sensor;

2 - MiniCap-2® %RH sensor;

3 - %RH sensor made at Purdue;

4 - fragment of a corrugated galvanized steel deck form.
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SECTION 3

FREEZING-AND-THAWING TESTING

OF LARGE CONCRETE SLABS

3.1 Introduction

The experimental program described in this section has been worked out based on extensive

preliminary testing (Section 2). The results of the preliminary tests have been reported to INDOT, and

the general purpose of the experimental program was established during the advisory committee

meeting held on March 15, 1993.

Several experimental problems reported at that meeting have been resolved during the

preliminary testing. However, additional problems appeared when the freezing-and-thawing test was

started. These problems referred mainly to the duration of the freezing-and-thawing cycles, which was

extremely long: one cycle took 42 hours, i.e. approximately half a cycle per day in contrast to 3-4

cycles per day required by the conventional ASTM C666 Procedure "A".

This program was activated on April 29, 1993. The freezing-and-thawing test started on

September 2, 1993, after the desired conditioning of the specimens for the moisture content was

achieved. By December, 1994, 221 cycles have been performed. Only a few signs of minor damage

have been observed, taking place only in the water saturated slabs. It should be mentioned, however,

that despite the duration of this program was very long (about a year and a half), the program posesses

a considerable advantage, that is modelling the real situation.
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3.2 Experimental program

Twenty 22 Vi" x 17W x 5V4" concrete specimens, actually slabs, have been cast at Purdue

University on April 29, 1993. The concrete was supplied by the EMI batching plant in West Lafayette,

EN. The mix design was provided by ENDOT. The coarse aggregate was supposed to be susceptible

to D-cracking. The concrete mix composition is given in Table 2.2 (section 2). The concrete delivery

ticket is attached (Appendix A).

One day after casting, ten slabs were demolded, and the steel deck forms used as the bottom

part of the molds were removed. All the slabs, i.e. ten with and another ten without steel deck forms,

were then subjected to wet curing for three weeks. After curing, the slabs were divided into three

groups, to be conditioned to different moisture contents in accordance with the experimental program

(Fig. 3.1):

Group 1 - WET (water saturated) slabs;

Group 2 - DRY (dried by moderate heating) slabs;

Group 3 - AIR DRY (air cured) slabs.

Six slabs were demolded and immersed in water saturated with lime at 70-72T to form Group

1. Three of these slabs were without steel deck forms. Another six slabs were kept in the molds, while

their top and bottom surfaces were subjected to a moderate heating, as shown in Fig. 3.2, to form

Group 2. The heating procedure, developed as result of preliminary testing described in Section 2, was

applied for this purpose. The air temperature near the top and the bottom surface of the specimens

was maintained at 140-1 50°F and 165-175°F, respectively. Air flow was provided near the top surface
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of the specimens (Fig. 3.3). Three of these specimens were with steel deck forms, and three others

were without steel deck forms.

Eight slab specimens of Group 3 were subjected to ambient conditions in the concrete lab, as

shown in Fig. 3.2. Four of these specimens were with steel deck forms, and four others were without

the forms.

Along with large slab specimens, eighteen 3" x 6" concrete cylinders were prepared and

conditioned, forming the same three groups, i.e. wet, dry (heated) and air-dry. Part of the cylinders

have been tested for the compressive strength prior to the freezing-and-thawing test. The following

results have been obtained:

Group 1 (wet) - 5930 psi.

'

Group 2 (dry) - 4060 psi.

Group 3 (air dry) - 5820 psi.

The duration of conditioning, prior to the freezing-and-thawing test, was subject to the requirement of

achieving the lowest possible moisture content in concrete by means of heating. The conditioning

period lasted seven weeks, probably due to the large volume and thickness of the specimens. At the

completion of heating, the lowest moisture content in the concrete (Group 2) was approximately 0.9%.

The average moisture contents in the wet (Group 1) and in the air-dry concrete specimens (Group 3)

were 7.0% and 3.1%, respectively. The moisture content was determined by oven drying the

fragments of fractured concrete cylinders at 105°C during 7 days.

The conditioning of all the slab specimens was stopped when the moisture content of the

heated slabs reached the level of0.9%. By the same time, the preparations of the freezing-and-thawing
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chamber for conducting the test had been completed. These included the installation of 12

thermocouples, their connection to the temperature indicator, and the temperature calibration. The

chamber is computer operated (Fig. 3.4). A group of devices, including the temperature indicator, was

mounted outside the chamber for this project.

Prior to the freezing-and-thawing test, the reference pulse velocity measurement was taken for

all the slabs. For each slab, five measurements of pulse velocity were taken (Fig. 3.5). The results of

these measurements, as well as the results of the measurements taken later on during the freeze-thaw

tests, are collected in Appendix B.

3.2.1 Freezing-and-thawing Cycles

The moisture conditions achieved for the three groups of slab specimens have been

considerably different (0.9%, 3.1% and 7.0% for dry, air-dry and wet specimens, respectively). This

implied different durations of freezing-and-thawing cycles, which also might be very long. However all

the slabs were situated in the same chamber, each group had to be isolated. After a few unsuccessful

attempts to seal the wet and the dry slabs, an epoxy based coat (HorseySet WDE) was applied. This

coat has provided sufficient protection of the dry slabs from wetting and of the wet slabs from drying,

resulting in considerable shortening of freezing-and-thawing times. However, these times were still

significantly longer than the time required for freezing-and-thawing of normally used 3"x3"xl2"

specimens. The situation of the slab specimens in the freeze-thaw chamber is shown in Fig. 3.6.

Amongst the three groups of specimens (i.e. dry, air-dry and wet), the wet specimens required

the longest freezing-and-thawing cycles. The shortest freezing time established for these specimens
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was 18 hours, and the shortest thawing time was 24 hours. Consequently, the shortest possible

freezing-and-thawing cycle was 1 8+24=42 hours, because all three groups of slab specimens were

treated in the same chamber. Under these circumstances, the rate of the test was 4 cycles a week. The

weekly freeze-thaw chart is shown in Fig. 3.7.

3.3 Results

The measurements of pulse velocity were taken in the freeze-thaw chamber approximately

every 30 cycles, that is once in IVn weeks. Any visible signs of deterioration such as cracks, have not

been observed on any of the slab specimens at 13 1 cycles, except for a single aggregate grain popout.

This popout has occurred in November, 1993, on the top surface of a water saturated slab marked 5W.

Only a minor damage was indicated at 1 3 1 cycles in dry slabs (Group 2) and in air dry slabs

(Group 3), with or without steel deck forms. This was true also for most of the wet (moisture

saturated) slabs of Group 1 . Considerable damage has been indicated, however, in wet slabs with steel

deck forms. At 22 1 cycles, the average reduction of square relative pulse velocity in these slabs (3W,

4W, 6W) was 37.6%. The most severe damage occured in the slab marked 3W. In this slab, the

reduction of square pulse velocity was 43.8%.

The percentages of square relative pulse velocity reduction in all three groups of slabs after 221

freezing-and-thawing cycles are shown hereby.

Group 1 : WET (water-saturated) slabs

- with steel deck forms: 37.6%;

- without steel deck forms: 16.2%.
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Group 2: DRY (dried by moderate heating) slabs

- with steel deck forms: 6.5%;

- without steel deck forms: 3.3%.

Group 3: AIR-DRY (air-cured) slabs

- with steel deck forms: 5.9%;

- without steel deck forms: 7.9%.

The square relative pulse velocity curves for the Groups 1, 2 and 3 are given in Figures 3.8, 3.9 and

3.10, respectively. The relevant measurements, taken atO, 5, 31, 51, 71, 101, 131, 161, 191 and 221

freeze-thaw cycles, are collected in Appendix B.

The saturated condition of wet slabs was maintained by wetting their top surface periodically.

These slabs were covered by wet burlap sacks sealed with plastic sheets and silicon rubber. The

moisture condition of dry slabs was measured periodically by a %RH probe inserted into a cavity

drilled in the slab marked 1H. The relative humidity measured in that slab at 5 cycles was very low

(26.1%). At 131 cycles it was very low as well (32%RH), although showing a tendency to increase

slowly. At 21 1 cycles, the %RH registered in the same slab was 52.5%. However relatively high, this

level should still correspond to a very low (less than 2%) moisture content in concrete.

3.4 Summary

Freezing-and-thawing test of large slab specimens is a long term procedure. The rate of

cooling, as well as the rate of thawing, is very low mainly because of the large specimen size, but it

could be affected also by other factors, such as the large volume of the chamber. The completion of
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this test requires another 79 freeze-thaw cycles to be carried out, however the results obtained so far

are clear enough.

Considerable damage of concrete is indicated, in terms of square relative pulse velocity, in the

water saturated slabs (Group 1, WET). The average percentage of the square relative pulse velocity

reduction in these slabs was significantly higher than in two other groups of slabs (Group 2, DRY, and

Group 3, AIR DRY).

As is noticed, the largest drop of square relative pulse velocity has occurred in water saturated

slabs with steel deck forms. This supports the suggestion that more water can be accumulated in the

bottom part of the slabs with steel deck forms, than in the slabs without the forms, thus indicating the

negative role of the forms.

The changes of square relative pulse velocity indicated the damage of the slab specimens, i.e.

certain reduction of the relative dynamic modulus of elasticity Ed has occurred. Although, no visible

signs ofdamage has been observed.
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Specimens

subjected to

freezing-and-

thawing:

with

steel deck

forms

without

steel deck

forms

Compressive

strength

(3" x 6"

cylinders)

1. Water

Saturated

2. Dried by

Heating

2.

ZL-C1
2r c

3. Air Dried

'J"WtJ

Ln-nJ LrL_nJ

j-unJ

CW^J

Total 10 10 IS

Fig. 3.1 Three groups of 22V4 x 17V4 x 5Vi in. concrete slab specimens: 1 - burlap sacks, 2 -

plastic covers. Moisture saturated large specimens are sealed at their bottom and side

surfaces. Their top surfaces are covered with wet burlap sacks and plastic sheets. The sacks

are wettened periodically.

The specimens dried by heating (group 2) are complete sealed at all their surfaces.

The air dry specimens (group 3) are sealed only at their side surfaces.

All the specimens are positioned on the wood bars, so that there is no direct contact

between them and the floor of the freezing-and-thawing chamber.
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Fig. 3.2 Conditioning of concrete slab specimens in the concrete lab

(Purdue Civil Engineering Building):

1 - heated slabs (Group 2);

2 - air-dry slabs (Group 3);

3 - plywood boxes, each containing four 90 watt light bulbs;

4 - dimmers;

5 - thermometers (not shown).
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Fig. 3.3 A small fan fixed on the heating box for increasing

the air flow above the slab specimen surface.

Each of the six heating boxes mounted on top of the

slabs was equipped with a fan. The fans were switched on
periodically, by a timer.
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Fig. 3.4 Freezing-and-thawing chamber operating post:

1 - computer;

2 - commutator box with temperature indicator connected

to the 12 thermocouples.
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Fig. 3.5 Point of pulse velocity measurements (Vj through V5)

along a large slab specimen. Indices (1, 2, 3, 4, 5) show

the sequence of the measurements.
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Fig. 3.6 The situation of large slab specimens in the

freezing-and-thawing chamber:

1H-6H - heated (dry) slabs;

1AD-8AD - air-dry slabs;

1W-6W - wet (water saturated) slabs;

TC - thermocouples.

For each group, the thermocouples have been embedded in three slabs, as shown. Three

thermocouples (TCI, and TC2 and TC10) have been situated in different areas of the

chamber. Also shown in Fig. 3.6, are the computer (C3) and the temperature indicator box

(IB).
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Fig. 3.7 Weekly freeze-thaw chart for the large slab specimens
situated in the freeze-thaw chamber:

F - freezing from +4.7°C to -17.8°C;

T - thawing from -17.8°C to +4.7°C.
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SECTION 4

FREEZING-AND-THAWING TEST

OF 3"x4"xl2" CONCRETE SPECEVIENS
(EXPANSION-EXTENSION RESEARCH PROGRAM)

4.1 Introduction

This program has been described in the Expansion-Extension Research Proposal submitted to

INDOT on September 1993. The proposal was aimed at shortening the duration of the freeze-thaw

testing, so that the Task 2 of tins project could be completed in a more reasonable time than that

estimated for the testing of large slab specimens. For this purpose, the alternative experimental

program has been worked out, where small concrete beams should be tested in accordance with the

standard ASTM-C 666 procedure.

The alternative program has been completed by the end of May, 1994. The following was

done while carrying out that program: (a) designing and making plywood molds; (b) casting 3x4x12

inch concrete beams; (c) preparation of the freezing-and-thawing machine for testing; (d) curing and

conditioning of the beams, (e) running 301 freeze-thaw cycles, and (f) periodical testing of the beams

each 30 cycles.

4.2 Experimental program

The experimental program included the preparation of sixteen 3"x4"xl2" concrete beams, so

that the following four groups were formed (see also Fig. 4. 1):

1 - four air dry specimens with steel deck forms,



44

2 - four air dry specimens without steel deck forms,

3 - four water saturated specimens with steel deck forms,

4 - four water saturated specimens without steel deck forms.

All these specimens were of the same shape and size (Fig. 4.1). Wooden molds were constructed so

that a fragment of a steel deck form served as the bottom part of the mold (Fig. 4.2). Such fragments

were made ofthe forms used previously for casting large slab specimens, but removed according to the

procedure described in Section 3. The molds were designed and built carefully, so that the exact size

and shape of the specimens was achieved. Stainless steel pins were used for the concrete expansion

measurements. These pins have been precisely situated in the molds and, later on, in the concrete.

The concrete mix was prepared at Purdue. The mix design was same as that used for casting

large concrete slab specimens (Section 3), i.e. that provided by INDOT (see Table 2.2, Section 2).

The aggregate for concrete was a limestone, same as the one used previously (Section 3). The

susceptibility of the aggregate to D-cracking has been tested by a method developed at Purdue

(5),prior to the preparation of specimens. The method is based on the correlation between the

aggregate pore size distribution and the freeze-thaw durability of concrete batched with that aggregate.

The pore size distribution of four aggregate samples has been determined by MTP (mercury intrusion

porosimetry). The Expected Durability Factor (EDF, see ref. 5) has been calculated for each of the

samples. The results indicate that the aggregate may promote the damage of concrete and the D-

cracking due to freezing and thawing (Fig. 4.3). Total porosity of that aggregate was high (2%),

determined by oven drying at +105°C.



45

The specimens were cast and wet cured in the molds for one day. On the next day, the

specimens were demolded, and six steel deck forms were removed. At this step, all the specimens, i.e.

with and without steel deck forms, were subjected to moisture curing for one week.

In a week, eight specimens, five of them with steel deck forms and three without, were

subjected to moderately accelerated drying (Fig. 4.4) in a small chamber equipped with four 90 watt

light bulbs and with a fan (Fig. 4.5). Plywood boxes used for heating of the large slab specimens

(Section 3) were taken for assembling the chamber. The drying procedure took another 8 days. The

moisture content of the concrete, obtained by that procedure, was 3.9%, determined by oven drying at

105°C. The dried specimens were marked "AD", for "air dry". Another 8 specimens were cured in the

moisture room during 15 days. These specimens were marked "W", for "wet". The final arrangement

ofthe specimens is shown in Fig. 4.6.

The freezing-and-thawing machine have been recalibrated. Three additional thermocouples

have been installed in the specimens AD-4, W-4 and W5 to provide the efficient control of the freeze-

thaw cycles.

When the curing and conditioning procedures were completed, the AD specimens were sealed

by HorseySet WDE sealer, applied in 3 layers. The W specimens have been sealed by one layer of that

material (Fig. 4.7). In the freezing-and-thawing machine, all but two trays were filled with water. Two

specimens (AD-1 and W-8) have been situated in the air, in tray No. 1 and No. 18 (Fig. 4.8). The

positioning ofthe specimens in the freezing-and-thawing machine is shown in Fig. 4.9 and Fig. 4.10.

The number of freezing-and-thawing cycles performed was 301. The following parameters

were measured periodically (mostly every 30 cycles):
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- specimen weight change (Fig. 4. 1 1),

- specimen expansion , i.e. length change (Fig. 4. 12);

- ultrasonic pulse velocity (fig. 4. 13).

The weight measurement was aimed at assessing possible weight loss due to scaling of the concrete. It

was helpful also in controlling the moisture content of air dry (AD) specimens. Periodically (at 42, 126

and 250 cycles), the AD specimens were removed, dried in the air, and resealed.

The positions of the specimens in the freezing-and-thawing machine were changed periodically,

along with the measurements listed above. This was done in order to provide uniformity of freezing

and thawing for each specimen (see Appendix C).
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Groups of specimens Amount Sketch

1. Air dried, with

steel deck forms
-2^-z-"

4
.J%-Jl±i"

2. Air dried, without

steel deck forms

X-^L

3. Wet cured,

with steel deck forms

4. Wet cured,

without steel deck forms

Total 16

Fig. 4.1 Experimental program
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Fig. 4.2 Assembled plywood molds, used for casting

3"x4"xl2" concrete specimens.

The fragments of steel deck forms (5,7) have been

sealed at the bottom of the mold.
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Sample

1

2

3

4

EDF

20.8

35.7
20.0

14.0

Total

Porosity:

P = 2*

Ijj O.I >J

MEDIAN DIAMETER (JJ ) MD

Fig. 4.3 Expected Durability Factor (EDF) of Peru limestone aggregate,

according to the method developed by Kaneuji, Winslow and Dolch (4)
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Fig. 4.4 The tunnel assembled for drying out the 3"x4"xl2" concrete specimens:

1 - lightbulb box;

2 - position of the fan;

3 - relative humidity and temperature probe;

4 - relative humidity and temperature indicator.

The air temperature in the tunnel was up to 85°F. The relative

humidity varied between 8-15%.



51.

Fig. 4.5 The situation of the fan (1) and of the light bulbs (2) inside

the drying tunnel. Four concrete specimens (3) can be seen.
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Specimens AD-8 and W-8 have not been immersed in water.
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Fig. 4.7 Sealed 3"x4"xl2" concrete specimens, ready for positioning

in the freezing-and-thawing machine:

1 - steel deck form;

2 - pin for the elongation measurement;

3,4 - thermocouples.
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4 mi

Fig. 4.9 Positioning of 3"x4"xl2" specimens in the trays:

A - air dry specimen,

W - water saturated specimen,

1 - tray,

2 - supports,

3 - heating units,

4 - cooling plate,

5 - sealed surfaces

(with HorseySet WDE)
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Fig. 4.10 Positioning of 3"x4"xl2" specimens in the

freezing-and-thawing machine
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Fig. 4.11 Measurement of the specimen weight
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Fig. 4.12 Measurement of the specimen expansion
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Fig. 4.13 Measurement of ultrasonic pulse velocity
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4.3 Results

The results of the measurements listed above are collected in Appendix D. The measurements

have been taken from 1 3 out of 1 6 specimens, except for those holding thermocouples (AD-4, W-4

and W-5), marked T.

4.3.1 Ultrasonic pulse velocity

Relative square pulse velocity of the ultrasonic wave run along the solid matter is proportional

to the dynamic modulus of elasticity Ed of that matter (5). The values of relative square pulse velocity

in the concrete specimens have been calculated using the measured pulse time (Appendix D) and

knowing the initial length of the specimens. The pulse time has been taken as shown in Fig. 4. 13. The

following results were obtained.

A. wet (water saturated) specimens:

the most extensive drop of squared pulse velocity up to 55% (Fig. 4. 14);

more extensive drop of relative square pulse velocity in specimen with steel deck forms (curve

D in Fig. 4. 14) than in specimens without the forms (curve E in Fig. 4. 14).

B. air dry specimens:

more intensive drop of squared pulse velocity in specimens with steel deck forms (curve A in

Fig. 4.15) than in specimens without the forms (curve B in Fig. 4.15).

C. specimens without steel deck forms:

more severe damage in water saturated concrete (curve E in Fig. 4.16) than in air dried

concrete (curve B in Fig. 4. 16).
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D. specimens with steel deck forms:

more severe damage in water saturated concrete (curve D in Fig. 4. 17) than in air dry concrete

(curve A in Fig. 4.17).
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SPECIMENS WITHOUT STEEL DECK FORMS,

TESTED IN WATER:

B— air dried concrete;

E — water saturated concrete.
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4.3.2 Expansion

The measurements of the concrete expansion (the elongation of the specimens) have been

taken as shown in Fig. 4.12. The following results have been obtained.

Air dried specimens with steel forms have been considerably expanded (0.22%). Probably,

these specimens have absorbed more water than air dried specimens without the forms (0.02%,

see Fig. 4.18).

Water saturated specimens with steel forms, in which the measurements could be taken as long

as the freeze-thaw test run, have expanded to at least 0.25% (Fig. 4. 19).

Severe deterioration was observed in other water saturated specimens with steel forms, and

thus the expansion measurements were interrupted at 180-210 cycles (Fig. 4. 19).

The highest values of expansion have been recorded in water saturated specimens without steel

forms (0.44% and 0.34%, see Fig. 4.20). However the most severe deterioration took place in

these specimens, the expansion measurements still could have been done.

Destruction of water saturated specimens with the forms occurred mainly at the edges. This

explains the reason why the expansion measurements have been interrupted. In contrary, the

destruction of water saturated specimens without the forms was spreading along their bottom

part (see Section 4.3.3).
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deck forms, measured during the standard (ASTM C-666) freeze-thaw test
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Fig. 4.20 Expansion of water saturated 3"\4"xl2" concrete specimens without steel

deck forms, measured during the standard (ASTM C-666) freeze-thaw test
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4.3.3 Weight changes

Air dried specimens were absorbing water continuously during the freeze-thaw test, despite the

precautions that were taken (see Section 4.2). The water absorption in air dried specimens without

steel deck forms was low (up to 0.3%, Fig. 4.21). But air dried specimens with the forms could have

absorbed more water (up to 5.3%, Fig. 4.21). The possibility of the moisture accumulation at the

bottom part of the specimen seems unlikely, because the concrete was initially dry. Probably, water

could penetrate into the specimen through the interface between the concrete and the form.

Water saturated specimens suffered severe damage and scaling as a result of freeze-thaw

action. However, the specimens with steel deck forms have lost less than the specimens without the

forms (Fig. 4.22, 4.23). Taking into account the observation given previously, that the destruction of

the specimens with the forms occurred mainly at their edges (Section 4.3.2), one might suggest that the

steel forms could play even a positive role in this particular situation. The total weight loss in

specimens without forms was up to 19%, but in specimens with forms it was lower (up to 10.3%, Fig.

4.2.3). A minor weight loss observed on one of these specimens (1.8%), could be explained by a better

adhesion between the concrete and the form. The scaled fragments of concrete could also remain

stuck, supported by the deck.

The most important observation refers, however, to the moisture state of the concrete. Water

saturated concrete disintegrated, while dry concrete did not.
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SECTION 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary

This research investigation was aimed at assessing the freezing-and-thawing durability of

concrete bridge decks with stay-in-place steel deck forms. In particular, it was intended to clarify the

possibility of D-cracking due to the increased moisture content, mainly in the bottom part ofthe deck.

The experimental approach was based on conditioning the concrete to several levels of

wetness, and on establishing the moisture content by means of relative humidity measured above

samples of concrete powder. The samples were obtained by drilling the concrete.

The specimens made for the project were large concrete slabs with and without steel deck

forms. The choice of the large specimen size was intended to make the situation in the lab more similar

to that in the real bridge decks.

The experimental problems described in this report have been related to the techniques of

relative humidity measurements and to the use of large size concrete slabs. To resolve these problems

and to reach the objects of the project, an extensive experimental program has been carried out.

Following are its major results, conclusions and recommendations.

Apparently, several techniques of relative humidity measurement ,applied in this project, were

inefficient due to the limitations described in Section 2. Probably, the relative humidity measurement

was not a suitable tool for determining the internal moisture state of wet and/or air dry concrete. In

this project, the direct measurement of moisture content has been applied as an alternative, along with

the relative humidity measurement.
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The measurement of the freezing-and-thawing test of the large 22 1/4"xl7'/4"x5%" concrete slabs

was described in Section 3. The results obtained after 221 cycles indicated the reduction of relative

square pulse velocity in the range of 3.3%-7.9% (dry and air-dry concrete slabs). Considerable drop of

relative square pulse velocity was observed in moisture saturated concrete slabs with steel deck forms

(37.6%), indicating a reduction of the relative dynamic modulus of elasticity (Ed).

5.2 Role of steel deck forms

Steel deck forms might have promoted the accumulation of water at the bottom of 3"x4"xl2"

concrete specimens (and probably of the large slab specimens) where the concrete meets the steel deck.

This assumption is supported by the results given in Section 4 above and in Section 3 for large water-

saturated concrete slabs with the decks. They tend to deteriorate to a higher extent that water-

saturated slabs without the decks.

The deterioration of some of the 3"x4"xl2" specimens, as measured by relative pulse velocity,

was more extensive in the presence of steel deck forms. This was found in air dry concrete (Fig. 4.15)

as well as in water saturated concrete (Fig. 4. 14).

The expansion measurements gave results in support of the negative role of the steel decks for

air dry concrete (Fig. 4.18). However, the expansion measured in this case could be caused by

excessive absorption of water from the freeze-thaw cells in the air dry concrete (Fig. 4.21, curve A).

As to the water saturated concrete, these specimens (with decks) deteriorated at their edges after 180-

210 cycles (Fig. 4.19). The stainless steel pins used for the expansion measurements popped out of the

concrete, which interrupted the measurements.
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5.3 Role of aggregate

The water absorption capacity of the coarse aggregate used in this project was 2%. The

Expected Durability Factor (EDF) was determined by a method described in Section 4. The EDF

values indicated that the aggregate could be considered a Non-Durable, susceptible for D-cracking.

Observations of deteriorating specimens have shown numerous cracked or broken coarse

aggregate grains in the fracture planes (Fig. 5.1). Popouts ofwhole grains as well as ofgrain fragments

have occurred frequently (Fig. 5.2). There was no significant deterioration of the hardened paste-

matrix. There was no deterioration in air dry concrete (when it did not absorb considerable amounts of

water). These observations indicate that generally, water-saturated coarse aggregate grains could play

a major role in the deterioration process, and specifically, that coarse aggregates which are non-durable

and susceptible to D-cracking under freezing-and-thawing conditions should not be used in concrete

decks that are cast on stay-in-place metal forms.

The deterioration has occurred only in water saturated concrete specimens, along with the

extensive drop in relative pulse velocity and expansion. These imply that considerable deterioration is

likely to occur when the moisture content in concrete is high, i.e. is up to 4-8%, and when the

absorption capacity of the coarse aggregate is also high.
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Fig. 5.1 Typical view of a deteriorated water saturated 3"x4"xl2

concrete specimen:

1 - failure of aggregate grains
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Fig. 5.2 Popouts at the surface of a deteriorated water saturated

3"x4"xl2" concrete specimen
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5.4 Conclusions

1

.

The majority of experimental results obtained in this study suggest that corrugated steel deck

forms may promote the damage of concrete made with D-cracking coarse aggregate caused by

freezing-and-thawing action.

2. The coarse aggregate used in this study could by itself promote extensive cracking and

consequent scaling of water-saturated 3"x4"xl2" concrete specimens cast either with or

without steel deck forms.

5.5 Recommendations

It is known that corrugated steel deck forms have been widely used in bridge construction.

These forms provide considerable technological and economical benefits. The recommendations for

future applications of these forms can be given as follows:

1. The corrugations of the steel deck forms can be perforated. This may provide the drainage of

excessive water out of the interfacial gap between the concrete and the form. However, the

perforation may not be very efficient, for example, because the holes can be easily plugged by

the fresh concrete.

2. The forms may be anchored into the concrete. This may help to minimize the interfacial gap

between the concrete and the form, and thus to reduce the accumulation ofwater in that gap.

3. Chemical admixtures can be incorporated into the concrete mix and/or applied onto the steel

form surface prior to casting. Hence, the bond between the concrete and the steel form should

be improved, so that the interfacial gap would be minimized.
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Good quality concrete, designed for a low water permeability and for a low internal bleeding,

shall be applied. The aggregates for the concrete shall be of a sufficient quality, i.e. non-D-

cracking.

The application of coarse aggregate like that used in this project is questionable. However, the

reduction of the maximum aggregate size may lower the probability for the D-cracking to

occur.

The freeze-thaw testing of large slab specimens is in progress. Some interesting observations

have been made recently (Section 3). Additional results can therefore be obtained by the

completion of this test, describing the performance of air dry and water saturated concrete

slabs with steel deck forms.

It is desirable to compare the results obtained under laboratory conditions with observations

done on actual bridge decks. Measurements of moisture content in the bridge concrete done in

different seasons, as well as the observations of the actual interfacial gap between the concrete

and the steel deck forms, can provide valuable information on their performance.
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APPENDIX A. The concrete delivery ticket
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APPENDIX B.

Freezing-and-Thawing Test ofLarge Slab Specimens

Measurements of Relative Square Pulse Velocity





85



3 'i-Hv. ®2[.%

»
>Vf» 5»

^ K
>a

1

I>ort&. Spe.cfwef7S.: /^is&S-e. "£./'(?? <2- fyt7S<s<s.)

tfeck
without V v^ v3 Vv 14-

10.zm I AD M3 2. !^M & lutf o iU": IH"L "
i 1

n 2av fVfr
7

fft g JWS fe
life

(5 1^ 5

! t 3AD IM7
'2*

/*f7 lY^- 3 w ^ /y>
r
'0

1/ ^AD /vw
-

[43 f IV/
-i

l*f3. 7 /4z ?
|

11 SAD l4§ o Hi ^ jmtIj IY& 7 /4J 7

/; 6AD
/*/.fl fa /47 H? * IH.7 S ftfr 3

rr IAD WW 7 IM7 «r [% 1 [40 [ IH1 3
'/ 2AV in *-*

j 1^7
1

IM7 I m / rt&

<t Iw m
1

;^ 5 l# r )Hb\b !/! I

rr Zw 13* 1 IH* & _LS ^ m 7 14b b
" Sw m 3 IMW H w ?6 M 144 &

u 4w NZ 2^ \UH 145'3 /Vc 6 ^ J>

" Sw r% r \HH 7 /Y 71 3 /4~7 a. /4r 2

n 6w m 2 m 7 1HH 2, 144 5^
^I4b k

If IH \& 3 \b\ 7 $ 3 I6| i$1 7
l< 2H & 1 te & ir6 & /&*> a Ife-i >

n 3H \\o% S !(*3 i l^o 5 I&4- ? 101 5
If 4H u 2 l/,3. H IGI. S K»3 <2 IQ. ?

'f &u 1/ fw 1 It! £ IW2 4 Il#{ ^

t' 6H lis
D 16.1 1^1 \fco ?- l^o s



%M** IMWed:
V-TT 3"5»

37

33.?I;@ ai.^ ^ 9

1 I II
\ flC^*^T>-5/^fl

II / 4m

TC4

3h <*4

TC3

5*H

7T8

IT 2«

OS

II ^""w

^*l
?*P <$4Z>

^7

Iao 5*D

rcll

2>»* u>

TC4
,

^>

1 ?h
TCI-

i

/w 6w

rc\Z

Sw
tc3

3u 2^ 1

«5" ^2 j

2>iyZf« Specimens: /=>cs£s-e. ^/^e^ fytose*-.;

ro
without V VZ v3 Vh 14-

-l
IX-l

II,2W 140 m 2 143 L, l
LB 5 )''-l

-7 143," ^
~

24^ 14^ 1 L? mil a
)4-6 C* I-? 7 Ifl

-

'-

5/4 D It? °\ !T^ o ;<^ a \LjUf j
: -M 2

<'

44Z> 14£ 1 1^3- 2 1Wo >4i 4 HI Or

-
- SAD /^r <z 14?! 5 J<H 1

!•**?

us?
m?

s 6AD IHS 4 fc?
!

H w "5- 4 yi? i/ m 3
V7

TAD Hk ^ 14? i

a }iit* u W U iiO. C7

"*0

2AV /MS" % |4<S| 2 |b(* 4 1H< 3 |44 O
» /w m G> mf! 1 H^3 (* i^ f?i

!

<4

q)
i

•< 2.W m I !ffi
% 1'-H c m f 1^3 4

;

pppcti£

" Sw i^ 4- 1*, C, |i a 4 m *) 1$^ 5

« 4w m ^ 1% H |<-Wp \MM ? 144 4

oS^eAW*. ii Sw p*, fy Hi 3 ft
14"?- I4>

« 6w i^i s 143 & fc 3^ j^ 3 /4a b

ii

IH l^H u l^ 1 1:
r/ ?

1 c* -? 5 '<? 4

- 2H )S*
<£ 162 \ le

'1 O Ifc^ 3 %o S

it

3H !(,3 5- |c3 % \(*D ^ \(a3 E 1C2 4

w "Mh IU H l(*3 5 fto 1 IC9. 1 l(o> H
1

ti tru if 3 Q luo '*
/<9\ ?

1 [a

'

7 /o>

)

y

VI SH ^ r

)S\ U
|

; ho a. 4^ 4



%k{1H'4U, p

v—IT 5*3" a* /c
• 1 i ii «£ ZD+P.0+2.C b 7' &<5

rii / 4h

TC4

3h •

Tc9

5h

TC8

Ih 2h

• I
I...

^3*1
?>»p ($4£

rc7

Iao 54D

Klf

2>«

. It>

rr
TCI- /%* 6w

7C\1

SW -4^

tc3

5w

__^^ —:—

2>art& Specimens: /^cy^s-e. "£'~*>Tje~ f/****-)
W

'

thou*
Jmck Vf

1

y&* >r2^L VH 14-

*/./?. ?*/ /4£> m 5 w 4 / "I 6 IfS 4 /yj
-

4

24^ HI
: 2 in 4 '

1S q iiz 1 H3 7 1

!

3/fo m <? i% & / yu l /Y^ 4 ;^ ^
|

44D )i"Z Z \£Z 2. 1 HS 3 us s /V2 4

SAD m 7 m\ b 1n (, 14* 4, /^'J
•

6AD M* H \\i\ 1 u i iw 3 )<n 3

7AD /¥<» 4 in\ 1 / % y 1^7 1 3 /V?

2AV iir 3 fibl 1 I'K S JM5 £ W7 f

TtofficaJe f Iw /V? 6
i

S"
i zz a j£0 2. /^ 3

2.W \^ t vtf b ) # 2 \& \o \^ b

"\ 3w i*n 5 l# 7 n* (, f<H i IbO 2

' / 4w i# 4 \% 4
1 a\ I )4°) 2 jffl z.

V

Bw /^r 4 Nfe 1 /
«w|"7 IH1 Hi 3

-6w m S |Hl 1 /<tf b }H1 1 iHl J

IH ;r7
«f

/feO « )-56
|

2 10 7 m b

2H /5i 7 (62 / 62 i (£Z y igo 6

3H 113 H It3 5 f to o Ife3 /ti fl

. 4H IS"? 4 /u 9 ' # / ft; 3 /ti 1 I

-.- su I
WO & U2 1 I b6 & Ib2 IbO ?

6H l-5"7 l ito •a ii;<? o |5<3 b. IS"? 4



k-f— -2T3* 89 a.^ °A
1 i II ot W+30+Z0+2f>+S-IOl c^/t£e<,

II / 4h 2h
.

*Af

7C9

5m

7t3

/H

:

J*

' I 1
_.,

Xcsl
?/»p &AB

7*7

Iav 545

Kit

24* ?4* ^4*
1 v

1

•—

r
TC \

ft 7v7 SV
TC3

3v»

•Z^Zf-S Specimens: /&ts£s-e. 2^/'/^<S- f/*S«*e.)

With Without
ttmalc M Vz. v5 Vv l£-

^itaJf* I AD \^v "7 144. a \ 4-S 9 \4-3 <<:» \Az/ A-

i

2AZ> \A.A- <l» 14* 3 \'K» c \A^r 3 \4^ •2.

3AD \AS A- IH> u> vV4- 6> \4* 4- \^ A

44 B \44 % \& & y*^!?j \V!> 4- \*$\ A-

SAD 14^ S \AF7j > i«So A, \4SJ3 \4e|
.

-7

-

6AD US 3 \4-3l c* \fifl 7 14*1 1
I4-°1 4

7AD K\ X \<D! D M^ 4 tfolfc I V\ I*

SAD m 8 R&i 3 (iJ2> 7 W7 4 t^h
Iw &i 7 !*4i ^ t£'fe(* |4S 12. /<&! «

2.W Y& G irr! 7 \4rl 4- \<0 7 \<4^
3w \V\ 7 I4/S 7 If&U i<l fe kJ (^

4w Ko 3 Itf 4- [47 f J4J 4 t4fe <
Bw ite 7 l£(p 1 H>o|</ iuik ^1 3

6w \¥* 3 144- Z H14 4- f46 s 14^ o

IH \Sl i \*> S \
c
-*>o \VO <• Wc s

2H Wv o V* S \\,1 ~L U1 lw? *>

3H \(^5
fr iw. A- t<JO 5 ife*l

z~ \ul<r>
|

-

*ih \£ ^> lu>o 6 \!A,s M** IvoJ (*-

SU \^> V Iwt ^ u<?0 Ar Ifcl £ IVrf) §
6H IS! ft \VjO A- v$t Jg£

°> ^ 1



%M/**L ///)>. 32%
}

—
If—

_

3*3*
90 • y

2 3
1 II *l2D+$o+2D+2tH2&+5'*t3I<L»fL&s.

^^

ii / Ah 2h <**

TC9

5*

7C8

Ih ZH

II ^

1 ^TcsX
£/»P eus 7ad

Til

Jap 5AD

Tell

2*i Imi 4A9

TC4

~M
/ —

\ flfj
TO

Jlre/fl
' Iw

\

Sw 4^

TC3

3* Zw

JLlbi ^Tt^ !

1

1pi
"Dcrte. Specimens: &&S&S &. t^Cl^7«. fj&S&G'J

without
V, V2. v3 Vu 14-

07.or.ft I AD l<\ 5 m o l
cn y US' 7 i^i %

2az> IHH
! 6 |M 5 15 |<iU A \<A< '1

1 ;Hi •x
|

3AD '4J, "J i?o 5" K : m iM« 2 15 D z
|

4MZ> iH7 H m % IM (, o NU M 14"% L\

S"A2> 14 <\ %
ii

1 i IMS 7 !4^ 1
|

6AZ> 14"% w (5"
1

!| Y ;M t 4 i<» 4 If^ M
j

7/42) \<0 L iSI M i*^ (? f-jf 7 \<4% 3

2AV \€\ % Kojt (< " y mi $ ,w7 2,
j

Iw .<$ X Mi < H <i 4 ifo 1 •4« 1

2.W lt< 1 m< H !M H V IMH 7 4H %

3w 1^1 < '7% 3 tie 7 It^ H !7o 1
M

4w i^i fe N<g 1 15'1 % i^i 7 IH't %
!

Bw '-3 2 ;m to t> IH s* 7 tfo 1 YAH H

6w IWS I |H3 < Nr< ;»&> (p
\^< ^

|

IH l«? -7 iuh 6 l<n h l(ol
lUl 3

2H \i<6 7 11*1 3 It>* i IU2. 7 l*\
5"

3H ]V2 3. !^S S ll*2
J

S M 7 U2
1

r
4H luo 2. f«* ! <T rc ' 3 !tl )S U> I 1

57/ !?#2 C* i^3.
I jf 1<»2 ^ 1*1 U

6H \?1 3 1 bo 'H ?S S> o "S3 <o . \\Z\ i

t



91

APPENDIX C.

Positioning of the 3"x4"xl2" specimens in the freezing-and-thawing machine

Freezing-and-thawing cycle counter charts.

The freezing and thawing temperatures have been controlled by three thermocouples fixed in the

specimens (see Section 4).
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APPENDIX D.

Measurements of weight, expansion and relative square pulse velocity

in 3"x4"xl2" concrete specimens during freeze-thaw testing
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