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1 Introduction

The KBGen 2013 natural language generation

challenge1 was intended to survey and compare

the performance of various systems which perform

tasks in the content realization stage of generation

(Banik et al., 2012). Given a set of relations which

form a coherent unit, the task is to generate com-

plex sentences which are grammatical and fluent

in English. The relations for this year’s challenge

were selected from the AURA knowledge base

(KB) (Gunning et al., 2010). In this paper we give

an overview of the KB, describe our methodology

for selecting sets of relations from the KB to pro-

vide input-output pairs for the challenge, and give

details of the development and test data set that

was provided to participating teams. Three teams

have submitted system outputs for this year’s chal-

lenge. In this paper we show BLEU and NIST

scores for outputs generated by the teams. The full

results of our evaluation, including human judge-

ments, as well as the development and test data set

are available at http://www.kbgen.org.

2 The AURA Knowledge Base

The AURA knowledge base (Gunning et al.,

2010) encodes information from a biology text-

book (Reece et al., 2010). It was developed to

support a question answering system, to help stu-

dents understand biological concepts by allowing

them to ask questions about the material while

reading the textbook. AURA is a frame-based

KB which encodes events, the entities that partic-

ipate in events, properties, and roles that the en-

tities play in an event. The relations in the KB

include relations between these types, including

event-to-entity, event-to-event, event-to-property,

entity-to-property. The KB is built on top of the

∗The work reported in this paper was supported by fund-
ing from Vulcan, Inc.

1http://www.kbgen.org

CLIB generic library of concepts (Barker et al.,

2001). As part of the encoding process, concepts

in CLIB are specialized and/or combined to en-

code biology-specific information. AURA is or-

ganized into a set of concept maps, where each

concept map corresponds to a biological entity or

process. The KB was encoded by biology teach-

ers and contains around 5,000 concept maps. It is

available for download for academic purposes in

various formats including OWL2.

3 The Content Selection Process for

KBGen 2012

The input provided to the participants consisted

of a set of content units extracted from the KB,

and a sentence corresponding to each content unit.

The content units were semi-automatically se-

lected from AURA such that:

• the set of relations in each content unit

formed a connected graph

• each content unit can be verbalised by a

single, possibly complex sentence which is

grammatical and meaningful

• the set of content units contain as many dif-

ferent relations and concepts of different se-

mantic types (events, entities, properties, etc)

as possible.

To produce these inputs we first asked biology

teachers to provide coherent content units using

the AURA graphical interface. The basic assump-

tion behind this approach was that, since every

content unit can be expressed by a coherent sen-

tence, each set of relations will exhibit a “coher-

ence pattern”. We then created a search space of

candidate content units by extracting patterns from

the KB which were similar to the patterns given

by the biologists. Finally, we manually selected

coherent content units.
2http://www.ai.sri.com/halo/

halobook2010/exported-kb/biokb.html
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Figure 1: “ A hydrophobic compound attaches to a

carrier protein at a region called the binding site.”

3.1 Manual Selection of Content Units

In the first step of our process, biology teachers

manually selected parts of concept maps which

represented educationally useful information for

biology students by searching for specific con-

cepts in AURA’s graph-based user interface. For

each content unit they wrote a sentence verbalis-

ing the selected relations (Fig. 1). The biology

teachers who identified these coherent, sentence-

sized chunks of information were familiar with the

encoding practices in AURA, the underlying biol-

ogy textbook, and had experience with the Inquire

e-book application (Spaulding et al., 2011) which

displays educationally useful content from the KB.

3.2 From Graphs to Queries

In the second step, the graphical representations

produced by the biologists were manually trans-

lated to specific knowledge base queries which

were run in AURA to retrieve the instances sat-

isfying the queries. Queries consist of two parts:

a set of triples whose domain and range are vari-

ables, and a set of instance-of triples stating type

constraints on the variables. The graph shown in

Figure 1 was translated to the following query:
Type constraints:

(?CP instance-of Carrier-Protein)

(?A instance-of Attach)

(?BS instance-of Binding-Site)

(?HP instance-of Hydrophilic-Compound)

Relation constraints:

(?A object ?HP)

(?A base ?CP)

(?A site ?BS)

(?CP has-region ?BS)

3.3 From Queries to Generalized Query

Patterns

After checking that it returns an answer, each

query was generalized to a query pattern in or-

der to find other queries which involved different

concepts and relations, but still exhibited the same

general coherence pattern. To derive generalized

query patterns, specific queries were modified in

two ways: 1) by removing type constraints on con-

cepts, and 2) by replacing specific relations with

generalized relation types.

Removing type constraints

Manually specified queries were extended by re-

moving type constraints on variables. In the above

example, types were generalised to Event or En-

tity:

(?CP instance-of Entity)

(?A instance-of Event)

(?BS instance-of Entity)

(?HP instance-of Entity)

Other generalized types we used from the ontol-

ogy were Property-Values and Roles.

Generalizing relations

Each query was generalized by defining equiva-

lence classes over semantically similar relations

and replacing the specific relation in the query

with its equivalence class. The basic assumption

behind this was that if a set of relations is coherent,

we should be able to replace a relation with an-

other, semantically similar relation in the set, and

still have a coherent content unit. For example,

whether two entities are connected by has-part

or has-region is unlikely to make a difference

to the coherence of a content unit.

Following this approach we identified groups of

semantically similar relations within each relation

type (Event-to-Event, Event-to-Entity, etc). The

equivalence classes over relations were straight-

forwardly derived from distinctions made in CLIB

(Barker et al., 2001), the upper ontology and li-

brary of general concepts that AURA is built on,

although there was some manual fine-tuning re-

quired to exclude relations which were not re-

liably encoded in the KB. For example, we di-

vided Entity-to-Entity relations into three cate-

gories, based on whether they had a spatial or

meronymic sense, or expressed a specific relation

between two chemicals:

en2en-spatial: abuts is-above is-along is-at is-

inside is-opposite is-outside is-over location
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is-across is-on is-parallel-to is-perpendicular-

to is-under is-between is-facing is-below is-

beside is-near

en2en-part: possesses has-part has-region

encloses has-basic-structural-unit has-

structural-part has-functional-part

en2en-chemical: has-solute has-solvent has-

atom has-ion has-oxidized-form has-

reduced-form has-isomer

Here the distinction between spatial relations

and meronymic relations was given by CLIB. Re-

lations in the third group were specific to our do-

main and added during the process of encoding.

Event-to-entity relations were divided into

“aux-participant” relations, which express the spa-

tial orientation of an event, and “core-participant”

relations which describe ways in which entities

participate in the event. Here we used the cat-

egories of spatial relations and “participant” re-

lations from CLIB. Our terminology reflects the

fact that entities connected to an event by a

core-participant relation are typically expressed as

obligatory arguments of the verb in a sentence,

whereas aux-participants would be expressed as

optional modifiers:

core-participants: agent object donor base in-

strument raw-material recipient result

aux-participants: away-from destination origin

path site toward

With these definitions, the specific query illus-

trated above in section 3.2 was translated to the

following query pattern:

(?A core-participant ?X)

(?A core-participant ?CP)

(?A aux-participant ?BS)

(?CP en2en-part ?BS)

3.4 From Query Results to Content Units

Query patterns were expanded by producing all

valid instantiations of the pattern in order to cre-

ate a search space of candidate content units, and

we ran each expanded query in AURA. The last

step was filtering the results returned by satisfi-

able queries to obtain content units which can be

verbalised in a single sentence. We used the fol-

lowing selection criteria to do this:

• A meaningful and grammatical sentence

could be formed by verbalising all concepts,

relations and properties present in the query

result.

(KBGEN-INPUT :ID "ex03c.99-1"

:TRIPLES (

(|Secretion21994| |object| |Mucus21965|)

(|Secretion21994| |base| |Earthworm21974|)

(|Secretion21994| |site| |Alimentary-Canal21978|)

(|Earthworm21974| |has-region|

|Alimentary-Canal21978|))

:INSTANCE-TYPES (

(|Mucus21965| |instance-of| |Mucus|)

(|Secretion21994| |instance-of| |Secretion|)

(|Earthworm21974| |instance-of| |Earthworm|)

(|Alimentary-Canal21978| |instance-of|

|Alimentary-Canal|))

:ROOT-TYPES (

(|Secretion21994| |instance-of| |Event|)

(|Mucus21965| |instance-of| |Entity|)

(|Earthworm21974| |instance-of| |Entity|)

(|Alimentary-Canal21978| |instance-of| |Entity|)

))

Figure 2: Input for the sentence ”Mucus is se-

creted in the alimentary canal of earthworms.”

• The set of content units should be as varied

as possible. In particular, we did not keep

a content unit if another very similar content

unit was present in the selected units. For in-

stance, if two content units contain identical

relations (modulo concept labels), only one

of these two units would be kept.

Given the pattern shown in Fig. 1 for instance,

we obtained 27 coherent content units. Each con-

tent unit was verbalized as a sentence to provide

development data for the content realization chal-

lenge. The following sentences illustrate the vari-

ation in the resulting content units:

- Polymers are digested in the lysosomes of eu-

karyotic cells.

- Mucus is secreted in the alimentary canal of

earthworms.

- Lysosomal enzymes digest proteins and poly-

mers at the lysosome of a eukaryotic cell.

- A chemical is attached to the active site of a

protein enzyme with an ionic bond.

- An enzyme substrate complex is formed

when a chemical attaches to the active site of

a protein enzyme with a hydrogen bond.

- Starch is stored in the lateral root of carrots.

4 Development Data Set

The development data set provided to participants

contained 207 input-output pairs. These inputs
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were based on 19 different coherence patterns.

Fig. 2 shows an input-output pair based on the

pattern illustrated above. We also provided two

lexicons: a lexicon for events which gave a map-

ping from events to verbs, their inflected forms and

nominalizations and a lexicon for entities, which

provided a noun and its plural form. The rele-

vant entries in these lexicons for the input in Fig. 2

were:

Secretion,secretes,secrete,secreted,secretion

Mucus, mucus, mucus

Earthworm,earthworm,earthworms

Alimentary-Canal,alimentary canal,alimentary canals

5 Test Set

Our test data set contained 72 inputs in the same

format (and corresponding lexical resources as

above), which were divided into three categories:

(1) seen patterns, seen relations: inputs that have

exactly the same relations as some of the inputs in

the development data set, but different concepts

(2) seen patterns, unseen relations: these in-

puts are derived from patterns in the development

data set. They have similar structure, but contain

slightly different combinations of relations.

(3) unseen patterns: inputs extracted from a pre-

viously unused pattern, containing combinations

of relations not seen in the development data set.

6 Evaluation

Participants submitted two sets of outputs:

(1) outputs generated by their system as is (mod-

ulo including the lexicon provided in the test data

set) (2) outputs generated 6 days later, during

which time teams had a chance to make improve-

ments.

Each team was allowed to submit a set of 5 ranked

outputs for each input. We have evaluated all

of the submitted outputs using BLEU and NIST

scores and we are currently in the process of col-

lecting human judgements for the final system out-

puts that were ranked first. Table 1 shows the

overall results of automatic evaluation on both the

initial and final data sets for our three teams3, as

well as the coverage of the individual systems over

the 72 test inputs. More detail including the full

results of our evaluation can be found at http:

//www.kbgen.org, along with a link to download

3IMS: Stuttgart University Institute for Computational
Language Processing, LOR: LORIA, University of Nancy,
UDEL: University of Delaware, Computer and Information
Science Department

NIST BLEU coverage

HUMAN-1 10.0098 1.0000 100%

UDEL-final-1 5.9749 0.3577 97%

UDEL-initial-1 5.6030 0.3165 100%

LOR-final-1 4.8569 0.3053 84%

LOR-final-3 4.7238 0.2993 100%

LOR-final-2 4.6711 0.2945 100%

LOR-final-5 4.5720 0.2812 100%

LOR-final-4 4.4889 0.2781 100%

IMS-final-2 3.9649 0.1107 100%

IMS-final-4 3.8813 0.1140 100%

IMS-final-1 3.8670 0.1111 100%

IMS-final-3 3.7765 0.1023 100%

IMS-initial-2 3.6726 0.1117 100%

IMS-initial-3 3.6608 0.1181 100%

IMS-initial-1 3.6384 0.1173 100%

IMS-initial-4 3.5817 0.1075 100%

LOR-initial-1 0.1206 0.0822 30%

LOR-initial-3 0.1091 0.0751 100%

LOR-initial-4 0.0971 0.0732 100%

LOR-initial-2 0.0948 0.0757 100%

LOR-initial-5 0.0881 0.0714 100%

Table 1: BLEU and NIST scores of initial and final

system outputs. The digit behind the team names

refer to the output rank

the development and test data set used in the chal-

lenge, and more information about AURA and re-

lated resources.
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