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Abstract This article is devoted to algorithms for computing all the roots of a uni-

variate polynomial with coefficients in a complete commutative Noetherian unram-

ified regular local domain, which are given to a fixed common finite precision. We

study the cost of our algorithms, discuss their practical performances, and apply our

results to the Guruswami and Sudan list decoding algorithm over Galois rings.
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1 Introduction

Throughout this paper, R denotes a complete commutative Noetherian unramified

regular local domain of finite dimension r, with maximal ideal m. Let p denote the

characteristic of the residue field κ := R/m of R, and let Ri :=m
i/mi+1, for all i > 0.
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The fact that R is unramified means that either p = 0 holds, or that p does not belong

to m
2. By [15, Theorem 15] the following alternative holds:

– If R and κ have the same characteristic whatsoever, then R is isomorphic to the

power series ring κ[[t1, . . . , tr]]. In this case, we identify Ri to the subgroup of R

of the homogeneous polynomials in t1, . . . , tr over κ of degree i, so that (Ri)i∈◆
defines a graduation on R.

– Otherwise, if R and κ have different characteristics, then R is isomorphic to the

power series ring D[[t1, . . . , tr−1]], where D is a complete discrete valuation ring

with maximal ideal generated by p. Each element of R can be uniquely written as

∑e∈◆r cet
e1
1 · · · ter−1

r−1 per , with the ce in κ . We can still identify Ri to the subset of R

of the homogeneous polynomial expressions in t1, . . . , tr−1 and p of degree i and

with coefficients in κ , but (Ri)i∈◆ does not define a graduation on R (for example

with R being the ring of the p-adic integers ❩p). In this case, we set tr := p.

In both cases, the function ν : R →◆∪{+∞}, which sends 0 to +∞, and any a 6= 0

to the largest integer i such that a ∈ m
i, is a valuation. Any element a of R can be

uniquely represented by the converging sum ∑i>0[a]i, where [a]i ∈ Ri is the homoge-

neous component of valuation i of a. The elements of Ri are called the homogeneous

elements of valuation i of R.

In this paper we are interested in computing all the roots of a polynomial F ∈
R[x] given to precision n, which means modulo m

n. The usual cases are for when

R = ❩p or R =❑[[t]], for any field ❑. We will adapt classical techniques, analyze

their cost, and report on practical performances of our C++ implementation using the

MATHEMAGIX libraries [29].

1.1 Application to list decoding

Univariate polynomial root-finding is a central problem in computer algebra, and a

major application resides in decoding certain error-correcting codes as recalled in

these paragraphs. Let a1, . . . ,aλ be λ distinct fixed points in the finite field with q

elements, written ❋q. Let us recall that a Reed-Solomon code of length λ and dimen-

sion ρ over ❋q is the set

RS(λ ,ρ) = {( f (a1), . . . , f (aλ )) : f ∈❋q[x]<ρ},

where ❋q[x]<ρ represents the set of polynomials over ❋q of degree at most ρ −1 (we

refer the reader for instance to [37, Chapter 6] for generalities on such codes).

This set RS(λ ,ρ) is a vector subspace of❋λ
q of dimension ρ , and there is a one-to-

one correspondance between polynomials of ❋q[x]<ρ and elements of RS(λ ,ρ). To

encode a message, the sender constructs the unique polynomial f of ❋q[x]<ρ corre-

sponding to the message, and then transmits the vector y = ( f (a1), . . . , f (aλ )) ∈❋λ
q .

The received vector may be different from y. If only a few errors occurred during the

transmission of y, obtaining the original message can be done using the usual unam-

biguous decoding algorithms such as Berlekamp-Welch [8], Berlekamp-Massey [7],

the extended Euclidean algorithms [44] and Gao’s algorithm [19]. But, when more

errors occur, a different decoding approach, called list-decoding, must be used. A
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list-decoding algorithm outputs a set Y of possible transmitted messages. A postpro-

cess is then responsible for deciding which element of Y is the actual message. Our

present motivation lies in the list-decoding algorithms.

In [26], Guruswami and Sudan designed a polynomial-time list-decoding algo-

rithm. Their method divides into two steps. First it computes a polynomial Q in

❋q[x][y] such that the possible transmitted messages are roots of Q in ❋q[x]. In the

second step one needs to determine all such roots of Q. Several techniques have been

investigated to solve both steps of the problem: see for example [1,5,32,33] for the

first step and [20, pages 214–228], and [20,41] for the second step.

The Guruswami and Sudan algorithm has been adapted to other families of codes

such as algebraic-geometric codes over fields [26], and alternant codes over fields [4].

Extensions over certain types of finite rings have further been studied for Reed-

Solomon and alternant codes in [2,3], and for algebraic-geometric codes in [6,45].

In all these cases, the two main steps of the Guruswami and Sudan algorithm are

roughly preserved, but to the best of our knowledge, the second step has never been

studied into deep details from the complexity point of view. In this paper, we inves-

tigate root-finding for polynomials over Galois rings, which are often used within

these error correcting codes, and that are defined as follows:

Definition 1 Let ϕ ∈❩/pn❩[x] be a monic polynomial of degree k that is irreducible

modulo p. The ring (❩/pn❩[x])/(ϕ(x)) is called the Galois ring, written GR(pn,k),
of order nk and characteristic pn.

It is classical that there exists only one Galois ring of order nk and of charac-

teristic pn up to an isomorphism (see for example [39, p. 207]). On the other hand,

notice that such a Galois ring can also be defined as GR(pn,k) = R/(pn), where R is

an unramified algebraic extension ❩p of degree k. Over such a Galois ring GR(pn,k)
standard techniques cannot be applied to find all the roots of a given polynomial in

GR(pn,k)[t][x]. For instance with n = 2 and F(x) = (x− p)(x− pt), one cannot find a

value a for t that makes the specialization of F with a unit discriminant in the Galois

ring, so that fast classical Newton-Hensel lifting cannot be appealed.

1.2 Complexity model

In order to analyze the performances of our algorithms, we denote by M(n) a cost

function for multiplying two univariate polynomials of degree n over an arbitrary

commutative ring A with unity, in terms of the number of arithmetic operations in

A. Similarly, we denote by I(n) the time needed to multiply two integers of bit-

size at most n in binary representation. It is classical [12,18,42] that we can take

M(n)∈ O(n logn log logn) and I(n)∈ O(n logn2log∗ n), where log∗ represents the iter-

ated logarithm of n. Throughout this paper, we assume that M(n)/n is increasing and

that M(mn)6 m2
M(n) holds for all positive integers m and n. The same assumptions

are also made for I.

When needed, we shall assume that root-finding is computable over the residue

field κ . Let us recall here that there exist effective fields (that are defined as fields with

an effective equality test) for which root-finding is not decidable [17, Section 7] (see
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also another example in [21, Remark 5.10]). Hopefully in most practical cases, roots

can be computed efficiently, as we shall recall it later over finite fields.

Finally, let us recall that the expected cost spent by a randomized algorithm is

defined as the average cost for a given input over all the possible executions. The

“soft-Oh” notation f (n)∈ Õ(g(n)) means that f (n)∈ g(n) logO(1)(3+g(n)) (we refer

the reader to [22, Chapter 25, Section 7] for details).

1.3 Our contributions

Let K := Quot(R) represent the total field of fractions of R. Since R is supposed to be

complete, so is K, and we still write ν for the extension of the valuation from R to K.

The subset of the elements of K of valuation at least i is written Oi. If a is an element

of K, and if i is an integer, then we write a+Oi for the set of elements in K whose

expansion coincides to those of a to precision i. We say that such a class a+Oi is a

root of F to precision n if all of its elements annihilate F to precision n. Notice that,

for all integers i and j, we have Oi +O j = Omin(i, j). Thus for any two elements a

and b in K we can write (a+Oi)+ (b+O j) := (a+ b)+Omin(i, j). By convention,

every element a of K can be seen as the class a+O∞, so that it makes sense to define

the sum of an element of K to a class as follows: a+(b+Oi) := (a+b)+Oi.

The set of the roots of F(x)= xn in◗p of nonnegative valuation and to precision n

is made of all the elements of positive valuation, which amounts to pn−1 roots. This

simple example shows that the number of roots can be exponential in terms of the size

of F . However it can be represented by the single class O1. In Section 2 we show that

the roots of nonnegative valuation and to precision n of a polynomial F ∈ O0[x] of

degree d can be represented by at most d such classes, in the sense that the set of roots

equals the union of the elements in these classes. As another example, with R = ❩p,

the roots of nonnegative valuation and to precision 4 of F(x) = x2(x−1) are either 1

or an element of valuation at least 2 in◗p, that is in O2.

Section 2 contains a “naive” algorithm for computing all the roots z of valua-

tion at least a given nonnegative integer w and to a given precision n of a polyno-

mial F ∈ O0[x]. This algorithm first determines all the possible values for [z]w. Then,

from such a value [z]w, it computes the shifted polynomial F([z]w + x) and it calls

itself recursively to obtain the roots of valuation at least w+1. We analyze the com-

plexity of this technique: in particular we show that all subparts but the shifts behave

essentially in an optimal way. We also provide the reader with detailed complexity

results when R is a univariate power series ring or the p-adic integers ring.

In Section 3 we modify the naive algorithm so that it splits the input polynomial

between the recursive calls by Hensel lifting. In fact we extend the classical Hensel

lifting to the quasi-homogeneous setting, and estimate how it decreases the cost of

the previous “naive” algorithm. We detail complexity bounds when R is a univariate

power series ring or the p-adic integers, but also exhibit a probabilistic fast version in

higher dimension that avoids expression swell.

Section 4 is devoted to applying our root finders in the context of list decoding

over Galois rings. We have implemented the algorithms of the present paper when

R has Krull dimension 1 in the open source library QUINTIX of the MATHEMAGIX
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computer algebra system [29]. We report on timings and discuss their relative perfor-

mances.

1.4 Related works

Besides the aforementioned works in error correcting codes let us briefly discuss the

known materials for computing roots of univariate polynomials over some particular

instances of R as defined from the beginning of the present paper. In both theory and

practice, it is classical to compute the factorization, or all the roots in an algebraic

closure of a given polynomial F ∈ R[x] for particular cases. The easiest case is for

when the degree of F does not drop modulo m and when F is separable modulo m:

Hensel lifting leads efficiently to the unique factorization of F to any requested pre-

cision (we refer the reader for instance to [22, Chapter 15]). In general, even if F is

separable, its residue polynomial modulo m may have multiple factors, and one has

to make use of the Newton polygon technique recursively, assuming that the charac-

teristic is sufficiently large. Over the power series, namely when R =❑[[t]], several

authors have contributed to this subject including, for instance: [13,14,16,27,28,38,

46,47,48]. Over the p-adic integers the situation becomes more problematic but some

of the latter techniques can be extended as in [27]. The case for when R is a power

series ring in at least two variables has also been studied in [30,34]. In addition,

for univariate power series in small characteristic, we refer the reader to [25,31]. In

fact, all these techniques do not solve directly our problem over a general coefficient

ring R as considered here, and not even in elementary situations as demonstrated by

the following examples:

Example 1 Let R =❩p, and let F(x) = (x− p)(x+ p). In R the polynomial F admits

two simple roots p and −p, but the set of roots modulo p2 is the ideal (p). This

shows that computing the roots of F in ❩p does not lead to the ones modulo p2

directly. In addition the fact that 0 is a root modulo p2 is contributed by the positive

valuation of the values of both factors of F . This suggests that, in general, a kind of

exhaustive search might be necessary to recover the modular roots from an irreducible

factorization of F in R.

Example 2 Let R = ❩p. The polynomial F(x) = x2 admits 0 as a single double root,

but the roots modulo p4 form the ideal (p2). Again this shows that there is no obvious

relationship between the roots in ❩p and the ones in ❩p/(p4).

These examples illustrate the difficulties for deducing the roots in the ring R/mn

from the ones in R to a sufficiently large precision, or from an irreducible factoriza-

tion over R. The ingredients of the present paper are not substantially new: our main

contribution relies in the design of general and well-suited algorithms to the specific

root-finding problem.

2 Algorithm with linear convergence

Recall that K := Quot(R) represents the total field of fractions of R. Since R is sup-

posed to be complete, so is K, and we still write ν for the extension of the valuation
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from R to K. Any element a of K can be uniquely written as the sum ∑i>ν(a)[a]i,
where [a]i is 0 or has valuation i and is the quotient of two homogeneous elements

in R. For any i ∈ ❩, we write Ki for the set of the elements a ∈ K such that either a

is 0 or a has a single component of valuation i, which means that a = [a]i. The subset

of the elements of K of valuation at least i is written Oi.

Definition 2 Let F(x) = ∑
d
l=0 Flx

l ∈ K[x] be a polynomial of degree d. For any w ∈
❩, the w-homogeneous component of w-valuation i of F is the polynomial [F ]i,w such

that

[F ]i,w :=
d

∑
l=0

[Fl ]i−wlx
l .

Polynomial F is said to be w-homogeneous of w-valuation i, whenever F = [F ]i,w. In

addition, the expression [F ] j... j+k,w is used to represent the sum ∑
k−1
l=0 [F ] j+l,w.

The quantity νw(F), called the w-valuation of F , stands for the first index i ∈ ❩
such that [F ]i,w is nonzero, with the convention that νw(0) :=+∞.

Remark that if a ∈ K has valuation at least w then [F ]i,w(a) has valuation at least i.

Example 3 For R=◗[[t]], and for F = x3−(1+t)x2+t3, we have that ν−1(F) =−3,

[F ]−3,−1 = x3, and that ν0(F) = 0, [F ]0,0 = x3 − x2.

2.1 Local multiplicities

In this subsection we define the multiplicity of an homogeneous root of a w-homoge-

neous polynomial.

Lemma 1 (Quasi-homogeneous Euclidean division). Let H ∈K[x] be a non-constant

w-homogeneous polynomial of w-valuation i, and let z ∈ Kw. Then there exists a

unique w-homogeneous polynomial Q ∈ K[x] of w-valuation i−w, and a unique ele-

ment a ∈ Ki, such that:

H(x) = [(x− z)Q(x)+a]i,w.

Proof When performing the classical long division of H(x) by x− z the w-homog-

eneity is preserved in w-valuation i when discarding the carries. ⊓⊔

From the latter lemma, if H is a w-homogeneous polynomial of w-valuation i, then

it makes sense to define the multiplicity m of any z ∈ Kw of H, written mult(z,H), as

the largest integer m such that H rewrites into [(x− z)mQ(x)]i,w, where Q ∈ K[x] is a

w-homogeneous polynomial of w-valuation i−mw.

Lemma 2 If H ∈K[x] is a nonzero w-homogeneous polynomial of w-valuation i, then

the following inequality holds:

∑
z∈Kw,H(z)∈Oi+1

mult(z,H)6 degH.
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Proof Let z ∈ Kw be of multiplicity m in H, and let Q ∈ K[x] be as above. If y ∈ Kw

is a distinct root of H to precision i+1, then we have that

mv(y− z)+ v(Q(y))> i+1.

It follows that v(Q(y))> i−mw+1, hence that y is a root of Q to precision i−mw+1.

By a straightforward induction, we deduce that if z1, . . . ,zs are the roots of H in Kw

to precision i+ 1 then H factors into [(x− z1)
m1 · · ·(x− zs)

msG(x)]i,w, where G is a

w-homogeneous polynomial of w-valuation i−w(m1+ · · ·+ms), whence the claimed

inequality. ⊓⊔

2.2 Representation of the set of roots

In this subsection we deal with the representation of sets of truncated roots.

Lemma 3 Let F be a nonzero polynomial in K[x] of (w− 1)-valuation i, let m :=
mult(0, [F ]i,w−1), and let j := νw(F). Then we have i 6 j 6 i+m, and deg[F ] j,w 6

j− i 6 m. In addition, deg[F ] j,w = m holds if, and only if, j = i+m. In this case the

leading coefficients of [F ]i,w−1 and of [F ] j,w coincide.

Proof From the assumptions we can express F as F(x) = xmQ(x)+H(x), where Q ∈
K[x] is a (w− 1)-homogeneous polynomial of (w− 1)-valuation i−m(w− 1), such

that Q(0) 6= 0, and where H ∈ K[x] is a polynomial of (w−1)-valuation at least i+1.

We see that F has a term axm with ν(a) = i−m(w− 1) and [a]i−m(w−1) = Q(0). It

follows that the w-valuation j of F is at most i−m(w− 1) +mw = i+m. On the

other hand, since a term of degree k > j− i+1 in F has (w−1)-valuation at least i,

it contributes to w-valuation at least i+ k > j+1. Therefore, no monomial of degree

at least j− i+1 of F contributes to [F ] j,w.

If deg[F ] j,w = m, then it is clear that j− i = m. Conversely, if j− i = m then [F ] j,w

has the term [a]i−m(w−1)x
m, hence has degree m. ⊓⊔

Although the next lemma is elementary, it constitutes the cornerstone of the solver

presented in the next subsection.

Lemma 4 Let F be a nonzero polynomial in K[x] of w-valuation j. Then a ∈ K is a

root of valuation at least w of F to precision n if, and only if, [F ] j,w([a]w) vanishes

to precision j+ 1 and a− [a]w is a root of valuation at least w+ 1 of F([a]w + x) to

precision n.

Proposition 1 If F is a polynomial in O0[x] of w-valuation j 6 n−1, then its set of

roots in K of valuation at least w > 0 and to precision n can be written as the disjoint

union of at most deg[F ] j,w classes of the form a+Oi.

Proof The proof is done by descending induction on w from n. If w > n then the

statement clearly holds since deg[F ] j,w becomes necessarily 0. Let us now assume by

induction that the proposition holds for valuation w+1 6 n. Let z ∈ Kw be such that

[F ] j,w(z) ∈ O j+1, and let mz := mult(z, [F ] j,w). By Lemma 4 the number of classes

of roots of F with z as initial term is the number of classes of roots of F(z+ x) with
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valuation at least w+1 to precision n. If jz := νw+1(F(z+ x))> n, then there is only

one such class. Otherwise the induction hypothesis ensures us that the number of

classes is as most deg[F(z+ x)] jz,w+1, which is bounded by mz by Lemma 3. The

conclusion thus follows from Lemma 2. ⊓⊔

2.3 Naive local solver

We are to describe an algorithm derived from the proof of Proposition 1. For compu-

tational purposes, we need to assume that there exists an algorithm which computes

the set of roots in Kw of any w-homogeneous polynomial H(x), together with their

respective multiplicities.

Algorithm 1

Input A polynomial F ∈ O0[x], w ∈◆, i ∈◆, m ∈◆, c ∈ Ki−(w−1)m, and n ∈◆, such

that i = νw−1(F) 6 n− 1, m = mult(0, [F ]i,w−1) > 1, and c is the coefficient of

degree m in [F ]i,w−1.

Output A set of at most m disjoint classes representing the roots of F in K with

valuation at least w and to precision n.

1. Search for the first nonzero w-homogeneous component H̃ of F taken modulo xm,

of w-valuation k, with i+1 6 k 6 min(i+m−1,n−1).
a. If such a component H̃ does exist then

set j := k and H := H̃ = [F ] j,w

else

if i+m 6 n− 1 then set j := i+m, H̃ := [F ] j,w modxm, and H := H̃ +
cxm = [F ] j,w, otherwise return {Ow}.

b. If H has degree 0 then return {}.

2. Compute all the roots z1, . . . ,zs in Kw of H to precision j+1, together with their

respective multiplicities m1, . . . ,ms.

3. For each e in 1, . . . ,s do

a. Compute Fe := F(ze + x).
b. If me = m then let ce := c. Otherwise set ce to the coefficient of degree me

in [Fe] j,w.

c. Call Algorithm 1 recursively with entries Fe, w+1, j, me, ce, and n, in order

to obtain the set Zw+1,z representing the roots of Fe of valuation at least w+1

to precision n.

4. Return {z+ z′|z ∈ Zw,z
′ ∈ Zw+1,z}.

Proposition 2 Algorithm 1 works correctly as specified. In addition, the polyno-

mial H in step 2 of Algorithm 1 equals [F ] j,w.

Proof The algorithm exits at step 1.a with {Ow} whenever νw(F)> n, which is cor-

rect. It exits at step 1.b with the empty set whenever H is a constant, which is also

correct since H = [F ] j,w by Lemma 3.

Then the proof is done by descending induction on w. If w > n then the algorithm

necessarily exits at step 1. Let us now assume that the proposition holds for w+16 n.
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By Lemma 3 again we have that H = [F ] j,w. In step 3.b, if me = m, then Lemma 3

guarantees that c is actually the coefficient of degree m in [F ] j,w, and thus of [Fe] j,w.

Therefore the correctness follows from Lemma 4. ⊓⊔

Example 4 Take R =◗[[t]]. The trace of Algorithm 1 with input F(x) = x3 − (1+
t)x2 + t3, w = 0, i =−3, m = 3, c = 1, and n = 4 is the following:

1. No H̃ is found with w-valuation in {−2,−1}. Since i+m = 0 6 3 = n− 1, we

have j = i+m = 0 and H(x) = x3 − x2.

2. z1 = 0, m1 = 2, z2 = 1, m2 = 1.

3. Algorithm 1 is called recursively with input F(0+x) = x3−(1+ t)x2+ t3, w = 1,

i = 0, m = 2, c =−1, and n = 4, and runs as follows:

1. j = 2 and H(x) =−x2.

2. z1 = 0, m1 = 2.

3. Algorithm 1 is called recursively with input F(0+ x) = x3 − (1+ t)x2 + t3,

w = 2, i = 2, m = 2, c =−1, and n = 4, and runs as follows:

1. j = 3, H(x) = t3, and the algorithm returns {}.

4. The algorithm returns {}.

Algorithm 1 is then called recursively with input F(1+x) = x3+(2− t)x2+(1−
2t)x− t + t3, w = 1, i = 0, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 1 and H(x) = x− t.

2. z1 = t, m1 = 1.

3. Algorithm 1 is called recursively with input F(1+ t + x) = x3 +2(2+ t)x2 +
(1+2t + t2)x+ t3, w = 2, i = 1, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 2 and H(x) = x.

2. z1 = 0, m1 = 1.

3. Algorithm 1 is called recursively with input F(1+ t + x) = x3 + 2(1+
t)x2 +(1+2t + t2)x+ t3, w = 3, i = 2, m = 1, c = 1, and n = 4, and runs

as follows:

1. j = 3 and H(x) = x+ t3.

2. z1 =−t3, m1 = 1.

3. Algorithm 1 is called recursively with input F(1+ t − t3 +x) = x3 +
(2+ 2t − 3t3)x2 +(1+ 2t + t2 − 4t3 − 4t4 + 3t6)x− 2t4 − t5 + 2t6 +
2t7 − t9, w = 4, i = 3, c = 1, and n = 4, and runs as follows:

1. The algorithm returns {O4}.

4. The algorithm returns {−t3 +O4}.

4. The algorithm returns {t − t3 +O4}.

4. The algorithm finally returns {1+ t − t3 +O4}.

2.4 Cumulative cost of steps 1

In step 1 of Algorithm 1, we are interested in counting the cumulative number of ex-

tractions of quasi-homogeneous components, and zero tests performed in each grad-

uated component of K. For this purpose we introduce the following subset Ti,w,m,n of

◆2:

Ti,w,m,n :=
{

(k, l) ∈◆2
∣

∣k 6 m−1 and l 6 n−1 and wk+ l > i+1
}

.
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For any subset S of ◆2, we write |S| for its cardinality, and [S]v for S∩ (◆×{v}).
Roughly speaking, the following lemma ensures us that the cumulative cost of steps 1

of Algorithm 1 is essentially optimal, whenever an element a ∈ O0 to precision n is

represented as a vector in K0 ×·· ·×Kn−1:

Lemma 5 For all v ∈ {0, . . . ,n− 1}, the cumulative number of extractions of ho-

mogeneous components of valuation v and the cumulative number of zero tests in

each Kv in all steps 1 of Algorithm 1 is at most |[Ti,w−1,m,n]v|6 m.

Proof The proof is done by descending induction on w from n down to 0. If w > n

then step 1.a extracts all the components of valuation l of the constant coefficient

of F , for l > i+1. The statement therefore holds in this case since m > 1.

Assume that the lemma holds for w+1 6 n. We introduce the auxiliary subset of

◆2:

S0 := {(k, l) ∈ Ti,w−1,m,n|wk+ l 6 j}.

In step 1 of Algorithm 1 only the components of valuation l of the coefficients of xk

for (k, l) in S0 need to be examined.

Let Me := m1 + · · ·+me−1, with the usual convention that M1 := 0. Then, each

recursive call for F(ze+x) in step 3 amounts to at most |[Se]v| component extractions

and zero tests in Kv, where

Se := (Me,0)+Tj,w,me,n, for all e ∈ {1, . . . ,s}.

Notice that Se ⊆ Ti,w−1,m,n holds for all e > 0 by using Lemma 3. On the other hand

the Se are pairwise disjoint. Therefore we obtain that ∑
s
e=0 |[Se]v| 6 |[Ti,w−1,m,n]v|,

which concludes the proof. ⊓⊔

2.5 Cumulative cost of steps 2

The following proposition concerns the sum of the degrees of all the polynomials H

occurring during the execution of Algorithm 1.

Lemma 6 The sum of the degrees of all the polynomials H occurring during the

execution of all steps 2 of Algorithm 1 does not exceed mmax(0,n−w).

Proof The proof is done by descending induction on w from n down to 0. If w >

n then the statement is true since Algorithm 1 exits at step 1. Let us now assume

by induction that the lemma holds for w+ 1 6 n. By Lemma 3, each recursive call

in step 3 performs root-finding of polynomials whose degree sum does not exceed

me(n− (w+1)). The conclusion thus follows thanks to Lemma 2 as follows:

m+
s

∑
e=1

(n− (w+1))me = (n−w)m− (n− (w+1))

(

m−
s

∑
e=1

me

)

6 (n−w)m.

⊓⊔
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2.6 Cumulative cost of steps 3

Let A be any ring. The shift of a polynomial F ∈ A[x] at a point a ∈ A is the compu-

tation of F(a+ x). We write SA(d) for a bound on the cost of the shift in degree d

for F ∈ A[x] in terms of the number of arithmetic operations in A. We assume that

SA(d)/d is increasing and that S (md) 6 m2S (d) holds for all positive integers m

and d. For the sake of completeness, we briefly recall a classical complexity bound:

Lemma 7 Let A be a commutative ring with unity, let F ∈ A[x] be a polynomial of

degree d, and let a ∈ A. Then the computation of the shifted polynomial F(a+x) can

be done with O(M(d) logd) operations in A.

Proof We apply the classical divide-and-conquer paradigm. Without loss of gener-

ality we can assume that d is a power of 2. We rewrite F(x) into F0(x)+ xd/2F1(x),
with F0,F1 ∈ A[x] of degree at most d/2, so that we have F(a+x) = F0(a+x)+(a+

x)d/2F1(a+ x). First we compute all the successive powers (a+ x)21
,(a+ x)22

, . . . ,
(a+ x)d/2, which amounts to O(M(d)) operations in A. Then, the result classically

follows from solving the recurrence SA(d) ∈ 2SA(d/2)+O(M(d/2)), and the as-

sumptions on M. ⊓⊔

Remark 1 Let us mention that the shifted polynomial can be computed faster in some

situations. For instance, if 2,3, . . . ,d are invertible in A, and if their respective inverses

are given, then one has SA(d) ∈ O(M(d)) by [10, Chapter 1, Section 2]. For situa-

tions in positive characteristic where the shift can be done within O(M(d)), we refer

the reader to [11, Proposition 5].

Lemma 8 Algorithm 1 performs at most mmax(0,n−w) shifts in O0[x] to preci-

sion n.

Proof The proof is done by descending induction on w from n down to 0. If w > n

then no shift is performed, so the lemma is true. Let us assume that the lemma holds

for w + 1 6 n. The combination of Lemmas 2 and 3 tells us that the cumulative

number of the shifts spent by Algorithm 1 in all steps 3 is at most

s+
s

∑
e=1

(n− (w+1))me 6 (n−w)m+ s−
s

∑
e=1

me 6 (n−w)m.

⊓⊔

For steps 3.b we proceed as for steps 1. We introduce the following subset T ′
i,w,m,n

of◆2:

T ′
i,w,m,n :=

{

(k, l) ∈◆2|1 6 k 6 m, l 6 n−1 and wk+ l > i+1
}

.

The following lemma ensures us that the cumulative cost of steps 3.b of Algorithm 1

is essentially optimal, whenever an element a ∈ O0 to precision n is represented as a

vector in K0 ×·· ·×Kn−1:
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Lemma 9 For all v ∈ {0, . . . ,n− 1}, the cumulative number of extractions of ho-

mogeneous components of valuation v and the cumulative number of zero tests in

each Kv in all steps 3.b of Algorithm 1 are at most |[T ′
i,w−1,m,n]v|6 m.

Proof The proof is done by descending induction on w from n down to 0. If w > n

then the lemma clearly holds since the algorithm exits in step 1. Assume that the

lemma holds for w+ 1 6 n, and let Me := m1 + · · ·+me, for e ∈ {1, . . . ,s}. If e = 1

and m1 =m then we set S′0 := {}, otherwise we set S′0 := {(Me, j−wme)|e= 1, . . . ,s}.

In step 3.b, when e 6= 1 or m1 6= m then we associate the component of valuation j−
wme of the coefficient of xme to the point (Me, j−wme) in S′0.

Then each recursive call for F(ze + x) in step 3.c amounts to |[S′e]v| component

extractions and zero tests in Kv, where S′e :=(Me−1,0)+T ′
j,w,me,n

, for all e∈{1, . . . ,s}.

Finally notice that S′e ⊆ T ′
i,w−1,m,n holds for all e > 0 and that all the S′e are pairwise

disjoint. ⊓⊔

2.7 Cumulative cost of steps 4

Lemma 10 The cumulative number of additions of an element of Kv to an element of

Kv+1 ×·· ·×Kn−1 performed in all steps 4 of Algorithm 1 is 0 for v 6 w− 1 and at

most m for v > w.

Proof We prove the lemma by descending induction on w from n down to 0. If w > n

then the lemma is true since step 4 is not reached. Let us now assume by induction

that the lemma holds for w+ 1 6 n. If j > n or if H is a constant then step 4 is

not executed. Otherwise by induction and Lemmas 2 and 3, all the recursive calls to

Algorithm 1 in step 3 amount to at most m additions of an element of Kv to an element

of Kv+1 ×·· ·×Kn−1 if v > w+ 1 and 0 otherwise. Then step 4 performs at most m

additions of an element of Kw to an element of Kw+1 ×·· ·×Kn−1, which concludes

the proof. ⊓⊔

2.8 Total cost of Algorithm 1

We assume that κ has either characteristic zero, or admits an algorithm that, for

any k ∈ ◆, detects if a given element is a pkth power or not, and returns its pkth

root if it exists. We call this task an iterated pth root extraction. Let us recall that the

separable decomposition of a primitive univariate non-constant polynomial G with

coefficients in a unique factorization domain A is the decomposition of G into a prod-

uct G(x) = ∏
s
i=1 Gi(x

qi)µi , where

– the Gi ∈ A[x] are primitive, separable, and have positive degrees,

– the Gi(x
qi) are pairwise coprime,

– qi is a power of p if p > 0, otherwise qi = 1,

– µi is not divisible by p, and the (qi,µi) are pairwise distinct.
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The quantity ∑
s
i=1 degGi is called the separable degree of G and is denoted by sdegG.

Let us recall that the separable decomposition always exits and is unique up to permu-

tation of the factors and units in A (see for instance [36, Proposition 4]). It coincides

with the squarefree decomposition if A has characteristic 0.

From now on, for algorithmic purposes, any element a of R known to precision n

is supposed to be stored in dense representation, as the vector ([a]0, [a]1, . . . , [a]n−1).
Any nonzero homogenous element c of valuation ν(c) is stored as a vector (ce)e∈◆r

such that

c = ∑
e∈◆r ,e1+···+er=ν(c)

cet
e1
1 · · · ter

r ,

with all the ce in κ . Recall that when R and κ have different characteristic then tr
represents p. For such an element c, we write c♭ for the expression

c♭ := ∑
e∈◆r ,e1+···+er=ν(c)

cet
e1
1 · · · ter−1

r−1 ∈ κ[t1, . . . , tr−1],

obtained by substituting 1 for tr syntactically. If H(x) = ∑
d
l=0 Hlx

l is a w-homoge-

neous polynomial then we further set H♭(x) := ∑
d
l=0 H♭

l xl .

Theorem 1 For any polynomial F in R[x] of degree at most d given to precision n,

one can compute a set of at most d disjoint classes representing its set of roots in R

to precision n with:

– computing primitive parts and separable decompositions of polynomials in

κ[t1, . . . , tr−1][x] of degrees at most d in x and total degrees at most n − 1

in t1, . . . , tr−1, and whose degree sum is at most nd,

– computing roots in κ[t1, . . . , tr−1] of at most nd primitive polynomials of degrees 1

and total degrees at most n−1 in t1, . . . , tr−1,

– computing roots in κ[t1, . . . , tr−1] of separable polynomials in κ[t1, . . . , tr−1][x] of

degrees at least 2 and at most d, of total degrees at most n−1 in t1, . . . , tr−1, and

whose degree sum is at most 2(d −1),
– extracting iterated pth roots of at most O(nd/p) elements in κ[t1, . . . , tr−1],
– O(nd) shifts of polynomials in R[x] of degree at most d and to precision n, and

– an additional number of O(d) extractions of homogenous components of valua-

tion v, and zero tests in each Rv, for each v ∈ {0, . . . ,n−1}.

Proof Firstly we claim that running Algorithm 1 with input F ∈ R[x] and finding the

only roots in Rw instead of in Kw in step 2 actually leads to the set of roots in R of

valuation at least w and to precision n. We leave the proof of this claim to the reader.

We enter this modified Algorithm 1 with input F , w = 0, i = ν−1(F), m =
mult(0, [F ]i,−1), n, and the coefficient of degree m of [F ]i,−1. Determining the val-

ues of i and m takes no more than O(d) extractions of homogenous components of

valuation v, and zero tests of elements in each Rv, for v ∈ {0, . . . ,n−1}. The cumu-

lative costs of steps 1, 3.b and 4 of Algorithm 1 also drop into O(d) such operations

by Lemmas 5, 9, and 10 respectively.

Concerning step 2, we are looking for the roots z ∈ Rw to precision j+1 of H(x).
If H(z) ∈ O j+1 then H♭(z♭) = 0 holds in κ [t1, . . . , tr−1][x] and z♭ is a polynomial of
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degree at most w. Conversely, if

y = ∑
e∈◆r−1

yet
e1
1 · · · ter−1

r−1 ∈ κ[t1, . . . , tr−1]

has total degree at most w and is a root of H♭(x), then we define

y♮ := ∑
e∈◆r−1

yet
e1
1 · · · ter−1

r−1 t
w−e1−···−er−1
r ∈ Rw,

so that H(y♮) belongs to O j+1. Therefore, step 2 can be decomposed into the follow-

ing tasks:

i. Compute the primitive part G of H♭ and the separable decomposition G(x) =

∏
s
i=1 Gi(x

qi)µi seen as in κ[t1, . . . , tr−1][x],
ii. Compute all the roots in κ[t1, . . . , tr−1] of all the latter Gi(x),

iii. Extract the necessary qith roots of the roots of Gi(x) in order to deduce the ones

of Gi(x
qi),

iv. Homogenize all the roots y found in iii with tr, in valuation w, into y♮ as previously

described.

The cumulative cost of tasks i and iii follows from Lemma 6. The cumulative cost of

root-finding in ii of polynomials of degree at least 2 follows from Lemma 11 below.

Finally the cumulative cost of the shifts in steps 3.a is deduced from Lemma 8. ⊓⊔

If G1, . . . ,Gr are polynomials, then we call the quantity ∑
r
e=1(sdegGe − 1) the

sum of the separable degrees minus 1 of G1, . . . ,Gr.

Lemma 11 The sum of the separable degrees minus 1 of all the polynomials G(x) of

steps i in the proof of Theorem 1 is at most m−1.

Proof The proof is done by descending induction on w. If w > n then the lemma

is true since m > 1 and the algorithm exits in step 1. Let us now assume that the

lemma holds for w+1 6 n. If the algorithm exits in step 1 then the lemma is correct.

Otherwise, we let m0 represent the separable degree of G(x). Each recursive call

to Algorithm 1 in step 3 performs root-finding of polynomials whose sum of the

separable degrees minus 1 does not exceed me − 1. The total sum of the separable

degrees minus 1 is at most

m0 −1+
s

∑
e=1

(me −1) 6 m0 −1+ ∑
y∈κ(t1,...,tr−1),G(y)=0

(mult(y,G)−1)

= m0 −1+degG−m0

6 degG−1.

Finally Lemma 3 provides us with degG−1 6 m−1. ⊓⊔

Corollary 1 Let❑ be a field, and let R be the power series ring❑[[t]]. Then, for any

polynomial F in R[x] of degree at most d and given to precision n, one can compute a

set of at most d disjoint classes representing its set of roots in R to precision n with:
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– computing roots in ❑ of separable polynomials in ❑[[x]] of degrees at least 2,

and whose degree sum is at most 2(d −1),
– extracting iterated pth roots of at most O(nd/p) elements in❑, and

– an additional number of O(ndM(n)M(d) logd) arithmetic operations in❑.

Proof This is a corollary of Theorem 1. In fact, by [36, Proposition 5], the cumula-

tive cost of the separable factorizations amounts to O(nM(d) logd) operations in ❑.

Finally, the cumulative cost of the shifts in steps 3.a is in O(ndM(n)M(d) logd) by

Lemma 7. ⊓⊔

Corollary 2 Let ❑ be a field of characteristic 0 and let R be the power series

ring ❑[[t]]. Then, for any polynomial F in R[x] of degree at most d given to pre-

cision n, one can compute a set of at most d disjoint classes representing its set of

roots in R to precision n with:

– computing roots in ❑ of separable polynomials in ❑[[x]] of degrees at least 2,

and whose degree sum is at most 2(d −1), and

– an additional number of O(ndM(n)M(d)) arithmetic operations in❑.

Proof This follows from the previous corollary, by means of Remark 1 that removes

a factor of logd in the cost of the shifts. ⊓⊔

Corollary 3 Let R be the power series ring ❋q[[t]] over the finite field with q = pk

elements. Then, for any polynomial F in R[x] of degree at most d given to precision n,

one can compute a set of at most d disjoint classes representing its set of roots in R

to precision n with a randomized algorithm that performs an expected number of

O

(

(ndM(n)+ logq)M(d) logd +
nd

p
log(q/p)

)

operations in ❋q.

Proof By [22, Corollary 14.16] and Corollary 1, the cumulative cost for root-finding

amounts to O(M(d) logd log(dq)) operations in ❋q. ⊓⊔

Let us now focus on the case when R is an unramified algebraic extension of

degree k > 1 of the ring ❩p of the p-adic integers. The ring R/mn is in fact the

Galois ring, previously written GR(pn,k), in Definition 1. We consider that we are

given a monic irreducible polynomial ϕ in ❩p[z] of degree k. Let α denote the image

of z in R viewed as (❩/pn❩[z])/(ϕ(z)). Then, any a ∈ R can be uniquely written as

∑
k−1
i=0 aiα

i with ai ∈ ❩/pn❩. We further assume that each ai is represented by its p-

adic expansion ∑
n−1
j=0 ai, j p

j, which is stored as the vector (ai,0, . . . ,ai,n−1) in (❩/p❩)n,

and where each ai, j is in binary representation. It is classical that the bit-cost for

multiplying two elements in R/mn falls in Õ(nk log p) [22, Chapter 9].

Corollary 4 Let R be an unramified extension of ❩p of degree k. Then, for any

given polynomial F in R[x] of degree at most d given to precision n, one can com-

pute a set of at most d disjoint classes representing its set of roots in R to preci-

sion n with a randomized algorithm that performs an expected number of Õ((n2d +
max(1,n/p)k log p)dk log p) bit-operations.
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Proof This is again a corollary of Theorem 1. In fact, by [36, Proposition 5],

the cumulative cost of the primitive parts and separable factorizations amounts

to Õ(nd) operations in ❋q, where q := pk, which boils down to Õ(ndk log p) bit-

operations. By [22, Corollary 14.16], the cumulative cost for root-finding amounts

to O(M(d) logd log(dq)) operations in ❋q, whence Õ(d(k log p)2) bit-operations.

The iterated root extractions take O
(

nd
p

log
q
p

)

operations in ❋q. Finally, the cumu-

lative cost of the shifts in steps 3.a is in Õ((nd)2k log p) by Lemma 7. ⊓⊔

Remark 2 One could decide to store each ai directly in binary representation mod-

ulo pn: this does not change the latter asymptotic complexity estimate because the

change of basis can be computed in softly linear time. In practice this does lightly

increase the cost for extracting homogeneous components, but we have shown that

these extractions are negligible compared to other operations. Let us mention here

that recent practical algorithms on p-adic integers can be found in [9].

3 Faster algorithm with splitting

In most situations, the bottleneck of Algorithm 1 resides in the shifts applied on

polynomials whose degrees never drop throughout the recursive calls. In this section,

we enhance the solver of the previous section by adapting Hensel lifting in order to

break the current polynomials into smaller pieces throughout each recursive call.

3.1 Quasi-homogenous Hensel lifting

For any real number a ∈ ❘, we write ⌈a⌉ for the smallest integer greater or equal

to a. The quasi-homogeneous Hensel lifting algorithm for F ∈ K[x] summarizes as

follows:

Algorithm 2

Input Polynomials F , H1, H2, and U in K[x], and integers w > 0, j > 0, and l > 1,

such that:

– H1 is monic of degree d1, and has w-valuation j1 = wd1,

– H2 has degree at most d2 := degF −d1, and w-valuation j2 := j− j1,

– [F ]0... j+l,w = [H1H2]0... j+l,w,

– the resultant Res(H1,H2) has valuation d1 j2 = d1d2w,

– U has degree at most d1 −1, w-valuation − j2, and UH2 = 1 holds modulo H1

and to w-precision ⌈l/2⌉.

Output H∗
1 , H∗

2 , and U∗ in K[x] such that:

– H∗
1 is monic of degree d1 and [H∗

1 ]0... j1+l,w = [H1]0... j1+l,w,

– [F ]0... j+2l,w = [H∗
1 H∗

2 ]0... j+2l,w,

– U∗H∗
2 = 1 holds modulo H∗

1 and to w-precision l.

1. Compute U∗ := (2−H2U)U modulo H1 and to w-precision − j2 + l.

2. Compute ∆F := F −H1H2 to w-precision j+2l.
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3. Compute ∆1 :=U∗∆F modulo H1 and w-precision j1 +2l.

4. Set H∗
1 to H1 +∆1, and deduce H∗

2 := F/H∗
1 to w-precision j2 +2l.

Algorithm 2 extends the classical Hensel lifting, which specifically concerns the

case w = j1 = j2 = 0 (we refer the reader for instance to [22, Chapter 15, Section 4]).

Proposition 3 Algorithm 2 works correctly as specified. Polynomial H∗
1 (resp. H∗

2 ,

U∗) is uniquely determined to w-precision j1+2l (resp. j2+2l, l) with the conditions

required in the output.

Proof It is straightforward to check that U∗H2 = 2UH2−(UH2)
2 = 1−(1−UH2)

2 =
1 holds modulo H1 and to w-precision l. Let ∆1 denote an unknown polynomial of

w-valuation at least j1 + l, and let ∆2 denote another unknown polynomial of w-

valuation at least j2 + l. By expanding the right-hand side of the equation F = (H1 +
∆1)(H2 +∆2), we obtain that

F −H1H2 = H2∆1 +H1∆2 +∆1∆2.

Truncating the latter expression to w-precision j+2l leads to

[F −H1H2] j+l... j+2l,w = [H2∆1 +H1∆2] j+l... j+2l,w.

By multiplying both hand sides of the latter equation by U∗ modulo H1, we deduce

that:

[U∗(F −H1H2)modH1] j1+l... j1+2l,w = [∆1 modH1] j1+l... j1+2l,w.

It follows that ∆1 exists and is uniquely determined to w-precision j1 + 2l. There-

fore H∗
1 exists and is uniquely determined as H1 +∆1. Then H∗

2 is necessarily deter-

mined as F/H∗
1 truncated to w-precision j2 +2l. ⊓⊔

Example 5 Let R = ❩p[[t]], F(x) = x2 − (p2 + t2)x+ p2t2 + t5, w = 2, j = 4, l = 1,

H1(x) = x− p2, and H2(x) = x− t2. We have d1 = d2 = 1, j1 = j2 = 2, and j = 4. The

modular inverse U is 1/(p2 − t2). Since one has the Bézout identity 1
p2−t2 H2(x)−

1
p2−t2 H1(x) = 1, then U∗ = 1. We compute ∆F = t5, then ∆1 = t5/(p2 − t2), and ob-

tain H∗
1 (x) = x− p2 + t5/(p2 − t2). Then, performing the Euclidean division on F(x)

and H∗
1 (x) at w-precision j2 +2l yields H∗

2 (x) = x− t2 − t5/(p2 − t2).

Before calling several times Algorithm 2 in order to reach any finite w-precision j+ l

from w-precision j, one must compute the modular inverse of H2 modulo H1, and

proceed as summarized in the next algorithm:

Algorithm 3

Input Polynomials F , H1, and H2 in K[x], and integers w > 0, j > 0, and n > 1, such

that:

– H1 is monic of degree d1, and has w-valuation j1 = wd1,

– H2 has degree at most d2 := degF −d1, and w-valuation j2 := j− j1,

– [F ] j,w = [H1H2] j,w,

– the resultant Res(H1,H2) has valuation d1 j2 = d1d2w.

Output H∗
1 , H∗

2 in K[x] such that:
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– H∗
1 is monic of degree d1 and [H∗

1 ] j1,w = [H1] j1,w,

– [F ]0... j+n,w = [H∗
1 H∗

2 ]0... j+n,w.

1. Compute the inverse U of H2 modulo H1 in w-valuation − j2.

2. Let l := 1, U∗ :=U , H∗
1 := H1, and H∗

2 := H2.

3. While l < n do

a. Call Algorithm 2 with F , H∗
1 , H∗

2 and U∗, w, j, and l, and reassign the output

into H∗
1 , H∗

2 and U∗ respectively.

b. l := min(2l,n).
4. Return H∗

1 and H∗
2 .

Proposition 4 Algorithm 3 works properly as specified.

Proof Since Res(H1,H2) has valuation d1 j2, the valuation of the inverse of H2 mod-

ulo H1 as computed in step 1 is exactly − j2. The rest of the proof follows from

Proposition 3. ⊓⊔

Corollary 5 Let F, H1, and H2 in K[x] be such that the following conditions hold:

– H1 is monic of degree d1, and has w-valuation j1 = wd1,

– H2 has degree at most d2 := degF −d1, and w-valuation j2 := j− j1,

– [F ] j,w = [H1H2] j,w,

– the resultant Res(H1,H2) has valuation d1 j2.

Then there exist unique polynomials H∗
1 and H∗

2 in K[x] such that:

– H∗
1 is monic of degree d1, has w-valuation j1, and [H∗

1 ] j1,w = [H1] j1,w,

– F = H∗
1 H∗

2 .

In addition, if F belongs to R[x] then H∗
2 (z)H

∗
1 also belongs to R[x], for all z ∈ Rw.

Proof The existence of H∗
1 and H∗

2 immediately follows from Proposition 4 since K

is complete. As for the last statement, let z ∈ Rw, and let m represent the multi-

plicity of z in H∗
1 (m = 0 if z is not a root of H∗

1 ), let F̃(x) := F(x)/(x− z)m and

let H̃∗
1 (x) := H∗

1 (x)/(x − z)m. Since R is factorial by [15, Theorem 18], Gauss’s

lemma [35, Chapter IV, Theorem 2.1] ensures us that F̃(z)H̃∗
1/H̃∗

1 (z) belongs to R[x].
But the latter expression precisely rewrites into H∗

2 (z)H̃
∗
1 , whence H∗

2 (z)H
∗
1 ∈ R[x].

⊓⊔

Algorithm 2 takes O(M(degF)) operations in K. A general cost analysis in terms

of operations in κ is difficult since it involves bounding sizes of numerators and

denominators of the elements in K used during the intermediate computations. Con-

cerning Algorithm 3, one must in addition describe how the modular inverse of H2

modulo H1 is actually obtained. For these reasons, from now on we restrict to con-

sidering that the elements of R are represented as in Section 2.8. We focus on the

important case of dimension 1. Higher dimension is studied in Section 3.6.

Lemma 12 Assume that R has dimension r = 1, and let F be a polynomial in R[x]
of degree at most d. Then Algorithm 3 can be run so that it performs O(M(d) logd)
operations in κ , and O(M(d)) operations in R/ml , for each value of l in the set

{1,2,4, . . . ,2λ |2λ < n}∪{n}.
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Proof The simplest way to implement Algorithm 3 in dimension 1 is to compute

F̃(x) := F(tw
r x)/t

j
r , H̃1(x) := H1(t

w
r x)/t

j1
r , H̃2 := H2(t

w
r x)/t

j2
r , and Ũ :=U(tw

r x)/t
− j2
r ,

and call Algorithm 3 with input F̃ , H̃1, H̃2, w = 0, j = 0, and n. Step 1 can thus be

performed by computing an extended g.c.d. between H̃1 and H̃2 modulo tr, which

takes O(M(d) logd) operations in κ by [22, Corollary 11.8]. Then each call to Algo-

rithm 2 can be performed with O(M(d)) operations in R to precision l. Of course at

the end we recover H∗
1 as H̃∗

1 (x/tw
r )t

j1
r and H∗

2 as H̃∗
2 (x/tw

r )t
j2
r . ⊓⊔

3.2 Quasi-homogeneous multifactor Hensel lifting

In this subsection we appeal to the classical divide and conquer paradigm in order to

lift any factorization of F into s factors in an efficient way.

Algorithm 4

Input Polynomials F , H1, . . . ,Hs+1 in K[x] and integers w > 0, j > 0, n > 1, such

that:

– for all k ∈ {1, . . . ,s}, Hk is monic of degree dk = degHk and has w-valuation

jk = wdk,

– Hs+1 has degree at most ds+1 := degF − d1 − ·· · − ds and has w-valuation

js+1 := j− j1 −·· ·− js,

– [F ] j,w = [H1 · · ·Hs+1] j,w,

– For all k1 6= k2, the resultant Res(Hk1
,Hk2

) has valuation dk1
jk2

.

Output H∗
1 , . . . ,H

∗
s+1 in K[x] such that:

– for all k ∈ {1, . . . ,s}, H∗
k is monic of degree dk and [H∗

k ] jk,w = [Hk] jk,w,

– [F ]0... j+n,w = [H∗
1 · · ·H∗

s+1]0... j+n,w.

1. If s = 0 then return H∗
1 := F .

2. Let h := ⌊(s+1)/2⌋.

3. Compute G1 := H1 · · ·Hh, and G2 := Hh+1 · · ·Hs+1, g1 := j1 + · · ·+ jh, and g2 :=
jh+1 + · · ·+ js+1.

4. Call Algorithm 3 with input F , G1, G2, w, g1 and n and let G∗
1 and G∗

2 denote the

output.

5. Call Algorithm 4 recursively with input G∗
1, H1, . . . ,Hh, w, g1, n and let H∗

1 , . . . ,H
∗
h

be the output.

6. Call Algorithm 4 recursively with input G∗
2, Hh+1, . . . ,Hs+1, w, g2, n and let

H∗
h+1, . . . ,H

∗
s+1 be the output.

Proposition 5 Algorithm 4 works correctly as specified.

Proof The proof follows from induction on s via Proposition 4. ⊓⊔

Lemma 13 Assume that R has dimension r = 1, and let F be a polynomial in R[x] of

degree d. Then Algorithm 4 can run so that it performs O(M(d) logd logs) operations

in κ , and O(M(d) logs) operations in R/ml , for each value of l in {1,2,4, . . . ,2λ |2λ <
n}∪{n}.

Proof The proof follows from induction on s via Lemma 12. ⊓⊔
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3.3 Local solver with splitting

In order to decrease the cost of the shifts in Algorithm 1, we modify step 3 as follows:

Algorithm 5

Input A polynomial F ∈ O0[x], w ∈◆, i ∈◆, m ∈◆, c ∈ Ki−(w−1)m and n ∈◆, such

that i = νw−1(F) 6 n− 1, m = mult(0, [F ]i,w−1) > 1, and c is the coefficient of

degree m in [F ]i,w−1.

Output A set of at most m disjoint classes representing the roots of F in K with

valuation at least w and to precision n.

1. Search for the first nonzero w-homogeneous component H̃ of F taken modulo xm,

of w-valuation k, with i+1 6 k 6 min(i+m−1,n−1).
a. If such a component H̃ does exist then

set j := k and H := H̃ = [F ] j,w

else

if i+m 6 n− 1 then set j := i+m, H̃ := [F ] j,w modxm, and H := H̃ +
cxm = [F ] j,w, otherwise return {Ow}.

b. If H has degree 0 then return {}.

2. Compute all the roots z1, . . . ,zs in Kw of H to precision j+1, together with their

respective multiplicities m1, . . . ,ms.

3. a. By means of Algorithm 4, compute the factorization of F into H∗
s+1 ∏

s
e=1 H∗

e ,

where [H∗
e ]wme,w(x) = [(x− ze)

me ]wme,w for e ∈ {1, . . . ,s}.

b. For each e in 1, . . . ,s do

i. If me = m then let ce := c, and Fe := F(ze + x) to precision n.

Otherwise compute he := ∏
s+1
f=1, f 6=e

H∗
f (ze) and let Fe := heH∗

e (ze + x) to

precision n, and ce := [he] j−wme .

ii. Call Algorithm 5 recursively with entries Fe, w+ 1, j, me, ce and n, in

order to obtain the set Zw+1,z representing the roots of Fe of valuation at

least w+1 to precision n.

4. Return {z+ z′|z ∈ Zw,z
′ ∈ Zw+1,z}.

Proposition 6 Algorithm 5 works correctly as specified.

Proof The algorithm exits at step 1.a with {Ow} whenever νw(F)> n, which is cor-

rect. It exits at step 1.b with the empty set whenever H is a constant, which is also

correct since H = [F ] j,w by Lemma 3.

Then the proof is done by descending induction on w. If w > n then the algorithm

necessarily exits at step 1. Let us now assume that the proposition holds for w+16 n.

By Lemma 3 again we have that H = [F ] j,w. In step 3.b, if me = m, then Lemma 3

guarantees that c is actually the coefficient of degree m in [F ] j,w, and thus of [Fe] j,w.

Assume that me 6= m. By construction, ν(he) = ∑ f 6=e ν(H∗
f (ze + b)) = j−wme,

for all b ∈ Ow+1. Therefore an element b ∈ Ow+1 is a root of F(ze +x) to precision n,

if, and only if, b is a root of Fe to precision n. The correctness thus follows from

Lemma 4. ⊓⊔
Algorithm 5 behaves in the same way as Algorithm 1 regarding to the nature of

the recursive calls, to the intermediate values taken by w, i, m, c, and to the successive

outputs, as exemplified by running it on the input considered in Example 4:
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Example 6 With R =◗[[t]], here is the trace of Algorithm 5 with input F(x) = x3 −
(1+ t)x2 + t3, w = 0, i =−3, m = 3, c = 1, and n = 4:

1. j = 0 and H(x) = x3 − x2.

2. z1 = 0, m1 = 2, z2 = 1, m2 = 1.

3. a. Hensel lifting is called with input F(x), H1(x) := x2, H2(x) := x−1, H3(x) :=
1, w = 0, j = 0 and n = 4. In return we obtain H∗

1 (x) = x2 − t3x− t3 and

H∗
2 (x) = x−1− t + t3.

b. Algorithm 1 is called recursively with input F1(x) = (−1−t+t3)H∗
1 = (−1−

t+t3)x2+t3x+t3, w= 1, i= 0, m= 2, c=−1, and n= 4, and runs as follows:

1. j = 2 and H(x) =−x2.

2. z1 = 0, m1 = 2.

3. Algorithm 1 is called recursively with input F1(0+ x), w = 2, i = 2, m =
2, c =−1, and n = 4, and runs as follows:

1. j = 3, H(x) = t3, and the algorithm returns {}.

4. The algorithm returns {}.

Algorithm 1 is then called recursively with input F2 = H∗
2 (1+x) = x− t + t3,

w = 1, i = 0, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 1 and H(x) = x− t.

2. z1 = t, m1 = 1.

3. Algorithm 1 is called recursively with input F2(t + x) = x+ t3, w = 2,

i = 1, m = 1, c = 1, and n = 4, and runs as follows:

1. j = 2 and H(x) = x.

2. z1 = 0, m1 = 1.

3. Algorithm 1 is called recursively with input F2(t + x), w = 3, i = 2,

m = 1, c = 1, and n = 4, and runs as follows:

1. j = 3 and H(x) = x+ t3.

2. z1 =−t3, m1 = 1.

3. Algorithm 1 is called recursively with input F2(t − t3 +x) = x, w =
4, i = 3, c = 1, and n = 4, and runs as follows:

1. The algorithm returns {O4}.

4. The algorithm returns {−t3 +O4}.

4. The algorithm returns {t − t3 +O4}.

4. The algorithm finally returns {1+ t − t3 +O4}.

3.4 Total cost of Algorithm 5

Within the same spirit as for Theorem 1, we summarize the cost of Algorithm 5 as

follows:

Theorem 2 For any polynomial F in R[x] of degree at most d given to precision n,

one can compute a set of at most d disjoint classes representing its set of roots in R

to precision n with:

– computing primitive parts and separable decompositions of polynomials in

κ[t1, . . . , tr−1][x] of degrees at most d in x and total degrees at most n − 1 in

t1, . . . , tr−1, and whose degree sum is at most nd,
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– computing roots in κ[t1, . . . , tr−1] of at most nd primitive polynomials of degrees 1

and total degrees at most n−1 in t1, . . . , tr−1,

– computing roots in κ[t1, . . . , tr−1] of separable polynomials in κ[t1, . . . , tr−1][x] of

degrees at least 2 and at most d, of total degrees at most n−1 in t1, . . . , tr−1, and

whose degree sum is at most 2(d −1),
– extracting iterated pth roots of at most O(nd/p) elements in κ[t1, . . . , tr−1],
– multifactor Hensel lifting of polynomials in R[x] of degrees at most d, whose de-

gree sum is at most nd, and to precision n,

– O(nM(d) log2 d) operations in R to precision n,

– shifts of polynomials in R[x] of degrees at most d, whose degree sum is at most nd,

and to precision n, and

– an additional number of O(d) extractions of homogenous components of valua-

tion v, and zero tests in each Rv, for each v ∈ {0, . . . ,n−1}.

Proof As in the proof of Theorem 1, we claim that running Algorithm 5 with in-

put F ∈ R[x] and finding the only roots in Rw instead of in Kw in step 2 actually leads

to the set of roots in R of valuation at least w and to precision n. This claim can be

easily proved by induction thanks to Corollary 5 that ensures that all the Fe in step 3

actually belong to R[x].
We enter this modified Algorithm 5 with input F , w = 0, i = ν−1(F), m =

mult(0, [F ]i,−1), n, and the coefficient of degree m of [F ]i,−1. Determining the values

of i and m takes no more than O(d) extractions of homogenous components of valua-

tion v, and zero tests of elements in each Rv, for v ∈ {0, . . . ,n−1}. The computations

performed in steps 1 and 4 of Algorithms 1 and 5 are very similar: the successive

quantities w, j and n are the same. Therefore the cumulative costs of steps 1 and 4

drops into O(d) extractions of homogenous components of valuation v, and zero tests

of elements in each Rv, for v ∈ {0, . . . ,n−1}.

The polynomials H occurring in step 2 of Algorithm 5 are the same of those

of Algorithm 1. The cumulative cost of step 2 is thus the same as in the proof of

Theorem 1.

Steps 3.a perform multifactor Hensel lifting of polynomials of degree at most m

and whose degree sum does not exceed mn by Lemma 6. The same analysis holds for

the total cost of the shifts. Finally, the cost for computing all the he in steps 3 follows

from Lemma 14 below. ⊓⊔

Lemma 14 Let A be a commutative ring with unity, let F1, . . . ,Fs be non-constant

polynomials in A[x] whose sum of degrees is at most d, and let a1, . . . ,as be in A. Then

the computation ∏
s
f=1, f 6=e Ff (ae) for e ∈ {1, . . . ,s} can be done with O(M(d) log2 d)

operations in A.

Proof In order to perform the computation we appeal to the classical divide-and-

conquer paradigm:

1. Let h := ⌊s/2⌋. We recursively compute ∏
h
f=1, f 6=e Ff (ae) for e ∈ {1, . . . ,h} and

then ∏
s
f=h+1, f 6=e Ff (ae) for e ∈ {h+1, . . . ,s}.

2. We compute G1 := F1 · · ·Fh and G2 := Fh+1 · · ·Fs with O(M(d) logs) operations

in A by [22, Lemma 10.4].
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3. We compute G1(ah+1), . . . ,G1(as) and G2(a1), . . . ,G2(ah) with O(M(d) logd)
operations in A by [22, Theorem 10.6].

4. We compute the product ∏
s
f=1, f 6=e Ff (ae) as G2(ae)∏

h
f=1, f 6=e Ff (ae) if e 6 h and

as G1(ae)∏
s
f=h+1, f 6=e Ff (ae) otherwise.

The cost function EA(d) of this algorithm thus satisfies

EA(d) ∈ EA(degG1)+EA(degG2)+O(M(d) logd).

We deduce that EA(d) ∈ O(M(d) log2 d). ⊓⊔

As for Algorithm 1, we focus on the case of dimension 1. Remark that in dimen-

sion 1 the computation of the he in step 3 of Algorithm 5 can be discarded. In fact

it suffices to take he := t
j−wme
r . The purpose of the he is only to ensure that the Fe

actually belong to R[x] whenever r > 2.

Corollary 6 Let❑ be a field, and let R be the power series ring❑[[t]]. Then, for any

polynomial F in R[x] of degree at most d and given to precision n, one can compute a

set of at most d disjoint classes representing its set of roots in R to precision n with:

– computing roots in ❑ of separable polynomials in ❑[[x]] of degrees at least 2,

and whose degree sum is at most 2(d −1),
– extracting iterated pth roots of at most O(nd/p) elements in❑, and

– an additional number of O(nM(n)M(d) logd) arithmetic operations in❑.

Proof This is a corollary of Theorem 2. By [36, Proposition 5], the cumulative cost

of the separable factorizations amounts to O(nM(d) logd) operations in ❑. The cu-

mulative cost of the shifts in steps 3 is in O(nM(n)M(d) logd) by Lemma 7. Finally,

the cumulative cost of the Hensel liftings in steps 3 is also in O(nM(n)M(d) logd) by

Lemma 12. ⊓⊔

Corollary 7 Let ❑ be a field of characteristic 0 and let R be the power series

ring ❑[[t]]. Then, for any polynomial F in R[x] of degree at most d given to pre-

cision n, one can compute a set of at most d disjoint classes representing its set of

roots in R to precision n with:

– computing roots in ❑ of separable polynomials whose degree sum is at most

2(d −1), and

– an additional number of O(nM(n)M(d) logd) arithmetic operations in❑.

Proof This follows directly from the previous corollary. ⊓⊔

Corollary 8 Let R be the power series ring ❋q[[t]] over the finite field with q = pk

elements. Then, for any polynomial F in R[x] of degree at most d given to precision n,

one can compute a set of at most d disjoint classes representing its set of roots in R

to precision n with a randomized algorithm that performs an expected number of

O

(

(nM(n)+ log(dq))M(d) logd +n
d

p
log(q/p)

)

operations in ❋q.



24 Berthomieu, Lecerf, Quintin

Proof By [22, Corollary 14.16] and Corollary 6, the cumulative cost for root-finding

amounts to O(M(d) logd log(dq)) operations in ❋q. ⊓⊔

Corollary 9 Let R be an unramified extension of ❩p of degree k. Then, for any given

polynomial F in R[x] of degree at most d given to precision n, one can compute a set

of at most d disjoint classes representing its set of roots in R to precision n with a

randomized algorithm that performs an expected number of Õ((n+k log p)ndk log p)
bit-operations.

Proof This is again a corollary of Theorem 2. In fact, by [36, Proposition 5], the

cumulative cost of the primitive parts and separable factorizations amounts to Õ(nd)
operations in ❋q, where q := pk, which boils down to Õ(ndk log p) bit-operations.

By [22, Corollary 14.16], the cumulative cost for root-finding amounts to

O(M(d) logd log(dq))

operations in ❋q, whence Õ(d(k log p)2) bit-operations. The iterated root extractions

take O
(

nd
p

log
q
p

)

operations in ❋q. Finally, the cumulative cost of the shifts and

Hensel liftings in steps 3 is in Õ(n2dk log p). ⊓⊔

3.5 Implementation and timings

In this subsection we compare the performances of Algorithms 1 and 5 for computing

all the roots of polynomials F in❩/pn❩, where p := 73. The family of polynomials F

we have taken depends on the parameter d for the degree, n for the precision, and s

for the number of roots. In fact F is built as the product of s random monic linear

factors times a random polynomial of degree d − s.

Our implementation uses the C++ library of MATHEMAGIX [29]. It is freely

available in the QUINTIX package from the SVN server of MATHEMAGIX at http:

//gforge.inria.fr/projects/mmx/.

For the present examples, the root finding for❩/p❩[x] uses a naive exhaustive search,

which turns out to be very fast whenever p is sufficiently small. Product of polyno-

mials in ❩/pn❩[x] is performed via the Kronecker substitution [22, Chapter 8, Sec-

tion 4] which reduces to multiplying large integers with GMP [24]. For all the timings

we used one core of an Intel(R) Xeon(R) CPU E5520 at 2.27 GHz with 72 Gb of

memory, and display timings in milliseconds.

In Tables 1 and 3 we report on the time spent by Algorithm 1 for various values

of d, n and s. Tables 2 and 4 concern the same computations but performed by Algo-

rithm 5. As expected performances of Algorithm 1 behave roughly quadratically in d,

while the ones of Algorithm 5 are roughly linear in d, hence much higher. In these

computations we could observe that most of the time of Algorithm 1 is spent in the

shifts, while most of the time of Algorithm 5 is spent in Hensel lifting. Notice that

when s becomes large in Table 1, the multiplicities of more and more roots of step 2

of Algorithm 1 become greater than the precision n, which leads to less recursive

calls hence to a total cost less than expected.

http://gforge.inria.fr/projects/mmx/
http://gforge.inria.fr/projects/mmx/
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d 20 40 80 160 320 640 1280

s := ⌊d/2⌋ 4 17 78 380 1623 5802 8527

s := ⌊
√

d⌋ 2 5 17 65 242 878 3290

Table 1 Algorithm 1 with R =❩/73n
❩, and n = 10.

d 20 40 80 160 320 640 1280

s := ⌊d/2⌋ 4 8 18 38 82 178 373

s := ⌊
√

d⌋ 2 3 6 12 24 55 113

Table 2 Algorithm 5 with R =❩/73n
❩, and n = 10.

d 20 40 80 160 320 640 1280

s := ⌊d/2⌋ 409 2191 12212 68944 358565 2120061 10754404

s := ⌊
√

d⌋ 166 671 2512 10635 42700 175846 657423

Table 3 Algorithm 1 with R =❩/73n
❩, and n = 100.

d 20 40 80 160 320 640 1280

s := ⌊d/2⌋ 229 474 984 2085 4431 9615 21135

s := ⌊
√

d⌋ 95 151 228 390 676 1346 2616

Table 4 Algorithm 5 with R =❩/73n
❩, and n = 100.

3.6 Cost analysis in higher dimension

When R has dimension r > 2, the naive algorithm has the advantage to operate di-

rectly in R, while Algorithm 5 needs to perform divisions in K, which has the draw-

back to cause an expression swell in the lifting stage. In this subsection we propose a

probabilistic approach to avoid this expression swell.

If a = (a1, . . . ,ar−1) is a point in κr−1, then we write τa for the homomorphism

from R into R that sends ti to (ai + ti)tr for all i ∈ {1, . . . ,r−1}. If H(x) = ∑
d
l=0 Hlx

l

is a polynomial in R[x] then we further set τa(H)(x) := ∑
d
l=0 τa(Hl)x

l . Remark that

the image of an homogeneous element c = ∑e∈◆r ,e1+···+er=ν(c) cet
e1
1 · · · ter

r in R by τa

is

τa(c) = ∑
e∈◆r ,e1+···+er=ν(c)

ce(a1 + t1)
e1 · · ·(ar−1 + tr−1)

er−1t
ν(c)
r .

Therefore c can be recovered from its value τa(c) if the latter is known to preci-

sion ν(c)+1 in tr and modulo (t1, . . . , tr−1)
ν(c)+1. More generally, if c is any element

of R, and if we are given τa(c) to precision l + 1 in tr and modulo (t1, . . . , tr−1)
l+1,

then we can recover c modulo (t1, . . . , tr)
l+1.

Following the discussion on R at the beginning of this article (based on [15, The-

orem 15]), if R is the power series ring κ[[t1, . . . , tr]] then we let

S := Quot(R/(tr))⊗κ[[tr ]] R = κ((t1, . . . , tr))[[tr]].

Otherwise, if R = D[[t1, . . . , tr−1]], where D is a complete discrete valuation ring with

maximal ideal generated by p = tr and residue field κ = D/(p), then we let

S := Quot(R/(p))⊗D R = D((t1, . . . , tr−1)).
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In both cases, S is a complete commutative Noetherian unramified regular local do-

main of dimension 1 with maximal ideal n = (tr). We can therefore apply our algo-

rithms in S instead of R as follows:

Lemma 15 For any input of Algorithm 3, there exists a nonzero polynomial A in

κ[x1, . . . ,xr−1] of degree d1 j2 = wd1d2 such that, for any point (a1, . . . ,ar−1) ∈ κr−1

satisfying A(a1, . . . ,ar−1) 6= 0, Algorithm 3 can run on τa(F), τa(H1), τa(H2) seen as

in S[x], w, j, and n, and returns τa(H
∗
1 ), τa(H

∗
2 ).

Proof From the assumptions, one has ρ := [Res(H1,H2)]d1 j2 is nonzero. On the

one hand, from the specialization property of the resultant, [τa(ρ)]d1 j2 equals

[Res(τa(H1),τa(H2))]d1 j2 . On the other hand, if

ρ = ∑
e∈◆r ,e1+···+er=d1 j2

ρet
e1
1 · · · ter

r ,

then [τa(ρ)]d1 j2 = ∑e∈◆r ,e1+···+er=d1 j ρea
e1
1 · · ·aer−1

r−1 t
d1 j
r . We thus let

A(x1, . . . ,xr−1) := ∑
e∈◆r ,e1+···+er=d1 j2

ρex
e1
1 · · ·xer−1

r−1 .

If A(a1, . . . ,ar−1) 6= 0 then τa(F), τa(H1), τa(H2), w, j and n satisfy the requirements

of Algorithm 3. ⊓⊔

Lemma 16 For any input of Algorithm 4, there exists a nonzero polynomial A

in κ[x1, . . . ,xr−1] of degree at most w(degF)2/2 such that, for any point

(a1, . . . ,ar−1) ∈ κr−1 satisfying A(a1, . . . ,ar−1) 6= 0, Algorithm 4 can run on τa(F),
τa(H1), . . . ,τa(Hs+1), seen as in S[x], w, j, and n, and returns τa(H

∗
1 ), . . . ,τa(H

∗
s+1).

Proof Let Ai, j be the polynomial A of Lemma 15 applied to HiH j, Hi, H j, for i< j. By

the multiplicativity of the resultant it suffices to take A := ∏i< j Ai, j. The degree of A

is w∑i< j did j, according to the notation of Algorithm 4. The latter sum is bounded

by wdeg(F)2/2. ⊓⊔

In order to apply Algorithm 5, it suffices to pick up at random a point

(a1, . . . ,ar−1) ∈ κr−1, then to perform the Hensel lifting to precision n in tr and mod-

ulo (t1, . . . , tr−1)
n, to compute τa(Fe), and finally to recover Fe in R[x] since it actually

belongs to R[x]. In this way, if κ has sufficiently many elements, then Algorithm 5

behaves efficiently in high dimension with a high probability of success.

4 Application to error correcting codes

Let E be an unramified extension of ❩p of degree k so that E/(pn) is the Galois ring

GR(pn,k) of Definition 1, and let q := pk.
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4.1 Algorithm

Let F be a polynomial in E[t][x] of degree at most d in x and degree at most dt in t.

We are interested in computing all the roots of F in E[t] of degree at most a given

integer l, and modulo pn.

Algorithm 6

Input A polynomial F ∈ E[t][x] of degree at most d in x and dt in t, and two non-

negative integers n and l.

Output A set of at most d disjoint classes representing the roots of F in E[t] of

degree at most l modulo pn.

1. Compute an irreducible polynomial ϕ(t) ∈❋q[t] of degree e = dl +dt +1.

2. Call Algorithm 1 or 5 with R := E[t]/(ϕ(t)), and F seen in R[x] of degree at

most d, in order to obtain a set Z of at most d disjoint classes of the roots.

3. Return the elements of Z of degree at most l in t.

Proposition 7 Algorithm 6 works correctly, and takes:

– an expected number of Õ((n2d + max(1,n/p)ek log p)dek log p) bit-operations

when using the naive solver derived from Algorithm 1, or

– an expected number of Õ((n2+nek log p)dek log p) bit-operations when using the

solver derived from Algorithm 5.

Proof A polynomial z(t) is a root of F of degree at most l modulo pn if, and only if, it

is a root of F seen in E[t]/(ϕ(t)) modulo pn, since F(z(t)) has degree at most dl+dt .

Step 1 can be done with an expected number of Õ(e2 logq) operations in ❋q

by [22, Corollary 14.43]. The cost of step 2 then follows from Corollary 4 (resp.

from Corollary 9) when using Algorithm 1 (resp. using Algorithm 5). ⊓⊔

4.2 Experiments

We have implemented finite fields in the C++ package of MATHEMAGIX called

FINITEFIELDZ. Several representations and algorithms are available, including prod-

ucts via lookup tables for small fields, a wrapper of the MPFQ library [23] for specific

fields, and a generic implementation as quotient ring for larger fields. We have also

implemented Galois rings in the aforementioned QUINTIX package, in a way very

similar to finite fields. Root finding can be performed either by an exhaustive search

or via Berlekamp or Cantor-Zassenhaus based algorithms (see for instance [22, Chap-

ter 14]).

Algorithm 6 is available in the QUINTIX package. In order to test it, we built input

polynomials from real examples by using Sudan’s interpolation algorithm for Reed-

Solomon codes over Galois rings [43, Lemma 4]. This interpolation relies merely on

linear algebra over Galois rings as described in [2,3]. In Tables 5 and 6 we display the

performances of Algorithm 6 for various length of the code. Timings are measured

in milliseconds in the same conditions as in Section 3.5, and we compare the relative

performances of Algorithms 1 and 5.
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Length of the code 100 200 250

p 103 211 257

d 3 2 2

dt 29 116 83

l 9 49 59

e 57 215 202

Algorithm 1 in step 2 (ms) 785 5492 3509

Algorithm 5 in step 2 (ms) 1068 10298 14978

Table 5 Algorithm 6 for Reed-Solomon codes over ❩/p10
❩.

Length of the code 100 200 250

p 103 211 257

d 3 2 2

dt 29 116 83

l 9 49 59

e 57 215 202

Algorithm 1 in step 2 (ms) 675 11421 6134

Algorithm 5 in step 2 (ms) 2046 9942 10861

Table 6 Algorithm 6 for Reed-Solomon codes over ❩/p100
❩.

Length of the code 1400 1800 2000

p 1409 1811 2003

d 6 8 10

dt 43 50 45

l 9 9 9

e 98 123 136

Algorithm 1 in step 2 (ms) 19742 58414 145380

Algorithm 5 in step 2 (ms) 23818 70941 140828

Table 7 Algorithm 6 for Reed-Solomon codes over ❩/p10
❩ with a forced degree d for the interpolation

polynomial F .

Notice that the timings are somehow similar between precision 10 and 100. This

is mainly because the interpolation step returns a polynomial whose coefficients have

valuations close to the precision. Moreover the degrees in x being very small com-

pared to the extension degree of the Galois ring used by Algorithm 6 in step 2, both

Algorithms 1 and 5 spend a lot of time in the root-finding algorithm over large finite

fields.

In the latter examples, we can see that the degree d is rather small in comparison

to dt . Heuristically, this fact could be related to [40, Proposition 12, page 9] which

states that the probability of having more than one codeword in a Hamming ball,

whose radius corresponds to the Sudan algorithm decoding radius, is close to zero.

The degree d of F is related to the number c of codewords within the Hamming ball

by c 6 d. And, in practice, we observe that d is close to 1 when c = 1 with probability

close to 1.

Of course one can construct received words such that the decoding algorithm

has to return a given number c of codewords. Hence, by the inequality c 6 d, one

can force the degree d to be at least a given positive integer. Such a word can be

built as follows. First denote by (r)i··· j the vector (ri,ri+1, . . . ,r j) for any vector r
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with coefficients in ❩/pn❩. Take d codewords c1, . . . ,cd such that (c1)1···k−d−1 =
(c2)1···k−d−1 = · · · = (cd)1···k−d−1 where k is the rank of the code. Then compute

∆ = ⌊(ℓ− k−d)/d⌋ where ℓ is the length of the code. Finally compute the word

ρ = ((c1)1···k−d−1;(c1)k−d···k−d+∆ ;(c2)k−d+∆+1···k−d+2∆ ;

· · · ;(cd)k−d+(d−1)∆ ···k−d+d∆ ),

and truncate ρ , if necessary, so that its length equals the length ℓ of the code. Table 7

reports on timings obtained with this construction. Notice that Algorithm 5 starts to

be interesting when the degree d is at least 10 for codes with a very low rate. In this

case the code rate is smaller than 0.5%. Therefore the naive algorithm turns out to be

sufficient for practical applications whenever the code rate is close to 1.
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23. Gaudry, P., Thomé, E.: MPFQ, a finite field library. Available at http://mpfq.gforge.inria.fr

(2008)
24. Granlund, T., et al.: GMP, the GNU multiple precision arithmetic library. Available at http://

gmplib.org (1991)
25. Griffiths, D.: Series expansions of algebraic functions. In: W. Bosma, A. Poorten (eds.) Computational

Algebra and Number Theory, Mathematics and Its Applications, vol. 325, pp. 267–277. Springer

Netherlands (1995)
26. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometric codes.

IEEE Trans. Inform. Theory 45, 1757–1767 (1998)
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