
HAL Id: hal-00921775
https://hal.archives-ouvertes.fr/hal-00921775

Submitted on 21 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing H-Joins with Application to 2-Modular
Decomposition

Michel Habib, Antoine Mamcarz, Fabien de Montgolfier

To cite this version:
Michel Habib, Antoine Mamcarz, Fabien de Montgolfier. Computing H-Joins with Application to
2-Modular Decomposition. Algorithmica, Springer Verlag, 2014, 70 (2), pp.245-266. �10.1007/s00453-
013-9820-1�. �hal-00921775�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49699526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00921775
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Computing H-joins with application to 2-modular

decomposition

Michel Habib · Antoine Mamcarz ·

Fabien de Montgolfier

the date of receipt and acceptance should be inserted later

Abstract We present here a general framework to design algorithms that
compute H-join. For a given bipartite graph H, we say that a graph G admits a
H-join decomposition or simply a H-join, if the vertices of G can be partitioned
in |H| parts connected as in H. This graph H is a kind of pattern, that we want
to discover in G. This framework allows us to present fastest known algorithms
for the computation of P4-join (aka N -join), P5-join (aka W -join), C6-join (aka
6-join). We also generalize this method to find a homogeneous pair (also known
as 2-module), a pair {M1,M2} such that for every vertex x /∈ (M1 ∪M2) and
i ∈ {1, 2}, x is either adjacent to all vertices in Mi or to none of them. First
used in the context of perfect graphs [Chvátal Sbihi 87], it is a generalization
of splits (a.k.a 1-joins) and of modules. The algorithmics to compute them
appears quite involved. In this paper, we describe an O(mn2)-time algorithm
computing all maximal homogeneous pairs of a graph, which not only improves
a previous bound of O(mn3) for finding only one pair [Everett Klein Reed
97], but also uses a nice structural property of homogenous pairs, allowing to
compute a canonical decomposition tree for sesquiprime graphs.1

Keywords algorithms · graph · graph decompositions · H-join · homogeneous
pairs

1 Introduction

In the following, G = (V,E) always denotes a simple, finite, undirected graph
with |V | = n vertices and |E| = m edges. Two sets X and Y ⊆ V are said to
be adjacent (resp. non adjacent) if ∀x ∈ X ∀y ∈ Y, xy ∈ E (resp. xy /∈ E).
A vertex x is said to be a splitter of X ⊂ V if ∃y, z ∈ X s.t. xy ∈ E and
xz /∈ E.

LIAFA · CNRS · Université Paris Diderot - Paris 7
E-mail: {habib, mamcarz, fm}@liafa.univ-paris-diderot.fr

1 A preliminary version of this work was presented at Latin 2012 [15].

2 Michel Habib et al.

Let H be a l× r matrix filled over {0, 1}. We say that G admits a H-join

if V can be partitioned into l+ r subsets L1...Ll and R1..Rr such that, for all
i ∈ [1..l] and all j ∈ [1..r]

– If H[i, j] = 1 then for all v ∈ Li and for all v′ ∈ Rj vv′ ∈ E. In other
words, there is a complete join (all possible edges exist) between Li and
Rj .

– Else (H[i, j] = 0) then for all v ∈ Li and for all v′ ∈ Rj vv′ /∈ E. In other
words, there is no edge between Li and Rj .

We note L =
⋃i=l

i=1
Li the left side of the H-join, and R =

⋃j=r

j=1
Rj the right

side of the H-join. But sometimes L and R are identified with {L1...Ll} and
{R1...Rr}. Note that there are no constraints on the adjacency of two vertices
on the same side of the join. The problem we deal with is:

H-join Problem:

Input: A graph G = (V,E), and H a l × r matrix filled over {0, 1}.
Question: Does G admit a H-join?

This problem was first defined under this name in [4,20], and it is a particu-
lar case of Matrix Partition problems as defined in [?]. Notice that equivalently,
a bipartite graph BH may be used instead of H to encode this problem. It
is defined in the obvious way: l white vertices u1...ul, r black vertices v1...vr,
and edge uivj iff Mi,j = 1.

For a given H, a H-join is surjective if no set Ri or Lj is empty. The
left (resp right) side is trivial if ∀i|Li| ≤ 1 (resp. if ∀i|Ri| ≤ 1). The join is
non-trivial if neither side is trivial.

Furthermore H is twin-free if it has no two identical rows, nor two iden-
tical columns. Clearly, if two rows i and i′ are identical, then vertices of G
may be put indifferently in Li or in Li′ . Using twins could be important in
some application since this allows to formulate cardinality constraints, for the
surjective case. In fact two identical rows i and i′ have a cardinality constraint
meaning: |Vi ∪ Vi′ | must be at least 2. Section 2.8 explains how to deal with
these twins.

This formalism can be used to express a broad variety of problems, among
which we can find connectedness of a graph (H is made up with 2 isolated
vertices), but also many classical graph decompositions such as modular de-
composition [16]. Indeed, finding a module is equivalent to find a H-join in
which H is reduced to an edge and an isolated vertex. Using the same for-
malism one can search for 1-joins (aka splits) [8] (H is reduced to one edge
and 2 isolated vertices one on each side), or 2-join (H is reduced to 2 paral-
lel edges and 2 isolated vertices one on each side). For these decompositions,
efficient ad-hoc algorithms exist. But for other decompositions like P4-join,
P5-join, C6-join, (see Figures 1,2, 3), this is the only known method. These
decompositions were also defined and used in [5].

In this paper, we first propose a general technique for computing non-
trivial H-join in the surjective case and then we apply it to several particular

Computing H-joins with application to 2-modular decomposition 3

cases, including the detection of homogenous pairs. In section 4, focusing on
this homogeneous pair decomposition we show how to compute a kind of tree
decomposition for sesquiprime graphs using our techniques.

2 Algorithms for the surjective H-join problem

Let us now show, given G and H, how to compute efficiently a surjective,
non-trivial H-join.

2.1 Seed sets

In the following we will refer to the sets Li and Rj as destination.

Definition 1 Let H denotes an l × r matrix filled over {0, 1}. A subset S =
{l1 . . . ll, r1 . . . rr} ⊆ V is called a seed set.

If for given seed set S and matrix H we have that, for all i ∈ [1 . . . l] and
j ∈ [1 . . . r] lirj ∈ E ⇐⇒ H[i, j] = 1, then S is compatible with H.

If there exists a seed set S and a H-join {L1, ...Ll, R1, ..Rr} such that for
all 1 ≤ i ≤ l and 1 ≤ j ≤ r we have li ∈ Li and rj ∈ Rj , then we say that S
realizes H (or realizes this H-join) and that this H-join extends S.

It is easy to check if a seed-set is compatible with a matrix H. Clearly a
seed-set realizing a H-join is compatible with H, but the converse is not true.
Our brute force method to find H-decomposition is roughly the following:

1. Enumerate all possible seed sets,

2. For every generated seed set check if it could be extended as a

H-join.

So there are two independent steps, the first one has to define how to
efficiently generate all the possible seed sets and the second step is concerned
by how to extend a seed set. Let us start by studying this first step.

2.2 Generating the seed sets

At first, it seems that we must consider O(nl+r) seed sets. However, we can
low down a little this number, using techniques inspired from [10].

Proposition 1 If G admits a H-join, every spanning tree of G contains at
least one edge of the H-join.

Proof The special case with H filled with zeros can be trivially solved using
any connected components algorithm. And if H contains at least one 1, it
induces an edge cut of G, i.e. the join contains an edge of every path between
vertices of L and vertices of R. �

4 Michel Habib et al.

A spanning tree of G contains O(n) edges, including one that crosses the
join. Therefore, by considering every edge of the spanning tree, and l + r − 2
vertices, we have:

Proposition 2 It is enough to consider only O(nl+r−1) seed sets.

For some particular H this bound can be improved as it is shown in the next
sections.

2.3 Computing a H-join that extends a given seed set

Let us first assume that H has no false twin (H is twin-free for short).

Definition 2 Given x ∈ V \S, Li is a potential destination of x if for every
Rj ∈ R, for every y ∈ Rj xy ∈ E ⇐⇒ H[i, j] = 1. Dually Rj is a potential

destination of x if for every Li ∈ L, for every y ∈ Li yx ∈ E ⇐⇒ H[i, j] = 1.

Given a seed set S, for every x ∈ V \S, let list(x) ⊆ {L1, . . . , Ll, R1, . . . Rr}
denote the set of its potential destinations.

Proposition 3 Given a seed set S, for every x ∈ V \S there are at most two
sets to which x can belong. Moreover, at most one of these sets belongs to R,
and at most one belongs to L.

Proof Since H is twin-free, all neighborhoods in H are different and therefore
for every vertex x ∈ V \S at most one set L (resp. R) is compatible with the
adjacency to the vertices of S that belong to R (resp. L). �

In other words, starting from the seed set S, list(x) has size at most 2. If it
has size 0 for some x then that seed set cannot realize H. If it has size 1, x can
safely be placed to the unique destination set it may belong to. It remains to
address the case when list(x) has size 2. In [13] the problem is solved using a
2-SAT solver [3]. Previous results, applied to homogeneous pairs, can be found
in [12] using that idea.

Theorem 1 [13] Given a seed set S, it is possible to build a 2-SAT instance
that extends S to a H-join of G, if such partition exists, in O(n2) time.

Although 2-SAT can be solved using a linear time algorithm, the n2 term
in the complexity comes from the size of the 2-SAT instance which has O(n2)
clauses. Furthermore, enumerating all possible seed sets yields an algorithm
in O(n|S|+2) for computing a H-join.

Now, we will show that it is possible to use partition refinement techniques
in order to extend a seed set to a H-join, faster than the 2-SAT method.
Partition refinement is a standard technique for graph algorithm design, see
for example [19,17].

Computing H-joins with application to 2-modular decomposition 5

2.4 Destination rules

Let us now give some Forcing Rules describing how a vertex can be placed
to a destination Li or Rj . Later we shall explain how to implement them using
partition refinement techniques. We say a vertex x ∈ V is placed if |list(x)| = 1
(this is especially the case when x ∈ S) and ambiguous if |list(x)| = 2

Proposition 4 Let us consider a partial solution with placed vertices set into
{L1 . . . Ll, R1, . . . Rr}, and with all other vertices of V ambiguous. Let x be a
placed vertex, and y be an ambiguous vertex, such that list(y) = {Li, Rj},

1. If list(x) = {Li′}, H[i′, j] = 1 and xy /∈ E then there exists no solution
with y placed to Rj

2. If list(x) = {Li′}, H[i′, j] = 0 and xy ∈ E then there exists no solution
with y placed to Rj

3. If list(x) = {Rj′}, H[i, j′] = 1 and xy /∈ E then there exists no solution
with y placed to Li

4. If list(x) = {Rj′}, H[i, j′] = 0 and xy ∈ E then there exists no solution
with y placed to Li

And if there is an H-join compatible with this partial solution, then there is
also an H-join compatible with the partial solution in which x has been placed
to its destination.

Proof There are eight configurations depending on whether x is on the left or
right side, H has an entry 0 or 1, and xy is an edge or not. For four of these
configurations, x adds no constraints to y. As for example the case in which:
list(x) = {Li′}, H[i′, j] = 1 and xy ∈ E.

Only the four cases listed in the proposition force y to be placed. Let us
consider the first case (the three other cases are similar): x ∈ Li′ , H[i′, j] = 1
and xy /∈ E. If y ∈ Rj then the partial solution is not consistent with H, since
H[i′, j] = 1, x ∈ Lj′ , and xy /∈ E. So y necessarily belongs to Li. �

So starting with a seed set S, we can first compute the lists, and then apply
in any order these 4 forcing rules until no more can be applied. The partial
solution grows, starting from S.

2.5 The extended partition refinement outline

Let us now consider how to efficiently compute the destinations of each vertex,
using these forcing rules. There are two difficulties with them. First we must
deal with edges but also with non edges, without having the complement
graph. This can be handled by using vertex splitting, a standard partition
refinement technique for graphs [19,17]. But sometimes we have to merge
some classes. This is an extension of the standard partition refinement. Notice
that termination is ensured because the merged classes are never split again,
since they are exactly the destination sets, see below.

6 Michel Habib et al.

Let us recall how vertex splitting works. For any partition P = {P1, . . . Pk}
of the vertex set V and any A ⊆ V , called a pivot-set, we define : Refine(P, A)
= {P1 ∩ A,P1 − A, . . . , Pk ∩ A,Pk − S}. The action of a pivot-set over the
partition P (called refinement of P using A) is to create a new partition
P ′ = Refine(P, A) where each part P ∈ P is replaced with the two parts
P ∩ A and P \ A. However empty parts are not inserted in P ′. A part P is
thus splitted only if P 6⊂ A and P ∩ A 6= ∅. For various graph applications
A = N(x) for some pivot-vertex x ∈ V , and therefore the current partition is
refined using some neighborhood.

Lemma 1 [17] If a graph G is given by its adjacency lists, for every partition
P of V , Refine(P, N(x)) and Refine(P, N(x)) can be computed in O(|N(x)|).

So given a graph G, partition refinement techniques allow to compute du-
ally (i.e., either on G or G) within the same complexity. Before going into the
details of the algorithm let us now sketch it, in 3 main steps:

1. Given a seed set, compute the list of every vertex of V .
This can be obtained using standard partition refinement, starting from
the initial trivial partition P = {V } using successively the neighborhood of
every vertex of S as pivot. Then Procedure GENLISTS (see 2.6.1) assigns
the lists to each part. See Section 2.6.1 for details. After this step we
have a partition that is a partial solution, with nonempty destination sets
containing all placed vertices. A part is a set of vertices with the same list.

2. Apply all possible forcing rules.

To avoid generating trivial H-join, one more placed vertex is needed. If
all vertices of V \ S are ambiguous, the algorithm tries the two possible
affectations of this given vertex v0 to start the process. Note that if a
solution exists, at least one of these affectations will extend into a non-
trivial H-join.
Finally Algorithm 2 implements Proposition 4 recursively, using a queue
F which is the queue of the newly placed vertices that may help to affect
other ambiguous vertices. Using F allows us to find the pivot vertices in
constant time.

3. Test whether the current partition can be extended as a solution.

When there are no more placed vertices that can be used as pivots, the
process stops. Proposition 5 tells that all remaining ambiguous vertices
can be put on one side of the join. We process using necessary conditions,
so if the seed extends to a H-join, then the computed partition is a H-join.
That must be finally checked. This test can be done in O(n+m) time using
a straightforward algorithm.

2.6 Algorithm details

Let us now detail the implementation. For our unconventional partition refine-
ment we need, in addition to procedure refine(), some particular procedures.

Computing H-joins with application to 2-modular decomposition 7

The procedure move_vertex(P, x, P) extracts x from its current part of P
and put it into part P . It returns the new partition. Procedure merge(P, P ,Q)
return a new partition in which P ∪Q is a new part, replacing both P and Q.

Algorithm 1: EXTEND

Data: (G,H) an instance of the H-join problem, S = {l1 . . . ll, r1 . . . rr} a seed set;
Result: A H-join of G respecting S if such partition exists, ∅ otherwise;
if S is not compatible with H then return ∅;1

foreach Li ∈ L do Li := {li} ;2

foreach Rj ∈ R do Rj := {rj} ;3

P = {L1, . . . Ll, R1, . . . Rr, V \ S};4

foreach s ∈ S do5

P =refine(P, N(s)) ;6

Queue F := ∅;7

GENLISTS(P,S,H);8

foreach x ∈ V \ S do9

if list(x) = ∅ then10

return ∅;11

else if list(x) = Di then12

P =move_vertex(P, x,Di);13

enqueue(F, x)14

if F 6= ∅ then15

return(REFINEMENT((G,H),P, F));16

else17

pick any v0 /∈ S;18

Force v0 inside L;19

F = (v0);20

if REFINEMENT((G,H),P, F) 6= ∅ then21

return(REFINEMENT((G,H),P, F));22

else23

Force v inside R;24

F = (v0);25

return(REFINEMENT((G,H),P, F));26

2.6.1 Procedure GENLISTS

Procedure GENLISTS(P,S,H) computes list(P) for each part P ∈ P cre-
ated after the |S| initial refinements. We can assume that each part P has a
neighbors list and, if a new part P ∩N(x) is created during refinement, (while
the old P becomes P \N(x)), then x is added to a neighbors list of the new
part which inherits (in constant time using linked lists with a common tail,
i.e., an in-tree) from the neighbors list of the former P part. The neighbors

list of the parts allows to build the lists. Indeed if we use the pivots in order
l1 then l2... then ll then r1... then rr; and if the new part P ∩N(x) is put just
before (in a total ordering of parts) the old part P \N(x), then all parts are
sorted in lexicographic order with respect to S. We can sort matrix H in the
same order.

8 Michel Habib et al.

Algorithm 2: REFINEMENT

Data: (G,H) an instance of the H-join problem, P a partition with sets
L1 . . . Ll, R1 . . . Rr marked, F a non-empty queue of placed vertices;

Result: A H-join of G respecting S if such partition exists, ∅ otherwise;
while F 6= ∅ do1

Pop x from F ;2

P =refine(P,N(x));3

foreach Part P ∈ P do4

if P falls in one case of Proposition 4 then5

foreach y ∈ P do enqueue(F, y);6

merge P with Li or Rj according to the case;7

Let v0 be the first vertex ever popped from F ;8

if v0 ∈ R then9

put all ambiguous vertices to Side L of the join10

else11

put all ambiguous vertices to Side R of the join;12

if P is a H-join of G then13

return P;14

else15

return ∅;16

Therefore, for each part P , if it corresponds with one (and at most one since
H is twin-free) Rj , then Rj is placed to list(P), i.e. with this implementation,
all vertices x ∈ P implicitly get Rj to their list. This is done in one sweep
with j from 1 to r.

The same is then done for the right side also (affect Li to list(P)) after
dropping l1...ll from the neighbors lists and re-sorting them in lexicographic
order (taking linear time).

2.7 Correctness of the EXTEND algorithm

Proposition 5 In the execution of EXTEND algorithm, when F becomes
empty,

– either all remaining ambiguous vertices can be put into R (right side)
– or into L

Proof Let us prove it only for the R side (the proof for the other side is the
same). Let P be a part of ambiguous vertices with list(P) = {Li, Rj}. We
affect all vertices from P to Ri. For all vertices currently in the left side,
the constraints of H are respected (if not, some vertex would not have been
ambiguous by proposition 3, and would have been inserted into F). Since we
do not add further vertices to this side, so those constraints remain respected.
�

Theorem 2 The Refinement Algorithm 2, given an instance (G,H) and a
seed S of r+ l vertices, computes a non-trivial H-join P that extends S if such
H-join exists, and returns ∅ otherwise.

Computing H-joins with application to 2-modular decomposition 9

Proof Correctness of the main loop follows from Proposition 4. If after step 2
there are no more ambiguous vertices, then the necessary conditions of Propo-
sition 4 tell that P is the only H-join possible extending S (provided P is
a genuine H-join, what is ultimately tested by the algorithm). In the other
case, by Proposition 3, every ambiguous vertex has a list of size 2, with one
destination for each side of the join. By Proposition 5, putting all ambiguous
vertices on each side of the partition gives H-join extending S (again, if pos-
sible). To be sure that the H-join is not trivial, if v0, the first pivot used after
the vertices from S, is on the left side, then all ambiguous are put on the right
side, and vice versa. �

2.8 Dealing with twins

Proposition 6 Let (G,H) be an instance of the H-join problem, and S a seed
set compatible with H. It is possible to build H ′ such that H ′ is twin-free, and
that S realizes H if and only S is realizes H ′.

Proof Let H ′ be H in which every twin class has been contracted. In this case,
S contains more than one vertex for each destination (in fact, one for each twin
in the twin class).

Take any solution to the H ′ partition problem. Simply split the previously
merged destinations. Since there are no constraints between those new sets,
and since there is enough vertices in S to do so, this is always possible.

Conversely, consider any solution to the H-join problem. Assume D and
D′ are twins in H, just merge D and D′ to obtain a solution to the H ′-join
problem. �

2.9 Complexity issues

Proposition 7 P always contains at most 2r + 2l + rl parts

Proof We create an initial partition with |S| + 1 parts but only one non-
trivial part V \S, and then perform |S| pivoting on it. Theoretically this steps
can create O(|S| + 2|S|) parts. After Procedure GENLISTS(P,S,H) creates
lists(P) for each class P , two parts cannot have the same list since H is twin-
free. As list(P) cannot be empty either, then we have at most l parts with
lists(P) = {Li}; at most r parts with lists(P) = {Rj}; and at most lr parts
with lists(P) = {Li, Rj}. Plus the |S| parts L1...Ll and R1...Rr. All other
parts have an empty list, thus if in the initialization step creates more than
2r + 2l + rl, we can end with list(P) = ∅ and the algorithm stops.

When a refine is done by Algorithm 2 then Proposition 4 ensure that one
of the two classes issued from a part P , either P ∩N(x) or P \N(x), is merged
with one of its destination set (Li or Rj). Therefore the number of parts cannot
increase and is bounded by 2r + 2l + rl. �

10 Michel Habib et al.

Proposition 8 Algorithm 1 requires O(nlr +m) time.

Proof Lemma 1 tells that refine(P, x) runs correctly and in O(|N(x)|) time
(the standard implementation is that vertices from N(x) are moved to newly
created parts P ∩ N(x), while the unmoved vertices stay in the old parts
P \N(x) needing no operation). Since each neighborhood is used at most one
time as a pivot, the time taken by all the calls to refine is O(m).

By using lists to store every destination Li or Rj , each merging step can be
done in constant time, which implies that all merging will take O(n) time (since
every vertex is moved only one time). There are also O(n) queue operations
(each vertex is put at most once into F).

Procedure GENLISTS(P,S,H) takes O(n + |S|) time since it uses linear-
time lexicographic sorting, and simultaneous sweep of two sorted lists.

The only problem we may have is the line 2 of Algorithm 2. We have to
check every part P to see if its vertices fall in one case of Proposition 4. This
check is done in constant time per part, and Proposition 7 insures that the
number of parts is always bounded by 2r + 2l + rl. �

Let h denotes the number of ones in the H matrix.

Theorem 3 There is a O(nl+r−1mlrh) time algorithm for H-join problem,
i.e. that produces a surjective, non-trivial H-join if possible.

Proof First assume G is connected. Generate the seed S by taking one edge
among the n− 1 of the spanning tree, and n− 2 other vertices of G. Identify
the edge with every 1 entry of matrix H (at most h of them). Then, use the
refinement procedure presented above. And if G is not connected, all connected
components except one shall be put in one destination set, so work component
by component. �

Corollary 1 If H is not considered to be a part of the input, there is a
O(nl+r−1m)-time algorithm to solve the H-Join problem.

3 An almost-surjective case

3.1 Algorithms

The algorithm for the surjective case above may be extended to a restricted
class of non-surjective case, when we allow two “trash sets” that may be empty.
Each trash set R1 or L1 is non-adjacent with the other side of the join. This
class includes almost all known H-join problem people are looking at.

More formally, given H, we say that G admits an Almost Surjective H-join
(ASH-join) if G admits a H-join P = {L1...Ll, R1...Rr} such that

– For all i ∈ 2 . . . l Li contains at least one vertex.
– For all i ∈ 2 . . . r Ri contains at least one vertex.
– R1 is non adjacent to every Li, i.e. ∀i H[i, 1] = 0

Computing H-joins with application to 2-modular decomposition 11

– L1 is non adjacent to every Rj , i.e. ∀j H[1, j] = 0
– L = ∪Li contains at least l vertices
– R = ∪Rj contains at least r vertices.

Define an AS-seed set as a set {l2...ll, r2...rl}. The same definition of a com-
patible seed and a seed that realizes H apply. Then, the proofs and algorithms
go on as in the surjective case. We only need to prove those two propositions:

Proposition 9 Given a AS-seed set S, for every x ∈ V \S there are at most
two sets to which x can belong to. Moreover, at most one of these sets belongs
to R, and at most one belongs to L.

Proof Notice that L1 (R1) is uniformly adjacent to R (L). Since H is twin-free,
every pair of vertices of L (R) admits a splitter in R2 . . . Rr (L2 . . . Ll), thus at
most one vertex of L (R) can respect the adjacency to the vertices of S that
belong to R(L).�

Proposition 10 If G admits a ASH-join, every spanning tree of G will con-
tain at least one edge between to non-empty sets of the H-join.

Proof Since R1 and L1 are non-adjacent to the other side of the join, no edge
of the cut can be adjacent to them. All the remaining sets are non-empty. �

Finally we have:

Theorem 4 There is a O(nl+r−3 ∗ lr ∗m) time algorithm for ASH-join prob-
lem.

3.2 Applications

Let us now briefly describe three applications to known H-join problems for
which our general framework provides the fastest known algorithms. Notice
that our general procedure provides an algorithm in O(nm) to find a 1-join,
which is slower than state-of-the-art algorithms that provide the whole decom-
position tree in linear time [8].

It may also be applied to 2-join which is an almost surjective H-join prob-
lem, and provides an algorithm in O(n3m) which, again, is slower than state-
of-the-art O(n2m) algorithms [10].

3.2.1 P4-join

A graph is said to admit a P4-Join (or N -join) if its vertex set can be parti-
tioned into six sets R0, R1, R2, L0, L1, L2 as depicted in Figure 1 (an edge
LiRj appears if H[i, j] = 1, i.e Li must be completely adjacent with Rj , and
no edge is drawn if H[i, j] = 0, i.e no edge between Li and Rj is allowed) [5].

Corollary 2 There is an O(mn3) time algorithm to compute a non-trivial
P4-join if exists any.

Proof This decomposition is quasi-surjective and we can apply theorem 4,
which yields an O(mn3) time algorithm. �

12 Michel Habib et al.

Fig. 1 Structure of a P4-Join

L1

R2L2

R1

L0 R0

Fig. 2 Structure of a P5-Join

L0

L1

L2

L3

R0

R1

R2

3.2.2 P5-join

A graph is said to admit a P5-Join (or W -join) if its vertex set can be parti-
tioned into seven sets R0, R1, R2, L0, L1, L2, L3 as depicted in Figure 2 (an
edge LiRj appears if H[i, j] = 1, i.e Li must be completely adjacent with Rj ,
and no edge is drawn if H[i, j] = 0, i.e no edge between Li and Rj is allowed)
[5]. It is a particular case of quasi-surjective H-join and therefore:

Corollary 3 There is a O(mn4) time algorithm to compute a non-trivial P5-
join, if exists any.

3.2.3 C6-join

The C6-join was introduced by [2,6] under the name of 6-join, to decompose
some perfect graphs. A graph is said to admit a C6-Join if its vertex set can
be partitioned into 8 sets L0...L3 and R0...R3 as depicted in Figure 3. It is a
particular case of quasi-surjective H-join and therefore:

Corollary 4 There is a O(mn5) time algorithm to compute a non-trivial C6-
join of a graph, if exists any.

4 Homogeneous Pairs

First used in the context of perfect graphs [11], homogeneous pairs generalize
splits (a.k.a 1-joins) and modules. The algorithmics to compute them appears

Computing H-joins with application to 2-modular decomposition 13

Fig. 3 Structure of a C6-Join

L0

L1

L2

L3

R0

R1

R2

R3

quite involved. In the following, we describe an O(mn2)-time algorithm com-
puting (if any) a homogeneous pair, which not only improves a previous bound
of O(mn3) [12], but also uses a nice structural property of homogenous pairs.

4.1 Definition

A homogeneous pair of G is a set P ⊆ V which can be partitioned into two
subsets M1 and M2 such that neither M1 nor M2 has a splitter outside P (i.e.
all splitters of Mi belong to M3−i).

If 2 < |P | < |V |−1, P is called a proper (or non trivial) homogeneous pair.
The definition implies that, if such a proper pair exists, the whole vertex-set is
partitioned into six sets M1, M2, A, B, C, D, such that |A|+|B|+|C|+|D| > 2
and |M1|+|M2| > 2 and there are 4 adjacencies (i.e., complete bipartite, drawn
as plain lines) and four non-adjacencies (dotted lines) between the sets as
depicted in Figure 4 (no edge is drawn if any linkage between sets is allowed).
In the following, we will sometime refer to vertices or subsets of P as inner,
and to vertices or subsets of V \P as outer. Clearly, the inner and outer sides
are the two sides of a H-join.

Fig. 4 Relationships between a homogeneous pair and the other vertices

M1 M2

A B C

D

Even though homogeneous pair detection is not a ASH-join problem, we
can generalize a bit further our method to solve it.

14 Michel Habib et al.

Let G denote the edge-complement of G. Immediately from the above def-
inition, by swapping A and C, and also B and D, we have:

Proposition 11 P is a homogeneous pair of G iff P is a homogeneous pair
of G.

Remark 1 A homogeneous pair with M1 = ∅ or M2 = ∅ or A = C = ∅ is a
homogeneous set (also called module).

We say a module is trivial if it has 0,1 or n vertices. A graph is prime if all
its modules are trivial ones.

Homogeneous pairs were used in [11] in the context of perfect graphs. They
form a natural generalization of splits (in this case M1 has no neighbors in V −
(M1∪M2)) and of modules (in this case M1 is empty). Linear-time algorithms
for computing the split decomposition [8] or the modular decomposition (see
[16] for a survey) are known, but are quite involved. An O(mn3) algorithm was
proposed in [12] and it is therefore a challenging problem to design an efficient
algorithm to find homogeneous pairs. Modules of graphs can be represented
via a directed tree, using the partitive families framework, see [9], while splits
can be represented via an undirected tree through bipartitives families [7,18].
Unfortunately the structure of homogeneous pairs seems to be weaker than
the one of splits. Nevertheless, we can prove a tree structure theorem.

Definition 3 A sesqimodule (introduced in [18]) is a set M such that there
exists x such that G[V \ {x}] is a module. It is proper if |M | > 1.

A graph is sesquiprime if it contains no sesquimodule.

The family of sesquimodules is thus decomposed into modules (if M is a mod-
ule any x is OK) and homogeneous pairs {M, {x}} where x is the only splitter
of M . Notice that in this case M is also a homogeneous pair {M ∩N(x),M \
N(x)}. So sesquimodules are special cases of homogeneous pairs, so named
because they stand between the usual 1-modules and the 2-modules.

A sesquiprime graph is also prime (it contains no proper module).

Proposition 12 All the sesquimodules of a graph can be enumerated in time
O(nm).

Proof For each x ∈ V just run a linear-time modular decomposition algorithm
on G[V \ {x}].�

Since when the graphs contains a sesquimodule, it is easy to find a homo-
geneous pair, we will only address the case of sesquiprime graphs.

4.2 Structural properties of homogeneous pairs

Lemma 2 Let G be a sesquiprime graph and P be a proper homogeneous pair
of G. There exists only one way to partition P into {M1,M2}.

Computing H-joins with application to 2-modular decomposition 15

Proof Consider a partition {M1,M2} of P with m1 ∈ M1 ang m2 ∈ M2.
Assume, by contradiction, that it exists another split {M ′

1,M
′
2} of P with m1

and m2 in the same subset (w.l.o.g., M ′
1). By definition of a homogeneous pair,

m1 and m2 have the same neighborhood outside P , which implies that A and
C were empty for the partition {M1,M2}, i.e., that P is a homogeneous set,
contradicting primality of G.�

The graphs we consider in the following are assumed to be sesquiprime, un-
less explicitly stated otherwise. Among other interesting properties discussed
below, we gain then that it is equivalent to talk about P or about {M1,M2}
when dealing with a homogeneous pair. And that is why P , a single subset,
may be called a “pair”.

A proper homogeneous pair P is maximal (resp. minimal) if there is no
proper homogeneous pair Q such that P (Q (resp. Q (P).

Remark 2 A homogeneous pair of a graph that induces a minimal set of inner
vertices (resp. outer) vertices induces a maximal set of outer (resp. inner)
vertices.

Let us now consider the relationships between homogeneous pairs.

Theorem 5 Let G be a sesquiprime graph, P = {M1,M2}, and P ′ = {M ′
1,M

′
2}

be two proper homogeneous pairs of G. Then

1. either P ∩ P ′ = ∅

2. or P ∩ P ′ = {x} and x is not a splitter of M1 \ {x} nor M2 \ {x} nor
M ′

1 \ {x} nor M ′
2 \ {x} (i.e. both P − {x} and P ′ − {x} are homogeneous

pairs).
3. or P ∪ P ′ is a homogeneous pair

Proof Consider the four intersection sets Mi∩M
′
j for i, j = 1, 2. We distinguish

four cases.

1. All these four intersection sets are empty. Then we are in Case 1.
2. Exactly three intersection sets are empty. Suppose without loss of gener-

ality M1 properly intersects M ′
1. We first prove M1 ∩M ′

1 is a module. Let
y be a splitter of M1 ∩ M ′

1. If y /∈ P , y would split M1 but P is a ho-
mogeneous pair, a contradiction. If y /∈ P ′, y would split M ′

1 but P ′ is a
homogeneous pair, a contradiction. So y ∈ P ∩ P ′ but P ∩ P ′ = M1 ∩M ′

1:
y is not a splitter, final contradiction. As G is prime M1∩M ′

1 is trivial, i.e.
M1 ∩M ′

1 = {x}: this is Case 2 of the theorem. As G is sesquiprime then
M1 also contains u 6= x and M ′

1 also contains u′ 6= x.
Suppose xu is an edge. Then uu′ is an edge (otherwise u is a splitter of
M ′

1) and then u′x is an edge (otherwise u is a splitter of M1). Finally x is
adjacent with every vertex of M1 ∪M ′

1, and is not a splitter of M1 − {x}
nor of M ′

1 − {x}. And if xu is not an edge, x is non-adjacent to M1 ∪M ′
1

and is not a splitter either.
Suppose x is a splitter of M2: there exists y, z ∈ M2 and xy is an edge
but not xz. Since y does not split P ′ yu′ is an edge, while zu′ is not an

16 Michel Habib et al.

edge for the same reason. So u′ /∈ P is a splitter of M2, contradiction with
P is a homogeneous pair. For the same reason x is not a splitter of M ′

2.
Consequently, if |P | > 3 and |P ′| > 3, then P − {x} and P ′ − {x} are
homogeneous pairs.

3. Suppose now exactly two intersection sets are non empty. We must dis-
tingish subcases:
(a) Suppose M1 intersects M ′

1, and M2 intersects M ′
2. Then P ∪ P ′ is a

homogeneous pair {M1 ∪M ′
1,M2 ∪M ′

2}. Indeed for u1 ∈ M1 ∩M ′
1 and

x /∈ P ∪ P ′, if xu1 is an edge x is adjacent with both M1 and M ′
1

(otherwise it would split M1 or M ′
1) and thus does not split M1 ∪M ′

1.
And if xu1 is not an edge then x is non-adjacent with M1 ∪M ′

1. This
is Case 3 of the theorem. A similar proof shows x is not a splitter of
M2 ∪M ′

2.
(b) Suppose M1 intersects M ′

2, and M2 intersects M ′
1. Then P ∪ P ′ is a

homogeneous pair {M1 ∪M ′
2,M2 ∪M ′

1} (same proof than 3(a))
(c) Suppose M1 intersects both M ′

1 and M ′
2, but M2 does not intersect

P ′. Then P ∪ P ′ is a homogeneous pair {M1 ∪ P ′,M2}. Indeed let
u1 ∈ M1 ∩ M ′

1 and u2 ∈ M1 ∩ M ′
2. Let x /∈ P ∪ P ′. Suppose xu1 is

an edge. As x is not a splitter of M1 x is adjacent with M1. So xu2 is
an edge. As x is not a splitter of M ′

1 (resp. M ′
2) x is adjacent with M ′

1

(resp. M ′
2). As similarly if xu1 is not an edge x is non-adjacent with

M1 ∪ P ′. This is also Case 3 of the theorem.
(d) The three remaining cases are similar with 3(c) if M1 is replaced by

M2, or if we swap P and P ′, or both.
4. Suppose now at least three intersection sets are nonempty. Then either

Case 3(a) or Case 3(b) holds. Suppose w.l.o.g M1 intersects M ′
1, and M2

intersects M ′
2. As seen before {M1 ∪M ′

1,M2 ∪M ′
2} is a homogeneous pair.

But a third intersection holds! If M1 intersects also M ′
2 then a neighbor

(resp. non-neighbor) of M1 ∪M ′
1 also is a neighbor (resp. non-neighbor) of

M2∪M ′
2 and P ∪P ′ is a module. As G is sesquiprime, P ∪P ′ = V . Same if

M ′
1 intersects also M ′

2. It is a degenerated form of Case 3 of the theorem.

�

4.3 Homogeneous pairs decomposition

The modules of a graph are closed under union: for them only Cases 1 or 3 of
Theorem 1 may occur. But Theorem 5 tells the homogeneous pairs are almost
closed under union, in the following sense. Let us say that a vertex x is a
conflicting vertex of a homogeneous pair P if there exist a homogeneous pair
P ′ such that P ∩ P ′ = {x}.

Proposition 13 A proper homogeneous pair P of a sesquiprime graph has
size at least 4 and contains at most two conflicting vertices.

Computing H-joins with application to 2-modular decomposition 17

Proof Let P = {M1,M2}. If |M1| = 0 M2 is a module, contradicting pri-
mality, thus sesquiprimality, of G. And if |M1| = 1 P is a sesquimodule, also
impossible. Same for M2. So P has at least four vertices.

As a consequence of Case 2 of Theorem 5, a conflicting vertex x is either
fully adjacent with Mi or fully non-adjacent with Mi, for i = 1 or 2. Further-
more x belongs either to M1 or to M2. There are thus eight cases. All vertices
falling in the same case form a module, and since the graph is prime there is
at most one vertex per case. Suppose M1 contains two conflicting vertices x
and y. If xy ∈ E both x and y must be fully adjacent with M1. And if xy /∈ E
both x and y must be fully non-adjacent with M1. Since there are no twins
in G, x has to be fully adjacent with M2, and y fully non-adjacent with M2.
So M2 does not contains a conflicting vertex, and M1 can not contain a third
conflicting vertex (it would be a twin of x or y). The same proof shows that
if M2 contains two conflicting vertices then there are exactly two in M2 and
zero in M1.

Definition 4 A vertex is a maximal conflicting vertex if it is the conflicting
vertex of two maximal (wrt inclusion) homogeneous pairs of G.

A almost maximal homogeneous pair (AMHP for short) of a graph G is
obtained by taking a homogeneous pair of G maximal with respect to inclusion,
ad removing its (at most two) conflicting vertices.

Theorem 6 – Every vertex of G either belongs to a unique AMHP, or is a
maximal conflicting vertex.

– Each proper homogeneous pair P of G intersects exactly one almost maxi-
mal homogeneous pair Max(P).

– Furthermore a proper homogeneous pair P is included in exactly one max-
imal homogeneous pair, namely the Max(P) plus its (at most two) con-
flicting vertices.

Proof Consequence of Theorem 5 and of Proposition 13.�

This theorem allows to compute a canonical (i.e., independent from algorithms
choices) homogeneous pair decomposition tree of a sesquiprime graphs. Let the
almost maximal homogeneous pairs partition (AMHPP for short) of a graph
the partition of the vertex-set into almost-maximal homogeneous pairs and into
maximal conflicting vertices. The existence and uniqueness of this partition is
ensured by the previous theorem. A tree may then be built by recursively
computing the AMHPP inside the graph induced by each AMHP. The next
section shows how to compute this AMHPP efficiently.

5 Homogeneous pairs algorithm

5.1 Finding a Homogeneous pair

Definition 5 A HP -seed-set is a triple {m1,m2, a} of vertices of V such that
m1 ∈ M1, m2 ∈ M2, and a ∈ A.

18 Michel Habib et al.

The algorithm proposed here consists in first computing the modular de-
composition of the graph, using existing linear time algorithms (see [16]). So
we know if the graph contains a non-trivial module (which is a homogeneous
set). If this preliminary search fails, we are lead to the case of searching proper
homogeneous pairs in sesquiprime graphs. We thus assume now the graph is
sesquiprime. Notice that O(n+m) = O(m) as G is connected.

Thanks to Remark 1 we have to search for a homogeneous pair P that is
not a module, i.e. such that |M1| > 0, and |M2| > 0, and |A| + |C| > 0. We
can assume, without loss of generality that |A| > 0.

Proposition 14 Given S = {m1,m2, a} a HP-seed set, every vertex x ∈ V \S
has |list(x)| = 2.

Proof If x ∈ N(a) x may belong to M1 but not to M2, and otherwise to M2

but not to M1. Whether x is adjacent with m1, or m2, or both m1 and m2, or
neither of them, then it may only belongs to (respectively) A, C, B and D.�

Given that, we can use our refinement method.

Lemma 3 If G is prime, then in every proper homogeneous pair {M1,M2}
there exists a non-edge {x, y} /∈ E with x ∈ M1 and y ∈ M2

Proof Assume by contradiction that no such edge exists. M2 would then be
adjacent to M1, thus both M1 and M2 would be modules of G, contradicting
either the assumption of the primality of G or the properness of {M1,M2}.�

Proposition 15 Consider a vertex z ∈ M2 such that M1 ∩ N(z) 6= ∅. Its
non-neighborhood contains vertices from these four sets: M ′

1 = N(z) ∩ M1;
M ′

2 = N(z) ∩M2; A; and D

Let us take such a vertex z. A spanning forest of G[N(z)] (obtained for
example by a breadth first search) will necessarily contain one edge between a
vertex of A and a vertex of M ′

1, since it is the only way to go from M ′
1∪M ′

2 to
A ∪D. Indeed, B /∈ N(z) and C /∈ N(z), whereas M ′

1 and A both contain at
least one vertex (by Lemma 3 and assumption). Such spanning forest contains
O(n) edges, including at least one that will have one endpoint in M1 and one
endpoint in A. From the above discussion, we have:

Proposition 16 It is possible to generate O(n2) HP-seed sets for the homoge-
neous pair problem, such that every proper homogeneous pair extends at least
one of them.

This is implemented by Algorithm 3, who generates O(n2) triples to test,
and runs in O(mn) time.

Then we have, using n2 times the EXTEND algorithm (where H is the 2x4
matrix defining homogeneous pairs):

Theorem 7 There is a O(mn2) time algorithm for the homogeneous pair
problem.

Computing H-joins with application to 2-modular decomposition 19

Algorithm 3: generate seeds

Data: a sesquiprime graph G = (V,E);
Result: S ⊂ V 3;
S := ∅;1

foreach x ∈ V do2

Let T be a BFS tree of G[N(x)];3

foreach {y, z} ∈ E(T) do4

S:=S ∪ {(x, y, z), (x, z, y)};5

return S;6

5.2 Finding a Maximal Homogeneous pair

Given two homogeneous pairs P = {M1,M2} and P ′ = {M ′
1,M

′
2} we note

P ⊂ P ′ for (M1 ∪M2) ⊂ (M ′
1 ∪M ′

2).

Lemma 4 Let P = {M1,M2} and P ′ = {M ′
1,M

′
2} be two homogeneous pairs

with P ⊂ P ′.

1. If (M1 ∪M2) ⊂ M ′
1, then (M1 ∪M2 ∪A ∪ C) ⊆ P ′.

2. Else, M1 ⊆ M ′
1 and M2 ⊆ M ′

2 ; or M1 ⊆ M ′
2 and M2 ⊆ M ′

1.

Proof In the first case, since P ⊂ M ′
1, A and C are splitters of M ′

1. So by
definition of a homogeneous pair, we have A ∈ P ′, and C ∈ P ′. If we are not
in the first case, then we cannot have M1 intersecting both M ′

1 and M ′
2; nor

M2 intersecting both M ′
1 and M ′

2, because then A′ or C ′ would split M1 or
M2. So we are in the second case.�

Lemma 5 Given a non-trivial homogeneous pair Pi = {M1
i,M2

i}, if there
exists a non-trivial homogeneous pair Pi+1 = {M i+1

1 ,M i+1

2 } and (M i
1∪M i

2) ⊂
M i+1

1 , then Pi+1 can be found in O(mn) time.

Proof We are in the first case of Lemma 4. Create a set M i+1

1 and affect to it
all M i

1 ∪ M i
2 ∪ Ai ∪ Ci vertices. For each vertex a ∈ N(M i+1

1) try launching
the REFINEMENT procedure using Ai+1 = {a} and M i+1

2 as the splitters of

M i+1

1 that also belong to N(a). Indeed neighborhood of a allows to split Pi+1.
greedily adding the splitters of P ∪A∪C ends in finding some vertex of M ′

2.�

Lemma 6 Given x ∈ M1, y ∈ M2, z ∈ A, and t any other outer vertex as only
member of F , procedure REFINEMENT returns P , a maximal homogeneous
pair such that x ∈ M1, y ∈ M2, z ∈ A, and t ∈ V \P .

Proof According to Proposition 14, all vertices are ambiguous, except t, the
only vertex from Queue F . Proposition 4 rules only affect vertices to the side of
the placed vertices used, so all placed vertices are on the side of t. Furthermore,
the algorithm adds only necessary vertices to A,B,C,D (by proposition 4).
Then all remaining placed vertices are put on side M1 ∪M2.�

20 Michel Habib et al.

Lemma 7 Given a non-trivial homogeneous pair P = {M1,M2}, such that
there is no non-trivial pair P ′ = {M ′

1,M
′
2} with P ⊂ M ′

1 or P ⊂ M ′
2, then

a maximal non-trivial (with respect to inclusion) homogeneous pair P ′′ can be
found in O(mn2) time.

Proof For any homogeneous pair P ′ containing P , we are in the second case
of Lemma 4. Try every pair {z, t} of vertices of V \P as outer vertices, and
launch the REFINEMENT procedure. One of the O(n2) found homogeneous
pairs will be maximal, especially the larger one P ′′, thanks to Lemma 6. This
step takes O(mn2) time as there are O(n2) calls to REFINEMENT.�

Theorem 8 A maximal non-trivial homogeneous pair of G can be found in
O(mn2) time

Proof We show it by constructing an sequence of homogeneous pairs P0...Pk

ordered by inclusion.
P0 is built using Algorithm 1 with any seed {x ∈ M1, y ∈ M2, z ∈ A}

returning a non-trivial result. Lemma 6 (using as t the v0 of Algorithm 1) tells
that at least one of the O(n2) tries of Proposition 16 should work, or the graph
contains no non-trivial homogeneous pair.

Using Lemma 5 recursively, we get a sequence non-trivial of homogeneous
pairs Pi = {M1

i,M2
i}, 0 ≤ i < k, with Pi (M i+1

1 . Notice k ≤ n since
inclusion is strict so total time is O(mn2).

When this is no more possible, we complete this sequence with a final non-
trivial pair Pk found using Lemma 7, which is guaranteed by this Lemma to
be maximal. Notice k ≤ n since inclusion is strict.�

5.3 Computing the Almost Maximal Homogeneous Pair Partition of a graph

Lemma 8 Given a family of O(n2) homogeneous pairs containing all maximal
homogeneous pairs, Algorithm 4 computes the AMHPP in O(n3) time.

Proof It is a simple implementation of Theorem 6. The array mark[] contains
for each vertex either the number of its AMHP or c if it is maximal conflicting.
Sorting the homogeneous pairs in decreasing size order gives a linear extension
of the inclusion order, therefore a maximal homogeneous pair is seen before all
the ones it contains. At most two vertices of this pair then belong to already
seen homogeneous pairs and they are marked as maximal conflicting. The
running time is O(n3) (in fact it is linear w.r.t. input size).

Theorem 9 It is possible to find all almost maximal homogeneous pairs of a
sesquiprime graph (i.e. the AMHPP) in time O(mn2)

Proof Let P be a maximal homogeneous pair found using Theorem 8. Let S
be the set of O(n2) triples generated by Algorithm 3. Define S−P as the subset
of triples of S so that at least one of their inner vertices does not belong to

Computing H-joins with application to 2-modular decomposition 21

Algorithm 4: almost maximal homogeneous pairs partition

Data: a family F of O(n2) homogeneous pairs containing all maximal homogeneous
pairs

Result: The partition into AMHP and into maximal conflicting vertices
Let mark[1..|V |] be an array initialised with 0s.;1

num← 0;2

Sort F in decreasing size order;3

foreach homogeneous pair P ∈ F taken by decreasing size order do4

shared← 0;5

foreach vertex x ∈ P do6

if mark[x] 6= 0 then shared++;7

if shared ≤ 2 then8

num++;9

Remark: If shared ≤ 2 then P is the maximal homogeneous pair10

number num. Otherwise P would be included and shared = |P |;
foreach vertex x ∈ P do11

if mark[x] 6= 0 then mark[x] = c else mark[x] = num;12

foreach vertex x with mark[x] = 0 do13

mark[x]← num++;14

return mark[]15

P , and so that they are compatible with at least one non-trivial homogeneous
pair.

Theorem 5 tells that, for another maximal homogeneous pair P ′, it inter-
sects P on at most one vertex.

So for any two vertices v0 and v1 of P we are sure one of them is out of
the intersection, i.e. is in V \ P ′.

Thus, by calling REFINEMENT twice for any triple (x, y, z) ∈ S−P , once
with F = {v0}, and the second time with F = {v1}, according to Proposition 6
we get a family F of O(n2) non-trivial homogeneous pairs excluding P in
O(mn2) time, each one being maximal with respect to its seed and to v0 (or its
seed and v1). F ∪{P} therefore contains all maximal non-trivial homogeneous
pairs of the graph.

Some of our homogeneous pairs might still not be maximal, but they will
be properly included into one another. Thus, we only need to scan our homoge-
neous pairs again, deleting the ones that are included into others homogeneous
pairs. This can also be done in O(n3) time using Algorithm 4, and we get the
AMHPP M of almost maximal homogeneous pairs of G.�

6 Conclusions and perspectives

The algorithms described above share some common features and they are all
particular cases of graph partition problems that can be expressed using ma-
trices in {0, 1, ∗} as defined in [14]. For many polynomial cases the techniques
developed here can be used to speed up the existing algorithms. It is possible

22 Michel Habib et al.

to patch the above algorithms to output possibly trivial H-joins, or to solve
the list version of the problem we consider.

In this paper for the computation of non trivial H-join, we have carefully
studied how to extend a seed set and our proposal is quasi optimal, but the
other step : enumerating all potential seed sets, is far from being optimal.
This could be improved, at least for some particular classes of graphs H, or
by finding a better way to enumerate all the seed sets.

The structure of homogeneous pairs in sesquiprime graphs is now more un-
dersood, leading to a canonical decomposition theorem. It is not clear however
when the graph contains modules or sesquimodules.

7 Aknowledgments

The authors whish to thank the referees for their very careful readings, their
suggestions greatly improve our writing.

References

1. P. Aboulker, P. Charbit, M. Chudnovsky, N. Trotignon and K. Vušković, LexBFS, struc-
ture and algorithms, CoRR, arxiv abs/1205.2535 (2012).

2. C. Aossey and K. Vušković, 3PC(., .)-free Berge graphs are perfect, Cited by Cornuéjols
but seems unpublished.

3. B. Aspvall, M. F. Plass and R. E. Tarjan, A Linear-Time Algorithm for Testing the
Truth of Certain Quantified Boolean Formulas, Inf. Process. Lett., 8(3):121-123, 1979.

4. B-M. Bui-Xuan, J. A. Telle and M. Vatshelle, H-join decomposable graphs and algo-
rithms with runtime single exponential in rankwidth, Discrete Applied Mathematics,
158(7): 809-819, 2010.

5. B-M.Bui-Xuan, J.A.Telle and M.Vatshelle, Boolean-width of graphs, Theor. Comput.
Science, 412(39): 5187-5204, 2011.

6. M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković, Balanced 0,±1 matrices, Part
I: Decomposition theorem, and Part II: Recognition algorithm, Journal of Combinatorial
Theory B 81 (2001), 243-306

7. W. H. Cunningham and J. Edmonds, A combinatorial decomposition theory, Canad. J.
Math, vol 32(3): 734-765, 1980.

8. P. Charbit, F. de Montgolfier, M. Raffinot, A Simple Linear Time Split Decomposition
Algorithm of Undirected Graphs, to appear in SIAM J. of Discrete Mathematics.

9. M. Chein, M. Habib and M.C. Maurer, Partitive hypergraphs. Discrete Mathematics
37(1): 35-50, 1981.

10. P. Charbit, M. Habib, N. Trotignon, and K. Vuskovic: Detecting 2-joins faster http:

//arxiv.org/abs/1107.3977, to appear in J. of Discrete Algorithms.
11. V. Chvátal and N. Sbihi, Bull-free graphs are perfect, Graphs Combin. 3: 127-139, 1987.
12. H. Everett, S. Klein and B. Reed, An algorithm for finding homogeneous pairs, Discrete

Applied Mathematics 72: 209-218, 1997.
13. T. Feder, P. Hell, D. Král and J. Sgallx, Two Algorithms for General List Matrix

Partitions, SODA (2005) 870-876.
14. T. Feder, P. Hell, S. Klein and R. Motwani, List Partitions, SIAM J. Discrete Mathe-

matics 16, (2003) 61-80.
15. M. Habib, A. Mamcarz and F. de Montgolfier, Algorithms for some H-join decomposi-

tions, LATIN, LNCS N 7256, 446-457, 2012.
16. M. Habib and C. Paul, A survey of the algorithmic aspects of modular decomposition,

Computer Science Review, 4: 41-59, 2010.

http://arxiv.org/abs/1107.3977
http://arxiv.org/abs/1107.3977

Computing H-joins with application to 2-modular decomposition 23

17. M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: an interesting
algorithmic toolkit. International Journal of Foundations of Computer Science 10 (2):
147-170, 1999.

18. F. de Montgolfier, Décomposition modulaire des graphes: théorie, extensions et algo-
rithmes, PhD. thesis, Université Montpellier 2, 2003.

19. R. Paige and R. E. Tarjan, Three Partition Refinement Algorithms, SIAM J. Computing
16: 973-989, 1987.

20. M. Rao, Décompositions de graphes et algorithmes efficaces PhD. thesis, Université de
Metz.

	Introduction
	Algorithms for the surjective H-join problem
	An almost-surjective case
	Homogeneous Pairs
	Homogeneous pairs algorithm
	Conclusions and perspectives
	Aknowledgments

