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Abstract - In this paper we model the working of local community finances. As a result of this first step, we obtain

a systemic model that is used to formalize the problem of Alternative Financial Solutions Seeking, which consists in

building a collection of Alternative Multi-Year Prospective Budgets from two Multi-Year Prospective Budgets built

by a finance expert. The modeling and formalization steps are led in a way that allows us to implement a software

code for Alternative Financial Solutions Seeking based on a Genetic Like Algorithm.
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1 Introduction

For local communities, political decisions with heavy financial consequences need rigorous
and detailed studies. The purpose of those studies is to provide Decision-Makers with
forecasts and projections of their financial circumstances to come, for various sequences of
projects responding to political goals and various ways to finance them.

Tackling those forecasts and projections is a delicate task for experts. Indeed, on the
one hand factors constraining the projects of a local community are essentially laws, proper
management rules which fluctuate and public opinion which is fickle. On the other hand,
the way that those constraints are perceived by local community Decision-Makers is also
time-varying.

Often, local community calls on experts in order to strike the right balance. Practically,
an expert works in straight collaboration with Decision-Makers of the local community he is
engaged with in order to take into account all the targets and perceived constraints of every
project of the local community. Its work consists in building financial plans (Prospective
Budgets), which are in some sense optimized, consistent with the capacity of investment of
the local community and, of course, comply with the political goals of the Decision-Makers.
For each prospective budget, the state of various indicators, relevant to the resulting finan-
cial health of the local community in future years, are given. As a result of this work, viable
scenarios satisfying partially the political goals are proposed among which, in an ideal sit-
uation, Decision-Makers may make a choice. Unfortunately in a large number of non-ideal
situations, constraints and goals cannot be satisfied together. In those cases the set of vi-
able scenarios influences the evolution of the political goals and the constraint perception
in order to begin a new iteration of the work process.

The existing tools dedicated to this iterative work process are somewhat limited. The
goal of this paper is to set out a new tool to contribute to filling this gap in a specific context
we shall describe now.

The local communities usually need visibility on their budget over a time period of
several years, linked to the characteristic duration of political mandate. The main strict
constraint, generally imposed by current legislation, is that the difference between the re-
ceipts and the expenditures cannot be negative. That makes-up the balanced budget rule.
This balanced budget is in most countries shared into sub-budgets which are not necessary
balanced. However, each expenditure or receipt clearly belongs to a unique sub-budget. For
instance, French local communities share their budget into an investment budget and an
operating budget. Positive credit balance amount from the operating budget can be trans-
ferred to the investment budget. Our work joins in the French model of local communities’
management but the tackled questioning and the tool we set out are clearly more general.

In order to explain the goal of the tool we build, we restrict ourselves to the particular
case of a Prospective Budget building where, among the political goals, two objectives are
to be reached. With software environment avalaible nowadays, a Prospective Budget may
be figured out with the first objective achieved. In particular, the consequences on the
factors involved in the second objective may be quantified. Of course, the same can be
done exchanging the roles of the two objectives. Nonetheless, generally speaking, it is not
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possible to satisfy both objectives, since the constraints are too numerous. Schematically,
it may be said that it is possible to bring out two Prospective Budgets S1 and S2, where
S1 satisfies the first objective, which is symbolized by the fact that indicator V1 reaches a
targeted value Ṽ1. Prospective Budget S2 satisfies the second objective which is translated
by V2 = Ṽ2 for a targeted value Ṽ2. In Prospective Budget S1, V2 6= Ṽ2 but is determined
by the budget building process which takes constraints into account and which is, in some
sense, optimized. In a similar way, in Prospective Budget S2, V1 6= Ṽ1.

Having those Prospective Budgets on hand, the next step consists in finding several
alternative ones that are such that neither Ṽ1 is reached by V1 nor Ṽ2 by V2, but still satisfy
the constraints and are more satisfactory. When this process is executed by an expert,
the building of those alternative Prospective Budgets uses one more time the tool after
having let the targeted values evolve, influenced by its knowledge and the interaction with
Decision-Makers.

Yet, the new tool which is described in this paper has the ambition of automatically
generating a collection of alternative Prospective Budgets and of introducing them in a
usable way, so that Decision-Makers can choose the one that fits their goals in the best way.

In order to create such a new tool, we first identified that the question of finding several
alternative Prospective Budgets can be formalized as finding a shape, corresponding to the
extremum of a given fitness function, in a multi-dimensional space.

Then we found out that the best type of optimization methods to tackle this shape
search was Genetic Algorithm. Indeed, Genetic Algorithms have the capability to explore
a given domain and, by nature, the result of a Genetic Algorithm is a set of solutions that
optimizes the fitness function. For a review on Genetic Algorithms, we refer to Goldberg
[10], Beasley, Bull & Martin [3, 4] and Davis [6].

This approach using Genetic Algorithm for an optimization problem is not new. Never-
theless, the algorithm we propose here has innovative aspects. The first one is that we look
for an optimal object in a bounded box.
The other innovative aspect is that we look for the argument of an optimum which is not
a single point but a shape in a relatively high-dimensional space. The use of Genetic Algo-
rithms for shape optimization is classical, and many references exists on the subject. We
refer for instance to De Jong [7] and Castro, Antònio & Sousa [5]. We also refer to articles
that implement variants of Genetics Algorithms so called Particle Swarm Optimization (see
for instance Mattheck & Burkhardt [13] and Fourie & Groenwold [9]) and Fuzzy Controlled
Genetic Algorithm (see for instance Soh & Yang [17]), both used in structure optimization.
But, in all those references a Genetic Algorithm is used to drive the successive setting out
of the parameters of a software code in order to find out the optimal solution. The methods
do not use - contrary to what we do - the capability of Genetic Algorithms to directly build
a shape in the space.

Once it was established that Genetic Algorithms is the pertinent tool for our question,
it was needed to formalize it so as to be able to use Genetic Algorithms. Yet, the literature
concerning them is rich in the context of financial optimization (we refer for instance to
Chen [16]). Besides, the financial modeling is very active on the market finance sector (see
for instance Goodman & Stampfli [11], Ilinski [12] and Fama [8]). However, it is much less
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productive for applications in public sector (see for instance Musgrave [14] and Rosen [15]).
Finally, mathematical modeling for finance of local community seems to be very poor (see
Tiebout [18]).

Hence, on the one hand, we had to develop a model of the local community finance
system.

On the other hand, we developed a proper formalism (calling upon the model of the local
community finance system) to develop our Genetic Like Algorithm. We now summarize this
formalism. It can be considered that any given Prospective Budget is characterized uniquely
by the two values V1 and V2. In other words, indicators V1 and V2 become variables on
which Prospective Budget depends. To simplify the purpose, V1 and V2 are both supposed
to be n-dimensional, so that it can be assumed that (V1, V2) ∈ R2n. Prospective Budget
associated with values V1 and V2 writes S(V1, V2). Of course, for some values of the vari-

ables, say (V f
1 , V

f
2 ), Prospective Budget S(V f

1 , V
f

2 ) does not satisfy the constraints. Then,
constraints may be seen as defining a sub-domain of the space R2n in which the variables
lie. Within this framework, the Prospective Budget S1 described above writes S(Ṽ1, V

c
2 )

where V c
2 is computed by the software environment. In the same way, Prospective Budget

S2 writes S(V c
1 , Ṽ2).

The method explores, in R2n – the space where the variables lie, the intersection of a
box containing the two points (Ṽ1, V

c
2 ) and (V c

1 , Ṽ2), associated with the budgets already on
hand, and of the sub-domain where constraints are satisfied in order to identify a shape join-
ing (Ṽ1, V

c
2 ) and (V c

1 , Ṽ2) around which Prospective Budgets fit well what Decision-Makers
are waiting for, are in some sense optimized and satisfy the constraints. The box is built by
considering in R2n the middle point of (Ṽ1, V

c
2 ) and (V c

1 , Ṽ2) and by building in this point

an orthonormal frame whose first vector is the normalization of vector
−−−−−−−−−−−→
(Ṽ1, V

c
2 )(V c

1 , Ṽ2) –

joining (Ṽ1, V
c

2 ) to (V c
1 , Ṽ2). The other vectors of the frame are exhibited by the mean of

the Gram-Schmidt routine.
The method consists in defining a fitness function F which integrates the Decision-Makers’
political goals. We also have to build the sub-domain on which budgets satisfy the con-
straints. We define a method to encode the variables in the considered box. This coding
calls, among others, upon a sub-product of the Gram-Schmidt routine. Then, we imple-
mented a Genetic Like Algorithm which consists first in generating a collection of N values

(V l
1

0
, V l

2
0
)l=1,...,N which are within the box and satisfy the constraints. For each value,

Prospective Budget S(V l
1

0
, V l

2
0
) and its fitness F (S(V l

1
0
, V l

2
0
)) = F (V l

1
0
, V l

2
0
) can be com-

puted. By crossover, mutation and constraint management methods, usually combined

in Genetic Algorithms, a new collection (V l
1

1
, V l

2
1
)l=1,...,N (lying in the box and satisfy-

ing the constraints) is then generated. Going further finally leads to the kth generation

(V l
1
k
, V l

2
k
)l=1,...,N which may be close to the sought shape in the intersection of the box and

the sub-domain where constraints are satisfied. This way of using Genetic Like Algorithm
appears to be new.

The main contributions of this paper are the buildings of the models of the local com-
munity finance system and of the Alternative Financial Solutions seeking problem, which
are done in section 2, and the formalization of those models under a form - just evoked -
allowing the use of a Genetic Like Algorithm. This formalization and the writing of the
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Figure 1: French local community Yearly Budget System working.

Algorithm itself are given in section 3. In the last section, the method is tested, in particular
on an operational problem and gives good results. This demonstration of this capability of
our method is also an important contribution.

2 Description of the Alternative Financial Solutions seeking
problem

This section is devoted to the description of the kind of financial problems we tackle with
our method and tool. We begin by introducing, with a systemic point of view, the French
local community yearly budget workings. Then, we explain the problematic of seeking
alternative Multi-Year Prospective Budgets. This is done in section 3.

2.1 Local community Yearly Budget System working

Figure 1 depicts the schematic working of French local community yearly budget. To
explain this working, we adopt a systemic point of view allowing us to give a global and
macroscopic description, without going into technical or semantical details, of what we call
in the following: the Yearly Budget System.
For readers interested in French local community finance system, we refer to [2] and [1].

Among incomes contributing to local community operating budget, there are essentially
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Figure 2: Synthetic Yearly Budget System

state allocations and local ”Taxes”. Local community cannot influence the state allocation
level, however the setting of local Tax Level is part of its own competences. As a con-
sequence, we consider Taxes as an input of the Yearly Budget System. They lay at the
top-right of Figure 1.

The other inputs of this system are linked with the ”Current Debt”. They are: the
capital associated to this debt that remains due, the capital that needs to be repaid this
year and the interests that have to be paid. Those amounts are defined by loan contracts of
previous years. Those inputs are placed on the left-hand side of the figure. Of course, local
community cannot have a direct effect on those inputs, but acts on their values in the next
years by contracting or not new loans. This is symbolized by the dash line in the figure.

Generally, a local community plans to get operating recipes that allow it to face all
operating expenditures and debt interests, and, once those expenditures realized, that leaves
a remaining amount that can be used for investment. This remaining amount is called
”Gross Self-Financing Capacity”. This ”Gross Self-Financing Capacity” is used to repay
the capital that needs to be. The remainder, which is called ”Net Self-Financing Capacity”,
contributes to the investment budget with the goal to top up subventions and loans to reach
the Investment Level wanted by the community. This System generates a balanced budget.

At the bottom of the figure, the ”Capacity to Be Free of Debt” is mentioned. This
indicator is computed from the capital that remains due and from the Gross Self-Financing
Capacity. It is, by definition, the time (generally expressed in years) for the community
to repay all the capital of its debt, if no other loans are contracted and if the Gross Self-
Financing Capacity remains constant over the next years. This indicator is seen here as the
output of the system. A generally-accepted maximum figure for the Capacity to Be Free of
Debt is 15 years

The Yearly Budget System is presented in Figure 2 as a synthetic diagram. This dia-
gram illustrates that Current Debt, Taxes and Investment Level are seen as acting on the
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Figure 3: Multi-Year Prospective Budget System working.

Yearly Budget System. Since Current Debt cannot be influenced directly, only Taxes and
Investment Level are considered as active Inputs of the system. Considering this makes
Taxes and Investment Level the variables on which the Yearly Budget depends and makes
the Capacity to Be Free of Debt a result of the Yearly Budget, or in other words, an Out-
put of the system. In the figure, only three years (#1, #2 and #3) are represented; ”. . . ”
symbolize that other years are coming hereafter.

2.2 Multi-Year Prospective Budget Systems

From the Yearly Budget System, a multi-year budget may be built. Since those kinds of
multi-year budgets are intended to explore possible futures under several assumptions, we
call them Multi-Year Prospective Budgets. The functioning of such a Multi-Year Prospec-
tive Budget is depicted in Figure 3. On the left-hand side of this picture is drawn the
Budget System of the first year. This diagram is the synthetic one with arrows coming
from the Current Debt box, the Tax box and the Investment Level box and an arrow going
to the Capacity to Be Free of Debt box. Loans that are contracted during this first year
have a consequence on the debt of the next years. This is symbolized by the arrow going
from the Budget System of the first year to the Current Debt box of the second year. Going
on, following the arrows, it is possible to create a Multi-Year Prospective Budget System
for an arbitrary number of years.

To formalize a bit, the investment leads to the realization of a set of projects, which
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belong to the list of all projects which are desired to be carried out. Then, Investment
Level may be described using a list of numbers, the cardinal of which being the number
of projects. Each number indicates if its associated project will be realized or not, and
possibly, if it is so, how close or far from its targeted date it is carried out.
Thus, in the case where the Prospective Budget is considered over five years and if five
projects are considered, every possible Multi-Year Prospective Budget depends on ten values
(I1, I2, I3, I4, I5, T1, T2, T3, T4, T5) = ((Ii)i=1,...,5, (Ti)i=1,...,5); five numbers (Ii)i=1,...,5 given
information on project realization and then indicating the Investment Level, and five Tax
Levels: (Ti)i=1,...,5, one for each year. Of course, there are structural constraints on the vari-
ables: the Ti cannot be negative. The Prospective Budget corresponding to a given value
(Ī1, Ī2, Ī3, Ī4, Ī5, T̄1, T̄2, T̄3, T̄4, T̄5) = ((Īi)i=1,...,5, (T̄i)i=1,...,5) of the Investment Level and Tax
Levels is seen as a solution S(Ī1, Ī2, Ī3, Ī4, Ī5, T̄1, T̄2, T̄3, T̄4, T̄5) = S(((Īi)i=1,...,5, (T̄i)i=1,...,5)).
The five Capacities to Be Free of Debt are seen as the image associated with a Prospec-
tive Budget by a mapping. They read: (Ck(S(Ī1, Ī2, Ī3, Ī4, Ī5, T̄1, T̄2, T̄3, T̄4, T̄5)))k=1,...,5 =
(Ck(S((Īi)i=1,...,5, (T̄i)i=1,...,5))k=1,...,5.

2.3 Alternative Prospective Budget seeking problematic

Having on hand this formalism, we can insert in it the political goals of Decision-Makers,
which are generally unreachable. At first, we present how part of the political goals may be
incorporated to create two Multi-Year Prospective Budgets which are only partially satis-
factory. Then we explain how, starting from two Budgets, Alternative Prospective Budgets
may be sought. Of course, those Budgets are also only partially satisfactory, but among the
generated collection of Prospective Budgets, one can be preferred to the others and thus
chosen among them.

We study the example with five years Prospective Budgets involving five projects, but
what is explained in the following is of course true for any number of years and projects.
In an effort to remain schematic, we consider here that a Political Goal is a given collection
(Ĩ1, Ĩ2, Ĩ3, Ĩ4, Ĩ5, C̃1, C̃2, C̃3, C̃4, C̃5) = ((Ĩi)i=1,...,5, (C̃i)i=1,...,5) of targeted Investment Level
and targeted Capacities to Be Free of Debt translating into financial terms the projects the
Decision-Makers plan to get realized and the level of financial sanity they want to reach.
In addition, the Political Goal is provided by a Tax Evolution Pattern, which expresses at
what time Decision-Makers accept tax increases and at what time they prefer stability of
tax levels.

With the help of a software environment properly programmed, it is possible to compute
Prospective Budget S((Ĩi)i=1,...,5, (T̃i)i=1,...,5), whose every Yearly Budget is balanced and

which satisfies the requested Political Goal, i.e. such that Ck(S((Ĩi)i=1,...,5, (T̃i)i=1,...,5)) =

C̃k for k = 1, ..., 5.
However this view is much too naive, since Political Goal ((Ĩi)i=1,...,5, (C̃i)i=1,...,5) gen-

erally requires Tax Levels that are incompatible with regulations, or simply not acceptable
to Decision-Makers.

The work of Decision-Makers, assisted by public-finance experts, consists in degrading
Political Goal ((Ĩi)i=1,...,5, (C̃i)i=1,...,5) to be reached with acceptable Taxes Levels. This
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is done with the help of a software environment. For instance, SOFI software, edited by
MGDIS1, provides solutions to this question in considering two problems. Those problems
consist, in some sense, in inverting the routine presented in Subsection 2.2 and Figure 3,
which was describing how Capacities to be Free of Debt were gotten from chosen Tax and
Investment Levels.
The first problem, depicted in Figure 4, consists in considering as input the targeted Invest-
ment Level (Ĩi)i=1,...,5 and, having set constraints on Tax Levels, in computing a Multi-Year
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Figure 4: Multi-Year Prospective Budget computed considering Investment Level as input
and Tax Levels and Capacities to Be Free of Debt as outputs.

Prospective Budget S((Ĩi)i=1,...,5, (T
c
i )i=1,...,5) such that, for k = 1, ..., 5, the Capacities to

Be Free of Debt Ck(S((Ĩi)i=1,...,5, (T
c
i )i=1,...,5)) are as close as possible (in a given sense) to

the Goals C̃k and with Tax Levels (T ci )i=1,...,5 that satisfy the constraints and whose every
Yearly Budget is balanced.
In Figure 4, the diagram of Figure 3 is used again; and arrows going from the Investment
Level boxes (the investment levels are indicated as inputs) to Tax and Capacity to Be Free
of Debt boxes illustrate that the Taxes and Capacity to Be Free of Debt are computed from
the chosen Investment Levels. (For readability, some arrows going from Investment Level
boxes to Capacity to Be Free of Debt boxes are not drawn.)

1http://www.mgdis.fr/
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Figure 5: Multi-Year Prospective Budget computed with Capacities to Be Free of Debt as
inputs and Tax Levels and Investment Levels as outputs.

The second problem we consider is represented in Figure 5, takes the targeted Ca-
pacities to Be Free of Debt (C̃k)k=1,...,5 as inputs and computes Multi-Year Prospective

Budget S((Ici )i=1,...,5, (T̃i)i=1,...,5) such that (T̃i)i=1,...,5 satisfies the constraints on Tax Lev-

els, Ck(S((Ici )i=1,...,5, (T̃i)i=1,...,5) = C̃k for k = 1, ..., 5 and Investment Levels (Ici )i=1,...,5, are

as close as possible to the Goal (Ĩi)i=1,...,5.
In Figure 5, the content of Figure 3 is used again. However, in this case, the Capacities
to be Free of Debt are indicated as inputs. Arrows going from them to Investment Levels
(they are not all drawn for readability) and to Taxes symbolize that Investment and Taxes
are consequences of the chosen Capacity to be Free of Debt Levels.

Once those two solutions are set out, they may be evaluated by Decision-Makers, in
regards, among others, of the Tax Evolution Pattern.

Other Multi-Year Prospective Budgets may then be built by modifying values within
the Political Goal ((Ĩi)i=1,...,5, (C̃i)i=1,...,5), after financial and political discussions between
Decision-Makers and experts. This generation of Alternative Financial Solutions or Al-
ternative Multi-Year Prospective Budgets can be fastidious and long. Thus, only a small
number can be generated.

The topic of the method and tool we propose here is to automate this generation of
Alternative Financial Solutions or Alternative Multi-Year Prospective Budgets, and to set
out a relatively wide number of them, provided with indicators of their quality in order for
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Decision-Makers to be able to make a choice between them.
Roughly speaking, we can consider that Prospective Budgets S((Ĩi)i=1,...,5, (T

c
i )i=1,...,5))

and S((Ici )i=1,...,5, (T̃i)i=1,...,5)) are associated with two points in a 10-dimensional space and
that the possible Alternative Financial Solutions or Alternative Multi-Year Prospective
Budgets are gathered around a geometrical object joining those two points and that have
to be sought and identified.

3 Genetic Like Algorithm

On the basis of the model we set out in the previous section, we can implement a Genetic
Like Algorithm. Although this approach using Genetic Algorithm is not new in the context
of optimization, the algorithm proposed here has innovative aspects, as explained in the In-
troduction (see page 3). Among them they are the fact that we look for an optimal object
in a bounded box. The other innovative aspect is that we look for the optimum not as a
single point but as a shape in a relatively high-dimensional space. For this, we strongly use
the fact that the result of a Genetic Algorithm is a set of solutions that is located on the
sought shape.

We go on treating the case when the number of years and the number of projects are
both five.

3.1 Dimensionless problem setting

In order to manage variables and results that are dimensionless and of order one, we first
rescale the problem. For this purpose, we introduce a characteristic Investment Level de-
scriber value i, a characteristic Capacity to Be Free of Debt c and a characteristic Tax Level
t. For instance we can chose

i =
1

10

(
Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 + Ĩ5 + Ic1 + Ic2 + Ic3 + Ic4 + Ic5

)
=

1

10

5∑
i=1

Ĩi + Ici ,

t =
1

10

(
T̃1 + T̃2 + T̃3 + T̃4 + T̃5 + T c1 + T c2 + T c3 + T c4 + T c5

)
=

1

10

5∑
i=1

T̃i + T ci ,

c =
1

10

5∑
k=1

Ck(S((Ĩi)i=1,...,5, (T
c
i )i=1,...,5)) + Ck(S((Ici )i=1,...,5, , (T̃i)i=1,...,5)),

(1)

which are the mean values of values reached by the two Prospective Budgets we have on
hand. Then we define the dimensionless variables and results

Ii =
Ii
i
, Ti =

Ti
t

and (2)

Ck(S((Ii)i=1,...,5, (Ti)i=1,...,5)) =
Ck(S((iIi)i=1,...,5, (tT i)i=1,...,5))

c
. (3)

On those variables there are organic constraints:

Ck(S((Ii)i=1,...,5, (Ti)i=1,...,5)) ≥ 0, for k = 1, ..., 5, (4)
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which translate the fact that the Capacity to Be Free of Debt is a duration. There are also
constraints linked with legal rules, various regulations and what is politically admissible.
These read:

Ti ≤ T max
i (T1, . . . , Ti−1), for i = 1, ..., 5, (5)

Ck(S((Ii)i=1,...,5, (Ci)i=1,...,5)) ≤ Cmax, for k = 1, ..., 5. (6)

Those constraints, when expressed in dimensionless variables, involve maximum values Cmax

and (T max
i )i=1,...,5 which essentially do not depend on the size of the concerned local com-

munity. Inequalities (6) express the fact that, at each year, the Capacity to Be Free of Debt
is limited by common rules. The T max

i in (5) depend on the Tax Levels of the previous
years and are both imposed by law, which restricts tax evolution, and prescribed by what
community Decision-Makers exclude.

Remark - The question of knowing if the fact that every Yearly Budget of every Multi-
Year Prospective Budget needs to be balanced has to enter into the constraint collection
may be addressed. The answer is that we work under the assumption that any Multi-
Year Prospective Budget, for instance computed using SOFI, from any variable collection
((Ii)i=1,...,5, (Ti)i=1,...,5) generates loans and consequently Capacity to Be Free of Debt set
Ck(S((Ii)i=1,...,5, (Ti)i=1,...,5)) insuring the balanced character of all its Yearly Budgets.

Within the dimensionless variables, the dimensionless Political Goals and other quanti-
ties are expressed as

Ĩi =
Ĩi
i
, C̃i =

C̃i
c
, Ici =

Ici
i

and Cci =
Cci
i
, (7)

and we have on hand two dimensionless Prospective Budgets S((Ĩi)i=1,...,5, (T ci )i=1,...,5)) and

S((Ici )i=1,...,5, (T̃i)i=1,...,5), which are associated with two points in a 10-dimensional space,
located not so far from the origin.

3.2 Fitness choice

Among the criteria that may enter the fitness definition, they are the targeted values Ĩi and
C̃i and the Tax Evolution Pattern.

We begin with explaining how easy it is to define a model of Tax Evolution Pattern
within dimensionless variables. In the case where the number of years is 5, it is a collection
of 5 non negative values (Ak)k=1,...,5 such that

5∑
k=1

Ak = 1, (8)

and which has the property that Ak = Ak+1 in the case of a desired stability of Tax Level
between years number k and number (k + 1) and the property that Ak < Ak+1 in the case
of a planned increase. Then, a way to measure how far from the Tax Evolution Pattern a

12



given Multi-Year Prospective Budget S((Ii)i=1,...,5, (Ti)i=1,...,5) reduces to computing

FT((Ii)i=1,...,5, (Ti)i=1,...,5)) = φT

(
5∑

k=1

∣∣∣∣∣ Tk∑5
i=1 Ti

−Ak

∣∣∣∣∣
)
, (9)

where φT is a non-increasing function such that φT(0) = 1 and limx→+∞ φT(x) = 0. In this
definition, the division by

∑5
i=1 Ti allows us to insure that the values which are compared

with the Ak range between 0 and 1.
Ways to measure how far from the Politic Goals a Multi-Year Prospective Budget is,

are the computations of

FI((Ii)i=1,...,5) = φI

(
r∑

k=1

∣∣∣Ik − Ĩk∣∣∣
)

and

FC((Ii)i=1,...,5, (Ti)i=1,...,5)) = φC

(
5∑

k=1

∣∣∣Ck(S((Ii)i=1,...,5, (Ti)i=1,...,5))− C̃k
∣∣∣), (10)

where φI and φC have similar definition as φT.

With these three functions FT, FI and FC, defining three non negative constants γT, γI

and γC, having a sum not too far from 1, we chose the following Fitness Function

F ((Ii)i=1,...,5, (Ti)i=1,...,5) =

γTFT((Ii)i=1,...,5, (Ti)i=1,...,5) + γIFI(Ii)i=1,...,5) + γCFC((Ii)i=1,...,5, (Ti)i=1,...,5), (11)

and the largest F ((Ii)i=1,...,5, (Ti)i=1,...,5)) the best the solution S((Ii)i=1,...,5, (Ti)i=1,...,5)).

With materials we built, we can reformulate the question of seeking Alternative Financial

Solution as follows: we want to exhibit a collection of N points ((I li
&

)i=1,...,5, (T li
&

)i=1,...,5)

such that S((I li
&

)i=1,...,5, (T li
&

)i=1,...,5) satisfied constraints (5), (4) and (6) and with Fitness

worth F ((I li
&

)i=1,...,5, (T li
&

)i=1,...,5) as large as possible.

3.3 Frame building by Gram-Schmidt routine

In the 10-dimensional vector space, for two vectors W = ((Ji)i=1,...,5), (Di)i=1,...,5)) and
W ′ = ((J ′i )i=1,...,5), (D′i)i=1,...,5)), the following inner product and norm naturally exist:

〈W,W ′〉 =

5∑
i=1

JiJ ′i +DiD′i and ‖W‖ =
√
〈W,W〉. (12)

Moreover, it is provided with its canonical basis:

e1 = ((1, 0, 0, 0, 0), (0, 0, 0, 0, 0)), e2 = ((0, 1, 0, 0, 0), (0, 0, 0, 0, 0)),

e3 = ((0, 0, 1, 0, 0), (0, 0, 0, 0, 0)), . . . , e10 = ((0, 0, 0, 0, 0), (0, 0, 0, 0, 1)).
(13)
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On the one hand, from the points ((Ĩi)i=1,...,5, (T ci )i=1,...,5) and ((Ici )i=1,...,5, (T̃i)i=1,...,5),
we can build the first vector of the frame by normalizing the vector linking those two points.
This vector is:

g1 =
ğ1

‖ğ1‖
, where ğ1 = ((Ĩi − Ici )i=1,...,5, (T ci − T̃i)i=1,...,5). (14)

On the other hand, we look for index ib which is such that the absolute value of the inner
product of g1 by eib is as large as possible, i.e. such that

〈g1, eib〉 = max
i=1,...,10

{〈g1, ei〉}. (15)

The basis is then built by induction: Once j orthonormal vectors are obtained, the (j+1)th

is gotten by removing from e(ib+j mod 10) its projection onto every vector of the new basis
already computed and by renormalization, or in other words, by computing

gj+1 =
ğj+1

‖ğj+1‖
, where ğj+1 = eη(ib+j) −

j∑
p=1

〈eη(ib+j),gp〉gp, (16)

where η(i) = i if 1 ≤ i ≤ 10 and η(i) = i− 10 if 10 ≤ i ≤ 20.
Once all the (gj)j=1,...,10 are obtained they make an orthonormal basis of the vector

space whose first vector is born by the straight line linking the two points associated with
the two dimensionless Prospective Budgets we have on hand.

With the help of this basis, we will build the box in which we will seek the targeted
geometrical object and the coding of Prospective Budgets.

Let B be the 10 × 10 matrix such that if W = ((Ji)i=1,...,5, (Di)i=1,...,5) is a vector
expressed in the canonical frame

U = (U1, . . . ,U10) = BW, (17)

gives its coordinates within frame (gj)i=1,...,10. The ith column of B is made of the coordi-
nates of ei within the new frame and the ith column of B−1 = BT is made of the coordinates
of gi within the canonical frame. In the following we will consider that B and its inverse
matrix B−1 are known.

3.4 Box building and coding

The geometrical object will be looked after within a box containing the points ((Ĩi)i=1,...,5,

(T ci )i=1,...,5)) and ((Ici )i=1,...,5, (T̃i)i=1,...,5)) associated with the two dimensionless Prospec-
tive Budgets we have on hand.

The box we chose is the cube centered in the middle pointM of [((Ĩi)i=1,...,5, (T ci )i=1,...,5)),

((Ici )i=1,...,5, (T̃i)i=1,...,5))], whose coordinates are

M =

((
Ici + Ĩi

2

)
i=1,...,5

,

(
T ci + T̃i

2

)
i=1,...,5

)
, (18)
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with edges being {2‖ğ1‖g1, (‖ğ1‖gi)i=2,...,10}, where ğ1 is defined by formula (14).
Two opposite faces of this hypercubic box are orthogonal to the straight line linking the
points ((Ĩi)i=1,...,5), (T ci )i=1,...,5)) and ((Ici )i=1,...,5), (T̃i)i=1,...,5)).

Another (and more usable) way to characterize the box is to say that it is the range of
[−1, 1]× [−1

2 ,
1
2 ]9 by the mapping

P 7→M+ ‖ğ1‖B−1P, (19)

whose inverse is

R 7→ 1

‖ğ1‖
B(R−M), (20)

where M is given by (18), ğ1 by (14) and matrix B by (17).

Moreover, this transformation gives a coding of any solution S(R) by a point in [−1, 1]×
[−1

2 ,
1
2 ]9. Hence, without any supplementary effort, we have two codings at our disposal: a

solution S(R) may be coded by its directly interpretable values (R1, . . . ,R10) = ((Ii)i=1,...,5),
(Ti)i=1,...,5) or by the collection of values (P1, . . . ,P10) that are the coordinates of point
P = (1/‖ğ1‖) B(R−M) ∈ [−1, 1]× [−1

2 ,
1
2 ]9.

Generically, in the following we will denote the coding by Q = (Q1, . . . ,Q10). It will
designate the coding by P or R or any other.

3.5 Initial Prospective Budget collection

Fixing the number of members of the collection, and denoting this number by N , a collection

of N points P l0 = (P l1
0
, . . . ,P l10

0
), for l = 1, ..., N , of [−1, 1]×[−1

2 ,
1
2 ]9 is generated randomly.

The initial collection of solutions is then Rl0 = (Rl1
0
, . . . ,Rl10

0
), for l = 1, ..., N , where

Rl0 =M+ ‖ğ1‖B−1P l0.

We assume that every dimensionless Prospective Budget Rl0 satisfies all the constraints
(4), (5) and (6). This means that the random generation has to run until N dimensionless
Prospective Budgets satisfying the constraints are obtained.

Being Generic, the coding of this initial Prospective Budgets will be denoted by Ql0 =

(Ql1
0
, . . . ,Ql10

0
).

3.6 Constraint management

For a collection made of 2N individuals, we will manage constraints by integrating them
in the Fitness Function. This consists in adding to Fitness Function defined by (11), the
following quantity, or a quantity of this kind,

− φ

(
−

5∑
k=1

min(Ck(S((Ii)i=1,...,5, (Ti)i=1,...,5)), 0))

+
5∑

k=1

max(Ck(S((Ii)i=1,...,5, (Ti)i=1,...,5))− Cmax, 0) +
5∑

k=1

max(Tk − T max
k , 0)

)
, (21)
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for a non-decreasing function φ such that φ(0) = 0 and limx→+∞ φ(x) = 1, multiplied by
a factor γ relatively large in front of 1. This penalization makes the value of the fitness
of Prospective Budgets not respect the constraints to decrease and then diminishes their
chance to pass the selection to come.

3.7 Algorithm to produce next generation

Having on hand the m−th collection of Prospective Budgets S(Rlm), for l = 1, ..., N , and

their coding Qlm, a new collection S(Rlm+1
), with coding Qlm+1

is generated by a usual
Genetic Algorithm Like routine we now briefly describe.

In a first step, couples of codings of the Prospective Budgets are randomly formed.
Then for any couple (Qlm,Qkm) = ((Ql1

m
, . . . ,Ql10

m
), (Qk1

m
, . . . ,Qk10

m
)), an integer ia is ran-

domly chosen among {1, 2, . . . , 10} and the two codings (Ql1
m
, . . . ,Qlia−1

m
,Qkia

m
, . . . ,Qk10

m
)

and (Qk1
m
, . . . ,Qkia−1

m
,Qlia

m
, . . . ,Ql10

m
) are generated. At the end of this first step, we have

on hand 2N points: the Qlm, for l = 1, ..., N and all the ones generated as described previ-
ously that are denoted Qlm for l = N + 1, ..., 2N .

The second step consists in making some codings to mutate. For this, a small inte-
ger ib, ranging, say, between 0 and N/50 is randomly generated. Then, ib codings are
randomly chosen among the codings generated in the first step, i.e. among the Qlm with
l = N + 1, ..., 2N . For each of them, an integer ic is randomly chosen among {1, 2, . . . , 10},
a number ν ranging between −1 and 1 is also randomly generated and the ic−th component
of the concerned coding is incremented by ν.

In the third step, the Fitness Function is evaluated on every codingQlm, for l = 1, ..., 2N ,
which results from the first three steps. In order to do so, it is necessary to determine the
Rlm, for l = 1, ..., 2N associated with the Qlm, for l = 1, ..., 2N , the Prospective Budgets
S(Rlm), for l = 1, ..., 2N , and finally, the Fitnesses (penalized by constraints) F (Rlm) for
l = 1, ..., 2N .

The objective of the fifth step is to randomly select N codings among all the codings
Qlm, for l = 1, ..., 2N that were brought out by the previous steps with the principle that
the higher the fitness of a coding, the more likely to be selected. In addition, we can use an
elitism routine which consists in deterministically choosing the Nelit codings that provide
the best scores with respect to the Fitness Function.

In practice, in order to implement the routine just described, we used the library
”Aforge.Genetics”. We conducted a study to measure the impact of the values of ”Cross-
Rate” and ”MutationRate” parameters of this library. This study showed that the default
values were convenient. Hence we used them.
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3.8 Resizing of obtained solutions

After several iterations of the algorithm just described, we have on hand a collection of N

codings. Ql&, for l = 1, ..., N . Then, the Rl& = ((I li
&

)i=1,...,5, (T li
&

)i=1,...,5)), for l = 1, ..., N
are deduced. If the coding is the directly interpretable one there is nothing to do. If the
coding is based on points P ∈ [−1, 1]× [−1

2 ,
1
2 ]9 one needs to apply transformation (19).

Then, for l = 1, ..., N , the resized values ((I li
&

)i=1,...,5, (T
l
i
&

)i=1,...,5)), are computed by

inverting formula (2) and real Prospective Budgets S((I li
&

)i=1,...,5, (T
l
i
&

)i=1,...,5)), are also
computed.

4 Tests

The method is now tested on several examples. First, it is tested on one-dimensional
problems in order to set out its capability to exhibit the point where the maximum of the
fitness is located, and, in the case when the fitness shows a plateau with value of which
is its maximal, to produce a population which is essentially located on the interval which
range is the plateau. Secondly it is tested on the example of local community finances that
is described in the previous sections.

4.1 Test on a one-dimensional problem with a Fitness Function having
one maximum

The Fitness Function considered here is a function with one maximum, which is the sum of
two quadratic ones. More precisely, defining

h1(x) =
1

2
max

(
1− 30 (x− 0.45)2, 0

)
, h2(x) =

1

2
max

(
1− 30 (x− 0.55)2, 0

)
, (22)

which are given in Figure 6 at the top and in the middle, the Fitness Function is

F = h1 + h2, (23)

defined on [0, 1] and drawn at the bottom of Figure 6.
We have chosen those functions in order to obtain a function F supported in (0, 1) and

with values ranging in [0, 1].
A simplified version of the method described above was implemented on this example,

with the maxima of h1(x) and h2(x) playing roles analogous to those played by points
((Ĩi)i=1,...,5, (T ci )i=1,...,5) and ((Ici )i=1,...,5, (T̃i)i=1,...,5) in the above described method.

On this example, the method works and gives after 500 generations a collection of points
which is very concentrated around x = 0.5, which is the argument of the maximum of the
fitness function.

Nonetheless its efficiency was compared to optimization methods using a similar Ge-
netic Like Algorithm, but not involving the two points around which the argument of the
maximum is sought. The method built here was not more efficient. This seems to lead to
the conclusion that the contribution of this method is not to be sought in this direction.
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Figure 6: Fitness Function (bottom) with one maximum, which is the sum of two functions
(top and middle).

4.2 Test on a one-dimensional problem with a Fitness Function having a
maximum plateau

One of the original capabilities of the method described in this paper is that it can give a
good representation of the argument of the maximum of the fitness function when it is an
interval. To illustrate this capability, a fitness function having an interval as argument of
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Figure 7: functions f1 (top left), f2 (top right), g1 (bottom left) and g2 (bottom right).

its maximum will be built.
This fitness function is the sum of two other functions that have both one maximum. The
result of this sum is a function which has a plateau whose span is smaller than the interval
defined by the maximum localizations of the two functions it is the sum of.

In practice, in a first place, functions f1 and f2 defined by

f1(x) = 1− 10 |x− 0.45| and f2(x) = 1− 10 |x− 0.55|, (24)

and drawn at the top of Figure 7 are considered. Functions

g1(x) = min
(
1− 10 (x− 0.48), 1

)
and g2(x) = min

(
1− 10 (0.52− x), 1

)
, (25)
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are also considered. Finally, the Fitness Function which is considered is
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Figure 8: The Fitness Function (bottom) with maxima on a plateau which is strictly in-
cluded in the interval made by the argument-of-the-maximum localizations of the two func-
tions (top and middle) it is the sum of.

F = l1 + l2. (26)

It is the sum of the two functions:

l1 = 0.7 max
(
0.5f1 + 0.5g1, 0

)
and l2 = 0.7 max

(
0.5f2 + 0.5g2, 0

)
. (27)

Functions l1 and l2 are drawn in Figure 8 on the top and in the middle; they both have only
one argument of their unique maximum. Fitness Function F is given in the bottom of this
Figure and detailed in Figure 9. As announced, its maximum makes up a plateau which is
the range of an interval ([0.475, 0.525]) strictly included in the interval ([0.45, 0.55]) made
by the maximum localizations of the two functions l1 and l2.

A simplified version of the method built in section 3 was implemented on this example
to locate the arguments of the maximum of Fitness Function F . In this implemented
method, the arguments of the maximum of l1(x) and l2(x) play the roles that points
((Ĩi)i=1,...,5, (T ci )i=1,...,5) and ((Ici )i=1,...,5, (T̃i)i=1,...,5) play in the more general method.
In this simplified version, the collection at each generation is made of 35 points. The result-
ing collection after 500 generations of the algorithm is given in Table 1. The collection is well
distributed on the interval ([0.475, 0.525]) whose range is the plateau of Fitness Function F .
In particular, this final collection does not undergo concentrations that could orientate by
mistake interpretation towards concluding that the Fitness Function has isolated maxima.

This capability of the method is very important for reaching operational problems. This
is what is done in the last test.
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Figure 9: Detail of the fitness with maximum on a plateau which is strictly included in the
interval made by the argment-of-the-maximum localizations of the two functions it is the
sum of.

Table 1: The collection of points after 500 generations when the Fitness Function is given
by (26).

x 0.489 0,491 0,491 0,500 0,492 0,489 0,487

F 0,910 0,910 0,910 0,910 0,910 0,910 0,910

x 0,506 0,492 0,493 0,490 0,491 0,497 0,497

F 0,910 0,910 0,910 0,910 0,910 0,910 0,910

x 0,494 0,493 0,489 0,496 0,489 0,494 1,471

F 0,910 0,910 0,910 0,910 0,910 0,910 0,00

x -0,475 0,464 0,462 0,485 0,492 0,501 0,488

F 0,000 0,910 0,910 0,910 0,910 0,910 0,910

x 0,489 0,492 0,496 0,492 0,435 0,534 0,484

F 0,910 0,910 0,910 0,910 0,646 0,860 0,910
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	   Figure 10: The quite liberal solution. (The software has a French interface; the translations
are: Capacité de désendettement = Capacity to Be Free of Debt, Variation des taux = Tax
Increase, Produit fiscal direct = Taxes, Dépenses réelles de fonctionnement = Operating
Expenditures, Recettes réelles de fonctionnement = Operating Recipes, Epargne brute =
Operating Budget Excess.)
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	   Figure 11: The careful solution.
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4.3 Test on an operational problem

The method set out in section 3 is now tested in a realistic situation. The experience uses
a software product, called SOFI, dedicated to the optimization of local communities’ bud-
gets, with a French interface. In this subsection, we describe the test and in subsection
4.4, we discuss technical aspects concerning the way we tuned the method and the way we
prevented the appearance of problems we met.

In order to keep the study as realistic as possible, the budget model and numbers that
have been chosen are drawn from an actual customer of the company MGDIS. The city
council (city of which we will not cite the name for confidentiality reasons) used SOFI
to simulate the impact of a dozen projects onto the budget of the community. Using this
application, a financial expert (Thomas Hody) provided us with two Multi-Year Prospective
Budgets. They correspond to ideal but not reachable situations. The results of our Genetic
Algorithm based optimization process have been validated by the same person as a solution
that indeed improves on the use of the community financial resources.

The first solution, presented in Figure 10, is quite liberal, with all projects being real-
ized, and the taxes increased at the maximum rate of 7% in the first three years (see the
second line of the second part of the Table in Figure 10). The Capacity to Be Free of Debt
ratio remains in the acceptable range (see the ”Capacité de désendettement” line at the
bottom of the table in Figure 10).
The second solution we picked is a much more careful, with only the top priority projects
being done, and a very limited increase of tax applied so that the capacity to be free of debt
ratio remains below 15 years, which is the prudential limit. Figure 11 shows the values for
this second solution.

Figure 12 shows a representation of the proceedings of the projects for the careful so-
lution. A color code helps spotting the priorities of the projects (from hight priority: red,
orange, yellow, blue: low priority ). It should be noted that, in our example, priority one
projects account for the vast majority of the budget.

The coding follows such rules:

• The first five genes code the five less-than-one-priority projects (the priority-one
projects are always active).

• The coding is equally distributed for each unit: below half, the project is inactive,
above half, the project is active.

• The next five genes contain the evolution of tax, written as a double.

• We consider the limits to be 0% at the minimum, and 7% at the maximum. Thus,
the decoding will realize a modulus 0.07 function on the values.

The fitness function that was used works as follows:

• The number of projects brings a linear satisfaction, and accounts for 25% of the final
fitness.
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	   Figure 12: The proceedings of the projects for the careful solution.

• The evolution of the tax is best at 0% and worst at 7%.

• Its average evolution accounts for 10% of the global fitness, and its evolution in the
last two years accounts for 5%.

• The capacity to be free of debt is optimal at 0 year and worst at 15 years and more.
This accounts for 25% of the final grading of the solution.

• The capacity to spare money is optimal at 5%, and accounts for 25% of the global
fitness.

• No variation at all (in the tax evolution) gives the best results, and this part of the
grade accounts for the remaining 10% of the global fitness.

The language used is C#, and the Genetic Algorithm framework is the one from AForge,
which is an Open Source project. The definition of the two vectors corresponding to the
solution points are programmed as:

Vector v1 = new Vector(new double[] { 0.75, 0.75, 0.75, 0.75, 0.75,

0.07, 0.07, 0.07, 0.00, 0.00 });
Vector v2 = new Vector(new double[] { 0.25, 0.25, 0.25, 0.25, 0.25,

0.03, 0.02, 0.02, 0.00, 0.00 });

(28)

By constraining the solutions into a hypercube using the method described in this paper,
we reach an optimum which has been validated by a finance professional as a reasonable
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solution for the community budget. The corresponding coding is:

[1,03949069282959, 0,19207769961155, 0,51186133809657,

0,205107769055541, 0,785367264162938, -0,254824609597842,

0,378497610225784, 1,04175330250962, 0,590217152232071,

-11,383992284572].

(29)

These values correspond to:

Project 1: OFF, Project 2: OFF, Project 3: ON, Project 4: OFF, Project 5: ON,

Tax evolution : 3.48%, 2.85%, 6.18%, 3.02%, 3.39%.
(30)

The prudential ratios are respected, as the solution in the graphic simulator of Figure 13
shows (Capacity to Be Free of Debt, abbreviated as CDD in French, must remain under 15
years). The fitness obtained is 59%, and the 500 generations took 17 minutes and 32 seconds

	  

	   Figure 13: The optimal solution.

to be simulated on the reference machine. Interestingly, an independent computation with
only 100 generations, which took 3 minutes and 32 seconds, showed a final fitness of 58%, so
the convergence is quite quick for this particular example. The corresponding chromosome
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was:

[1,11266759532518, 0,0838990704498006, 0,565754259647956,

0,440107396614116, 0,813652694225311, 0,642521321773529,

0,575349082741285, 0,447334636593206, 0,488786454202292,

0,990373758336907]

(31)

In terms of budget, this means:

Project 1: OFF, Project 2: OFF, Project 3: ON, Project 4: OFF, Project 5: ON,

Tax evolution : 1.25%, 1.53%, 2.73%, 6.88%, 1.04%.
(32)

One will notice that the activation of the different projects is the same as the other solution,
whereas the choice of Tax Evolution pattern is quite different. A quick conclusion would be
that the fitness is more dependent on the projects activation than on the tax evolution, but
this would need a robustness analysis, and this was not the subject of the present study.
The most interesting part of the result is that, along the generations, the solutions found are
quite concentrated, as shown in Figure 14. This should be compared to the initial Genetic

	  

	   Figure 14: The final population.

Algorithm optimization without Gram Schmidt projection.
The effect of using this particular technique is that the solutions are found into a con-

strained set of solution, without the user needing to explain how it is constrained, but by
letting one propose two solutions surrounding the searched one. The effect on the rapidity
on the convergence was expected as an additional result of the study, but we could not
demonstrate any noticeable or provable effect on this factor. Further studies need to be
done, with a high volume of test, in order to determine whether the two points approach
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	   Figure 15: The initial population.

helps the convergence of the Genetic Algorithms or not, and depending on which conditions
on the fitness of the coding of the chromosomes.

4.4 Parameter choices for the test

Of course, the justification of the parameters chosen for the tuning of the Genetic Algorithms
engine would make for an entire article on their own, so we will just provide a justification
for running tests like the one described in subsection 4.3. More precisely, in this subsection,
we report on a detailed study that allowed us to tune the parameters in this context.

The first part of the validation of values used for auto-shuffling, crossing, mutation and
random selection rates are simply that they are the default values provided by the Open
Source component AForge.Genetics. One can safely assume that these values have been
chosen to be a correct fit to general situations.

The second part of the validation completes the first one, as the previous hypothesis
has indeed been verified by the complete study, the outcome of which is shortly described
below.

The auto-shuffling parameter allows for a dispersion of the chromosomes after selection.
This is useful when the selection method forces the list of upcoming chromosomes to be
sorted, which can result in lower-quality crossing of the chromosomes thereafter. The ”false”
parameter in our case is indeed the best in terms of convergence speed (external parameters
like the size of the population have no impact on the result) as shown in Figure 16. The
impact of the crossing rate has also been studied in the same conditions (accounting for
variations of other parameters), and brought to the same conclusion that the default value
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Figure 16: Convergence with and without auto-shuffling.

of 0.75, provided by AForge, is quite optimal (see Figure 17). Next analyzed parameter is

Figure 17: Influence of crossing rate.

the mutation rate, and again, the default value of 0.1 is close from ideal in our case of study
(see Figure 18).
The random selection rate is not used by the tailored selection algorithm created for the
budget optimization engine. Finally, the impact of the size of the population on the con-
vergence speed has also been analyzed (see Figure 19), and brought us to use a value of 50,
which was considered an optimal ratio between speed and memory use.

As an aside note, the robustness tests around the four parameters needed to run several
hundreds of hour-long tests, in order to simulate all the different possible combination. This
has been achieved by creating a small software component that was dedicated in running
jobs on colleagues’ computers at night, collecting data and centralizing results back on the
author’s computer in the morning. This ad-hoc mechanism has also been used for the actual
simulation, in order to test its robustness.

Working with Genetic Algorithms makes for two competing risks that must be contin-
uously balanced: under-fitting and over-fitting. In an under-fitting simulation, the gener-
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Figure 18: Influence of mutation rate.

Figure 19: Influence of population size.
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ation algorithm introduces too much variety in the chromosomes for the fitness algorithm
to restrain the population to a fitter one than the previous one. The over-fitting prob-
lem is the exact reverse, where the fitness algorithm completely stifles the expansion of
the possible domain created by the generation algorithm, thus resulting in a lack of ge-
netic variety, potentially leaving more ideal genes out of the simulation. The under-fitting
problem is head-on addressed by the very principle proposed in the current paper, which
is to reduce the exploration domain to one restricted to the immediate neighborhood of
two relatively satisfactory points. The restriction on the domain is achieved by choosing
the chromosomes on constrained multi-dimensional boxes, the corresponding business val-
ues being then retrofitted in the standard domain of values by using the Gram-Schmidt
routine. The over-fitting problem is addressed by carefully choosing the selection method
among commonly-accepted ones. On very continuous problems, the ”Elite” selection mode
achieves best results, by quickly removing the poor genes from the pool. On discontinu-
ous problems like the ones linked to budget optimization, it is better to not be too harsh
on the selection, and adopt a more exploratory selection mode, like ”Roulette”. In the
”Roulette” method, the chromosomes are not simply eradicated if they do not correspond
to a high ranking with respect to the fitness method, but have simply a lower chance of
being selected for the next generation. This results in a more flexible approach, where the
exploration of unknown domains is allowed, but more or less quickly forbidden if they do
not bring an improvement on the fitness. The question of the tuning between the ”Elite”
and the ”Roulette” part of the selection algorithm could bear a complete study on its own.
In the present study, this ratio has been chosen to a balanced default value of half / half,
after that a considerable number of nightly robustness tests showed that increasing the
exploratory part did not bring any better solution. After these tests, the ratio was kept for
all subsequent simulations. It would of course be possible to optimize the computation time
by slowly decreasing this ratio to a more Elite-oriented algorithm, but the improvement on
computational time (which cost was extremely low, all simulations being run on low-range
PCs) would not make up for the risks on not detecting a better solution for the budget.
This kind of adjustment is let for further study.

5 Conclusion

In this paper, a method based on Genetic Algorithm to build a collection of Financial So-
lutions from two acceptable ones is set out, and explored.
The way to tackle that the collection is sought in a neighborhood of the two acceptable
solutions calls on a Gram-Schmidt routine to comfortably build a box surrounding them.
This routine brings also a way of coding the solution that can be used in the Genetic Like
Algorithm.
The method is then tested on simplified one-dimensional problems to exhibit that it has the
capability to locate the argument of the maximum of a Fitness Function and to generate
a collection of solutions which is distributed over the set of all the arguments of the max-
imum when the Fitness Function has a plateau as a maximum. This last capability is the
important one in view of the targeted operational applications which concerns the financial
strategy of local communities.
Finally, the method is tested on an example of the targeted operational applications and
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gives interesting results which is promising. It seems to be a potential alternative or a
support to the heavy protocol (involving many meetings with experts and decision makers)
to set out a suitable Financial Solution for local communities.
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[2] La qualité comptable au service d’une gestion performante des collectivités locales
- guide des bonnes pratiques num 18. Technical report, Académie des sciences et
techniques comptables financières.

[3] D. Beasley, D.R. Bull, and R.R. Martin. An overview of genetic algorithms. part 1,
fundamentals. University Computing, 15:58–69, 1993.

[4] D. Beasley, D.R. Bull, and R.R. Martin. An overview of genetic algorithms. part 2,
research topics. University Computing, 15:170–181, 1993.

[5] C.F. Castro, C.A.C. Antònio, and L.C. Sousa. Optimisation of shape and process
parameters in metal forging using genetic algorithms. Journal of Materials Processing
Technology, 146(3):356 – 364, 2004.

[6] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

[7] K. De Jong. Proceedings of the Evolutionary Algorithms in Engineering Computer
Science (EUROGEN99), chapter Evolutionary computation: recent developments and
open issues, pages 43–54. University of Jyvskyl, Finland, Wiley, Chichester, 1999.

[8] E.F. Fama. Market efficiency, long-term returns, and behavioral finance. Journal of
Financial Economics, 49(3):283 – 306, 1998.

[9] P.C. Fourie and A.A. Groenwold. The particle swarm optimization algorithm in size
and shape optimization. Structural and Multidisciplinary Optimization, 23(4):259–267,
2002.

[10] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, 1 edition, January 1989.

[11] V. Goodman and J. G. Stampfli. The mathematics of finance: modeling and hedging.
American Mathematical Society, 2001.

[12] K. Ilinski. Physics of finance : gauge modelling in non-equilibrium pricing. Wiley,
2001.

31



[13] C. Mattheck and S. Burkhardt. A new method of structural shape optimization based
on biological growth. International Journal of Fatigue, 12:185–190, 1990:.

[14] R.A. Musgrave. The theory of public finance : a study in public economy. McGraw-Hill,
1959.

[15] H. S. Rosen. Public finance. In Readings in Public Choice and Constitutional Political
Economy, pages 371–389. Springer US, 2008.

[16] Chen S.-H., editor. Genetic Algorithms and Genetic Programming in Computational
Finance. Kluwer Academic Publishers, 2002.

[17] C. Soh and J. Yang. Fuzzy controlled genetic algorithm search for shape optimization.
Journal of Computing in Civil Engineering, 10(2):143–150, 1996.

[18] C.M. Tiebout. A pure theory of local expenditures. Journal of Political Economy,
64(5):416–424, 1956.

32


	Introduction
	Description of the Alternative Financial Solutions seeking problem
	Local community Yearly Budget System working
	Multi-Year Prospective Budget Systems
	Alternative Prospective Budget seeking problematic

	Genetic Like Algorithm
	Dimensionless problem setting
	Fitness choice
	Frame building by Gram-Schmidt routine
	Box building and coding
	Initial Prospective Budget collection
	Constraint management
	Algorithm to produce next generation
	Resizing of obtained solutions

	Tests
	Test on a one-dimensional problem with a Fitness Function having one maximum
	Test on a one-dimensional problem with a Fitness Function having a maximum plateau
	Test on an operational problem
	Parameter choices for the test

	Conclusion

