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Abstract: In this paper, we propose a nonlinear adaptive controller for light-limited microalgae
culture. This controller regulates the light absorption factor, defined by the ratio between the
incident light and the light at the bottom of the reactor. Then, we propose a set-point for the light
absorption factor which allows to optimize biomass productivity under constant illumination.
Finally, we show by numerical simulation that the adaptive controller can be used to obtain
near optimal productivity under day-night cycles.
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1. INTRODUCTION

Recently, microalgae cultivation has become more and
more popular for the mass production in the industry of
food, aquaculture, pharmaceutics and energy (Spolaore
et al., 2006; Chisti, 2007; Wijffels and Barbosa, 2010).
However, this promising domain is still young, and there is
still a large progression margin to improve economic and
environmental yields for large scale productions.

In this context, online control of microalgae culture in
order to increase productivity is becoming a key research
topic (Berenguel et al., 2004; Akhmetzhanov et al., 2010;
Bernard, 2011; Ifrim et al., 2013; Tebbani et al., 2013).
The periodic forcing of outdoor microalgae culture, due to
the day-night cycles, is a specificity of this domain which
makes control and optimization more challenging.

Here, our objective is to propose a closed loop control
which allows near optimal biomass productivity for light-
limited culture (assuming that all nutrients are supple-
mented in excess). For this end, we design an adaptive
controller which regulates the light absorption factor, de-
fined by the ratio between the incident light and the light
at the bottom of the reactor. Originally developed for con-
stant light conditions (Mairet et al., 2013), the controller
is extended to time-varying illumination. The structure
of the controller, based on the work of Mailleret et al.
(2004), is of particular interest for bioprocesses since it
does not require any knowledge of the growth rate kinetics.
Then, we will show that this controller can be exploited
to optimize microalgae production.

The paper is organized as follows. We present firstly a
model for light limited culture (Huisman and Weissing,
1994). This framework will be the basis of our develop-

⋆ This work benefited from the support of the Facteur 4 research
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ment. In Section 3, we present an adaptive controller which
regulates the light absorption factor. Then, we show that
this controller can be used in order to optimize biomass
production in light/dark cycles. Finally, we illustrate our
approach with numerical simulations: the adaptive con-
troller allows obtaining productivity close to the optimum
(determined numerically).

2. MODELLING LIGHT-LIMITED GROWTH OF
MICROALGAE

This section presents a simple model for light-limited
growth of microalgae, based on the research work de-
veloped by Jef Huisman and co-workers (Huisman and
Weissing, 1994; Weissing and Huisman, 1994; Gerla et al.,
2011) for competition. Originally developed for natural
systems (lake, ocean...), this theoretical approach can be
adapted and exploited in the framework of microalgae
culture systems (planar photobioreactor or raceways).

2.1 Model development

Let us consider a mixed microalgae culturing system of
depth L in which grows a biomass x of microalgae. We
assume that the system is completely homogeneous, i.e.,
the concentration of microalgae is the same in all the
points of the reactor. Due to light absorption and diffusion
by the algae, a spatial gradient of light occurs: the light
intensity in the reactor decreases along the depth.

Let us assume that the absorption of light in the water
column follows the Lambert-Beer law. Thus, for a given
depth z, the corresponding light intensity I(x, z, t) satisfies

I(x, z, t) = Iin(t) exp(−axz), (1)



where Iin(t) is the incident light, and a is the coefficient
of attenuation due to microalgae. The light at the bottom
of the water column is called Iout(x, t) = I(x, L, t).

We consider here that the growth of microalgae is only
limited by light, and it is a continuous function defined
by the specific growth rate µ(I) > 0, ∀I > 0. The total
growth G of microalgae is obtained by integrating the local
growth over depth:

G(x, t) =
x

L

∫ L

0

µ(I(x, z, t))dz (2)

Given Equation (1), we obtain

G(x, t) =
1

aL

∫ Iin(t)

Iout(x,t)

f(I)dI (3)

with f(I) = µ(I)/I.

Given a constant dilution rate u 1 , the dynamic evolution
of the microalgae concentration x is therefore given by

ẋ = G(x, t)− ux. (4)

2.2 Model analysis

In this subsection, as in Mairet et al. (2013), we consider
a constant light supply Iin. First, note that G(x) is an
increasing function whose derivatives write:

G′(x) = µ(Iout(x)) > 0

G′′(x) = −aLµ′(Iout(x))
(5)

Thus, the asymptotic behavior of the model depends on
the growth rate:

i. For an increasing growth rate µ(I) (Huisman and Weiss-
ing, 1994; Weissing and Huisman, 1994)

Proposition 1. For increasing growth rate, if u < µ(Iin),
then Equation (4) has one non-trivial equilibrium, which
is globally stable.

Proof. For increasing growth rate, G(x) is increasing and
concave given Equation (5) (see Figure 1). Thus, System
(4) is bounded and has two equilibria if u < µ(Iin) =
G′(0):

• a trivial equilibrium which is unstable,
• a non-trivial stable equilibrium.

For example, assuming a kinetics of Michaelis-Menten
type, the growth rate writes:

µ(I) = µ̄
I

I +Ks
. (6)

The total growth G is obtained by integration along the
depth:
1 Initially, Huisman and co-workers used a loss rate which gathers
dilution, mortality, predation... In a microalgae production system,
we first assume that the loss is mainly due to dilution.

Fig. 1. Growth G(x) and dilution ux as a function of
biomass x. Top: for Monod growth rate (one stable
equilibrium). Bottom: for Haldane growth rate (one
or two equilibria). See Section 2.2.

G(x) =
µ̄

aL
ln

(
Iin +Ks

Iout(x) +Ks

)
. (7)

The nontrivial equilibrium of (4) is obtained by solving

µ̄

aL
ln

(
Iin +Ks

Iin exp(−ax⋆L) +Ks

)
= ux⋆, (8)

where x⋆ is the biomass concentration at steady state. This
allows to define the light at the bottom of the water column
at equilibrium I⋆out = Iin exp(−ax⋆L).

ii. For a non-monotone growth rate µ(I) (photoinhibition)
We now consider the case where the growth function has
one maximum. For example, the specific growth rate can
be represented by a Haldane function :

µ(I) = µ̄
I

KsI + I + I2/KiI
, (9)



In this case, the total growth G obtained by integration
over depth writes, considering that KiI < 4KsI (Bernard
et al., 2009; Bernard, 2011):

G(x) = µ̄
2KiI

aL
√
∆

[
arctan

(
2Iout(x) +KiI√

∆

)
− arctan

(
2Iin +KiI√

∆

)] (10)

where ∆ = KiI(4KsI −KiI).

Proposition 2. For nonmonotone growth rate, Equation
(4) can have one (globally stable) or two nontrivial equi-
libria. In this last case, one is locally stable and the other
unstable, the trivial equilibrium is also locally stable.

Proof. Given Equation (5), G(x) has an inflection point
(see Figure 1) so the equation G(x) = ux can have one or
two non-trivial solutions. See Gerla et al. (2011) for more
details.

This corresponds to a strong Allee effect: at low concen-
tration, the specific growth rate increases with biomass
concentration (self-shading reduces the negative impact of
photoinhibition). Nevertheless, below a threshold biomass
concentration (corresponding to the unstable equilibrium),
the biomass goes extinct (Gerla et al., 2011). Operating a
microalgae culture under high illumination in open-loop
can lead to the wash-out of the biomass. Thus, the design
of closed-loop control strategies for light-limited culture
is a necessity for the development of large-scale biomass
production.

3. ADAPTIVE CONTROLLER

Now, we propose to use the dilution rate u as a control in
order to regulate the light attenuation factor y = ax to a
desired set-point y∗ in closed loop.

3.1 Controller design

In the following, we assume the availability of two mea-
surements:

Hypothesis 3. We consider that the following measure-
ments are available:

• the light attenuation factor:

y = ax =
1

L
ln

(
Iin

Iout(x)

)
• the total growth G

The light attenuation factor y can be easily computed
from light measurements by online sensors at two places
in the reactor. The total growth G can be estimated
using observer-based estimator (Bastin and Dochain, 1990;
Perrier et al., 2000; Mairet et al., 2010) based on measure-
ment of oxygen production (Mendoza et al., 2013) or CO2

consumption for example.

We propose a feedback law (based on the work of Mailleret
et al. (2004); Mairet et al. (2013)) which involves an adap-
tive gain γ(t). From y∗, one can define the corresponding
set-point γ∗ = a

y∗ .

Theorem 4. Consider an incident light Iin(t) > ϵ >
0, ∀t > 0. Under 3, the adaptive feedback control law

{
u(t) = γ(t)G(x, t)
γ̇ = KG(x, t)(y − y∗)(γ − γm)(γM − γ)

(11)

with 0 < γm < γ∗ < γM and K > 0 globally stabilizes
System 4 towards the positive set point x∗ = y∗/a.

Proof. Given that y = ax, System (4) under control law
(11) becomes:{

ẏ = G(x, t)(a− γy)
γ̇ = KG(x, t)(y − y∗)(γ − γm)(γM − γ)

(12)

Since G(x, t) ≥ 0, the set R+∗ × [γm, γM ] is positively
invariant (in the following, we assume initial conditions
belonging to this set). Given its dynamics, one can show
that y(t) ≥ y, ∀t ≥ 0, with:

y = min

(
y(0),

a

γM

)
.

So we have Iout(t) ≤ Iin(t) exp(−yL), ∀t ≥ 0. Using
Equation (3), we deduce that G(x, t) is lower bounded
(since f(I) > 0, ∀I > 0). Thus, we can introduce the

time change t′ =
∫ t

0
G(x(τ), τ)dτ . Denoting with a prime

the derivatives with respect to t′, System (12) rewrites:{
y′ = a− γy
γ′ = K(y − y∗)(γ − γm)(γM − γ)

(13)

Now consider the following Lyapunov candidate function
V (Mailleret et al. (2004)):

V =

∫ y

y∗

w − y∗

w
dw +

∫ γ

γ∗

w − γ∗

K(w − γm)(γM − w)
dw.

The derivative of V along the trajectories of System (13)
is given by

V ′ = −a
(y − y∗)2

yy∗

V is a continuously differentiable, radially unbounded,
positive definite function with V ′(y, γ) ≤ 0, ∀(y, γ) ∈
R+ × [γm, γM ]. Moreover, one can easily check that the
largest invariant set defined by V ′ = 0 is actually the
set-point (y∗, γ∗). Therefore, using Krasovskii theorem
(Khalil, 2002), the set-point (y∗, γ∗) is globally asymptot-
ically stable.

Note that this control scheme does not require any knowl-
edge of the growth rate or the attenuation coefficient.
Moreover, the proposed controller can be used for mul-
tispecies culture: it will allow the selection of the fastest
growing species under the condition fixed by the set-point
(Mairet et al., 2013).

3.2 Simulation

Table 1. Parameter values used for simulation
in Section 3.2.

Parameters Values

µ̄ 5 d−1

KsI 300 µmol.m−2.s−1

KiI 400 µmol.m−2.s−1

a 1 dm2.g−1

L 2 dm
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Fig. 2. Simulation of Model (4) with the Adaptive Control
(11) under day-night cycles. The set-point is repre-
sented by the dashed line.

Model (4) with Haldane growth rate (Eq. (9)) under the
Control law (11) is simulated with a periodic light supply:

Iin(t) = Io [max(0, sin(2πt))]
2

(14)

where Io = 1200µmol.m−2.s−1. Growth measurements G
are corrupted by an additive noise (up to 0.5 g.L−1.d−1).
Model parameters are given in Table 1. Tuning param-

eters of the control law result from a trade-off between
rapidity and smoothness: K = 1, γm = 0.01 L.g−1, and
γM = 4 L.g−1. The set-point is y∗ = 1.5 dm−1. Figure
2 shows the good performance of the controller, even in
presence of a periodic forcing and noise measurements.
Recall that the controller does not require any knowledge
of model parameters. Note that we observe a decrease of
growth G at noon because of photoinhibition.

Nevertheless, in its present form, the controller requires
the positiveness of G. This is no longer true in the night
when respiration is considered. To overcome this problem,
a practical implementation of the controller is proposed in
the next section.

4. OPTIMIZATION OF BIOMASS PRODUCTIVITY

In this section, we will show that the adaptive controller
(11) can be used in order to optimize biomass productivity
P = ux. Respiration plays a major role in the definition
of optimal conditions for biomass production. Thus, we
add in the model a respiration rate r that we first assume
constant. G is now defined as the net growth:

G(x, t) =
1

aL

∫ Iin(t)

Iout(x,t)

f(I)dI − rx (15)

Given that G can be negative, the adaptive control law is
modified as follows:

{
u(t) = γ(t)max(G(x, t), 0)
γ̇ = Kmax(G(x, t), 0)(y − y∗)(γ − γm)(γM − γ)

(16)

Although convergence is no longer guaranteed, the system
moves faster during the light phase (when G(x, t) > 0)
than the dark phase (when G(x, t) < 0) so we can expect
that the system converges towards a periodic solution
around the set-point.

4.1 Under constant light

A criteria on the light at the bottom of the water column
has been proposed in order to optimize biomass produc-
tivity (Takache et al., 2010):

Proposition 5. Under constant illumination, the steady-
state biomass productivity is optimal when the light at
the bottom of the culture I∗out is such that:

µ(I∗out) = r. (17)

Proof. At steady-state, we have P = ux = G(x). The
maximum of P is obtained for G′(x) = µ(Iout(x))− r = 0.

This operating mode is called luminostat.

Thus, under constant illumination, the adaptive controller
(16) can be used to regulate the light attenuation factor at

the set-point y∗ = 1
L ln

(
Iin
I∗
out

)
in order to optimize biomass

productivity.



4.2 Under day-night cycle

The optimization of biomass production under day-night
cycle is more challenging. Indeed, the luminostat operation
could not be maintained in this condition (Cuaresma et al.,
2011). To tackle this problem, Muñoz-Tamayo et al. (2013)
have determined numerically an optimal strategy. Then,
following the approach of self-optimizing control, they
have shown that the regulation of the light absorption
allows to achieve near optimal productivity. Contrary to
the optimal open-loop strategy, this closed-loop control is
more robust towards environmental conditions and model
uncertainties.

In the following, we will use our controller in order to
regulate the light absorption and we will compare the
productivity with the optimal trajectory.

4.3 Simulation

We test our approach in simulation with the model pro-
posed in Muñoz-Tamayo et al. (2013). This model takes
into account the effect of light, nitrogen and temperature.
It represents the variation of biomass, nitrogen quota,
chlorophyll, and lipid. Note that contrary to our simple
model, the respiration rate is not constant and the light
attenuation depends on the chlorophyll content of microal-
gae, which is affected by its nutrient status. The model was
calibrated with experimental data of Isochrysis aff. galbana
culture.

For a given time horizon tf , the objective is to maximize
biomass productivity:

max
u(t)

∫ tf

t0

u(t)x(t) dt.

s.t.

0 ≤ u(t) ≤ umax

ẋ = g(x, fi, t), x(0) = x0.

(18)

where ẋ = g(x, fi, t) is the model proposed in Muñoz-
Tamayo et al. (2013) (Equations (1-5)).

The optimal solution is obtained numerically using the
Matlab toolbox DOTcvpSB Hirmajer et al. (2009).

DOTcvpSB uses the approach of sequential discretization
(control vector parameterization) to solve the non-linear
programming (NLP) problem. The optimization was per-
formed by using stochastic algorithms Storn and Price
(1997); Runarsson and Yao (2000).

Then, we compare numerically the adaptive control (16)
with the optimal solution (see Figure 3). First, note that
the observed oscillations are both due to the forcing light
signal and to the respiration during the night, when the
controller set the system in batch mode. In particular, the
light attenuation factor y cannot tend to an equilibrium
point, contrary to the previous simulation without respi-
ration (see Figure 2). Although it has been designed on
a simpler model, the adaptive controller presents good
performance in terms of regulation. A periodic regime
oscillating around the set-point is achieved after four days
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Fig. 3. Simulation with the model proposed in Muñoz-
Tamayo et al. (2013). Comparison between the op-
timal solution (green dashed line) and the adaptive
controller (blue line). The set-point for the adaptive
controller is represented by the dotted line.

of culture. Moreover, the controller obtains biomass pro-
ductivity close to the optimal (see Figure 4). Neverthe-
less, the set-point y∗ for the adaptive controller has been
chosen according to the numerical solution of the optimal
problem. For real implementation, the set-point can be
modified because of environmental conditions and model
uncertainties. Such adaptive strategy will deserve further
investigation.

5. CONCLUSION

In this paper, we have proposed a nonlinear adaptive
control which regulates the light absorption factor in a
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microalgae culture. The global asymptotic stability of the
closed-loop system has been shown based on a simple
model of light-limited growth. Then, it was shown through
numerical simulations that the adaptive controller presents
good performances in terms of regulation under constant
light, and also in day-night cycle with a more realistic
model including the effects of temperature and nitrogen
quota. Such operation is of particular interest for optimiz-
ing biomass production. In the future, the performance of
such controller will be tested experimentally.
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Muñoz-Tamayo, R., Mairet, F., and Bernard, O. (2013).
Optimizing microalgal production in raceway systems.
Biotechnology progress, 29, 543–552.

Perrier, M., de Azevedo, S.F., Ferreira, E., and Dochain,
D. (2000). Tuning of observer-based estimators: theory
and application to the on-line estimation of kinetic
parameters. Control Engineering Practice, 8(4), 377–
388.

Runarsson, T.P. and Yao, X. (2000). Stochastic ranking
for constrained evolutionary optimization. Evolutionary
Computation, IEEE Transactions on, 4(3), 284–294.

Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert,
A. (2006). Commercial applications of microalgae.
Journal of bioscience and bioengineering, 101(2), 87–96.

Storn, R. and Price, K. (1997). Differential evolution–
a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization,
11(4), 341–359.

Takache, H., Christophe, G., Cornet, J.F., and Pruvost,
J. (2010). Experimental and theoretical assessment
of maximum productivities for the microalgae chlamy-
domonas reinhardtii in two different geometries of pho-
tobioreactors. Biotechnology progress, 26(2), 431–440.

Tebbani, S., Lopes, F., Filali, R., Dumur, D., and Pareau,
D. (2013). Nonlinear predictive control for maximization
of co2 bio-fixation by microalgae in a photobioreactor.
Bioprocess and biosystems engineering, 1–15.

Weissing, F. and Huisman, J. (1994). Growth and compe-
tition in a light gradient. Journal of theoretical biology,
168, 323–336.

Wijffels, R. and Barbosa, M. (2010). An Outlook on
Microalgal Biofuels. Science, 329(5993), 796–799.


