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ABSTRACT

3D cell nuclei segmentation from fluorescence microscopy
images is a key application in many biological studies. We
propose a new, fully automated and non parametric method
that takes advantage of the resolution anisotropy in fluores-
cence microscopy. The cell nuclei are first detected in 2D at
each image plane and then tracked over depth through a graph
based decision to recover their 3D profiles. As the tracking
fails to separate very close cell nuclei along depth, we also
propose a corrective step based on an intensity projection cri-
terion. Experimental results on real data demonstrate the effi-
cacy of the proposed method.

Index Terms— Detection, tracking over depth, fluores-
cence confocal microscopy

1. INTRODUCTION

In cancer biology, the comprehensive study of cellular phe-
notypes provides information about the structure and func-
tion of different cell compartments (fibroblasts, macrophages,
endothelial and epithelial cells) in the microenvironment. A
detailed study of nuclear morphology will allow for the as-
sociation of the phenotypes to specific genotypes (wild-type,
mutants). This analysis needs to first segment the cell nuclei.

Many segmentation methods have been deployed on fluo-
rescent microscopy images. Geometric active contours meth-
ods take advantage of the level sets framework to extract the
cell nuclei boundaries by using an energy term defined from
intensity variations. These methods have been successfully
applied to 3D microscopy image stacks [1, 2]. However, the
success of these methods is very dependent on the initial se-
lection of the contours. Watershed based methods [3, 4] con-
sider images as topographic reliefs and segment objects of
interest by releasing water from seed points. Unfortunately,
these methods tend to over-segment cluttered cell nuclei. In
[5], the authors propose a gradient diffusion procedure fol-
lowed by a gradient flow tracking to localize cell nuclei cen-
ters. A local adaptive thresholding is then applied to achieve
a segmentation of the cell nuclei. This method is particularly
efficient for high quality and high resolution images.

In 3D fluorescent confocal images, the resolution along
the depth is poorer than in the two other directions. This
anisotropy prevents the robust capture of cell nuclei. To ac-
commodate this disparity in the resolutions, we propose a
new approach based on cell tracking and a graph based de-
cision process. First, we detect cell nucleus components at
each plane of the image volume. Then, we present a graph
based decision process to track the cell nucleus components
over depth. As the tracking over depth is not always able to
separate cluttered cell nuclei, we also introduce a correction
step that exploits an intensity projection criterion. We demon-
strate the effectiveness of our approach by comparing its per-
formances to competitive cell nuclei segmentation methods
using real 3D fluorescence confocal images with both isolated
and cluttered cell nuclei.

2. CELL NUCLEI DETECTION

Methods based on intensity local curvature [6], Laplacian of
Gaussian [7], conditional random fields [8], mathematical
morphology [9, 10] or image decomposition [11] for cell
nuclei detection were reported earlier in the literature. In
this study, we decide to divide this process into three steps:
i) compute a detection measure; ii) threshold the detection
measure; iii) identify each cell nucleus component.

For computing a detection measure, we choose the multi-
scale approach of [12] since it is robust to noise in fluores-
cence images and it enables to consider different image res-
olutions. This approach divides an input image into several
wavelet planes at different scales. In practice, K resolutions
{I(1)z , . . . , I

(K)
z } of the original image intensity I

(0)
z acquired

at depth z are obtained through the repeated convolutions with
a Gaussian separable kernel along the two canonical direc-
tions:

I(i)z = I(i−1)
z ∗GB3, 1 ≤ i ≤ K, (1)

where GB3 =
[

1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16

]
is a B3-spline version of the

isotropic wavelet transform [13]. The wavelet planes are then
defined as the difference between two consecutive resolutions
of the original image:

W(i)
z = I(i−1)

z − I(i)z , 1 ≤ i ≤ K. (2)



Fig. 1. Thresholds estimated with the Maximum Entropy Thresholding method on a
stack of 105 images followed by a linear least squares estimation.

The lower the wavelet plane resolution is, the higher the im-
age scale is.

To locate the cell nucleus components, we propose to use
the Maximum Entropy Thresholding (MET) method [14] to
threshold each wavelet plane. The MET method provides the
threshold that maximizes the sum of the entropies measured
in the object and background components. The thresholds es-
timated at each depth vary according to the intensity distribu-
tion in each image (see Fig.1). This distribution depends not
only on the number of cell nucleus components in each im-
age, but also on the attenuation arising from photobleaching.
The thresholds have to be similar across the image planes to
prevent from detection jumps: a part of a nucleus is detected
at depth z, not detected at depth z + 1 and detected again at
depth z + 2. In order to avoid this phenomenon and to miti-
gate the photobleaching effects, we propose to regularize the
thresholds over the image stack by using a linear least squares
fitting procedure (see Fig.1).

The final step for detection is the identification of each
cell nucleus component at each depth. For this purpose, the
connex components in the thresholded wavelet planes are as-
sociated to cell nucleus components. But, as two spatially
close cells will only be associated to one connex component,
we prefer to consider each local maximum in the wavelet
planes located in these areas. Let xz = {x1

z, . . . , x
r
z} be the

set of r local maxima at depth z located in the thresholded
wavelet plane regions. When two local maxima belong to the
same component, they have to be separated. We propose to
take advantage of the minimal path framework [15, 16] given
its computational efficiency. It has to be noted that water-
shed methods lead to the same results. When l local maxima
xj
z, j = 1, . . . , l belong to the same cell nucleus component,

we compute the minimal action maps associated to each local
maximum:

∀x ∈ S, Uxj
z
(x) = min

A(xj
z,x)

{∫
γ(xj

z,x)

(P(γ(xj
z, x))(`)]d`

}
,

(3)
where S is the grid of pixels, A(xj

z, x) ∈ S × S is the set
of planar curves that link xj

z ∈ S, x ∈ S are the points in
the considered connex component, γ(xj

z, x) ∈ A(xj
z, x), P :

S → R is a potential that takes low values when W
(i)
z is
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Fig. 2. (a) Confocal fluorescence image showing cell nuclei tagged with DAPI;
(b) detected cell nucleus components where each color corresponds to one cell nucleus
component.

high and ` is the curvilinear abscissa. The minimal action
maps associated to each local maximum are computed with
the fast marching algorithm [17]. The detection of individual
cell components obtained on a real image image is illustrated
in Fig.2.

3. GRAPH BASED DECISION

We propose to apply a tracking algorithm across image
planes. By establishing a correspondence between the cell
nucleus components along depth, the complete nuclei can be
reconstructed.

All r local maxima identified during the detection {x1
z, . . . , x

r
z}

at depth z are associated to r nodes {n1
z, . . . , n

r
z}. Each node

nu
z at depth z is linked to the nearest node nv

z+1 at depth z+1
by an edge euvz+1 (see fig.3 (b)). A cost cuvz+1 is attributed to the
edge euvz+1 and is equal to the distance between xu

z and xv
z+1.

Eventually, T graphs Gt, t = {1, . . . , T} corresponding to
one or several cell nuclei are built. Let oGt

z be the number of
nodes in Gt at depth z and oGt

max be the maximum number
of nodes in Gt for a given depth. Let 1(·) be the indicator
function such that:

1(oGt
z = m) =

{
1 if there are m nodes at depth z in Gt,
0 otherwise,

(4)
where m ∈ {1, . . . , oGt

max}. We introduce oGt
max hypothe-

ses Hm,m = 1, . . . , oGt
max: Hm postulates that there are m

cell nuclei associated to the graph Gt. A measure of con-
ceivableness Mm is defined for each hypothesis as Mm =∑

z 1(o
Gt
z = m). The hypothesis with the highest measure of

conceivableness is finally chosen, and the associated number
of nodes m? gives the number of new graph(s) to build from
Gt. The new graph(s) is(are) directly obtained by a modifi-
cation of Gt, depth by depth. At depth z, if oGt

z > m?, the
m? − oGt

z node(s) with the closest local maxima are merged.
On the other hand, if oGt

z < m?, the oGt
z −m? edge(s) with the

highest cost within the edges that are linked to a same node
is(are) removed. An example is illustrated in Fig.3 (c).
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Fig. 3. (a) Nine consecutive cropped detection images where the different cell nu-
cleus components are displayed in different colors; (b) graph associated with cell nu-
cleus components in images (a); (c) final decision pertaining to the graph to characterize
the two cell nuclei in images (a).

4. INTENSITY PROJECTION BASED CORRECTION

If two cell nuclei are proximal along depth, the decision pro-
cess will fail. To correct this phenomenon, we enforce sepa-
ration based on an intensity projection criterion.

As a consequence of their ellipsoidal shape, the projec-
tion along depth of a cell nucleus is an ellipse while the pro-
jection of two proximal cell nuclei results in a different shape
(see Fig.4 (a;d)). Moreover, the average depth occupied by
each pixel belonging to the cell nuclei shows a clearly dif-
ferent pattern when several cell nuclei are merged (see Fig.4
(b;e)). Let C = {cz, . . . , cz+w} be a cell nucleus where
cz = {c1z, . . . , cqzz } is the set of qz points belonging to the
cell nucleus at depth z. Let p = {p1, . . . , pq} be the q points
corresponding to the projection of C along depth. By using
the indicator function 1(·), we define the mean depth for each
point in p:

MD(pi) =

∑
z z1(p

i ∈ cz)∑
z 1(p

i ∈ cz
). (5)

The histogram computed from MD represents the nucleus
spatial distribution along depth and allows to identify when
several cell nuclei are merged (see Fig.4). If this histogram
shows more than one local maximum, several cell nuclei are
merged. To separate them, we first consider that only two
cell nuclei are merged and extract the first and last local max-
ima {z1lm, z2lm} from the histogram. These two local max-
ima represent the depth boundaries for the new cell nuclei:
above z1lm, all components correspond to the first cell nucleus
while below z2lm, all components correspond to the second
one. Three spatial regions can be extracted from MD: a re-
gion only associated to the first cell nucleus (#1 in Fig.4 (e)), a
region only associated to the second cell nucleus (#3 in Fig.4
(e)), and a region shared by the two cell nuclei (#2 in fig.4
(e)). From the first two regions, we compute the centers-of-
mass {p1lm, p2lm}. Between z1lm and z2lm, all the points closer

(a) (b) (c)

(d) (e) (f)
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Fig. 4. (a) Projection of one cell nucleus along the depth direction; (b) mean depth
computed from image (a); (c) histogram computed from image (b); (d) projection of the
two cell nuclei along the depth direction; (e) mean depth computed from image (d); (f)
histogram computed from image (e); (g) separation of two cell nuclei shown in (d-e)
with the corrective method applied duly.

FPR FNR CSR N0

GDSM LSSM TSM GDSM LSSM TSM GDSM LSSM TSM

image #1 0.08 0.01 0.01 0 0 0 0.87 0.91 0.92 153

image #2 0.04 0.10 0.06 0.20 0.01 0.01 0.56 0.70 0.88 112

Table 1. Results obtained with the GDSM, LSSM and TSM on images shown in
Fig.5 (a) (image #1) and in Fig.5 (e) (image #2).

to p1lm (resp. p2lm) belong to the first cell nucleus (resp. sec-
ond cell nucleus). The same process is repeated until all the
mean depth histograms only show one local maximum. An
example is shown in Fig.4 (d-g).

5. EVALUATION ON REAL DATA

To evaluate the performances of our cell nuclei segmentation
method, we consider two image volumes acquired at a res-
olution equal to 0.3 × 0.3 × 0.5 µm3 (see Fig.5 (a)) and to
0.5 × 0.5 × 0.9 µm3 (see Fig.5 (e)). In order to face the two
different resolutions, we use the 4th wavelet plane for the first
image and the 3rd wavelet plane for the second image. We
compare the results obtained with our Tracking based Seg-
mentation method (TSM) against those obtained with a Gra-
dient Diffusion based Segmentation method (GDSM) [5] and
with a Level sets based Segmentation method (LSSM) [2],
two non parametric methods that claim to be independent of
the resolution. To quantitatively measure the accuracy of each
method, an expert extracts from the results the number of false
positives (NFP), false negatives (NFN) and correct segmenta-
tions (NCS). From these numbers, the ratios FPR = NFP

N0
,

FNR = NFN
N0

and CSR = NCS
N0

are defined, where N0 is
the number of cell nuclei in the image volume. We do not
consider the cell nuclei located at the image borders.

At a high resolution (image (a)), the GDSM tends to ex-
tract other structures than cell nuclei (FPR=0.08) while at
a low resolution (image (e)), it misses (FNR=0.20) a large
amount of cell nuclei, leading to a very low CSR (0.56).
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Fig. 5. (a) Volume rendering of a fluorescent confocal 1024× 1024× 105 image acquired at a resolution equal to 0.3× 0.3× 0.5 µm3; (b-d) surface renderings of cell nuclei
segmentations obtained for image (a) using GDSM (b), LSSM (c) and TSM (d); (e) volume rendering of a fluorescent confocal 465× 400× 85 image acquired at a resolution equal
to 0.5 × 0.5 × 0.9 µm3; (f-h) surface renderings of cell nuclei segmentations obtained for image (e) using GDSM (f), LSSM (g) and TSM (h).

These results show the dependence on a high resolution for
the GDSM to obtain satisfying results. If the LSSM pro-
vides correct results at a high resolution, it shows a high FPR
(0.10) at a lower resolution. However, it still provides a better
segmentation (CSR=0.7) than the GDSM. Although the FPR
(+0.05) obtained with the TSM increases when the resolution
decreases, the results are similar at the two different resolu-
tions. Overall, the obtained CSR (0.88) at a low resolution
completely outperforms the CSR obtained with the GDSM
(+0.32) and the LSSM (+0.18).

6. CONCLUSION

In this paper, we propose a new 3D cell nuclei segmentation
method based on detection of cell nuclei at each image plane
followed by a tracking over depth. This method yields robust
results for both isolated and cluttered cell nuclei over different
image resolutions comparing to several existing methods. In
practice, a key feature of this method is that it only requires
the scale parameter that is derived from the image resolution,
allowing robust use by non experts on a very large amount
of images. This method is currently being applied to data
from a breast tumor microenvironment study to elucidate the
distribution of different cellular phenotypes in mouse models
of different genotypes. For future work, we plan to test our
method on a wider range of image volumes.
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