
HAL Id: hal-00922277
https://hal.inria.fr/hal-00922277

Submitted on 25 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification of the delivery alignment format
Jérôme Euzenat, François Scharffe, Luciano Serafini

To cite this version:
Jérôme Euzenat, François Scharffe, Luciano Serafini. Specification of the delivery alignment format.
[Contract] 2005, pp.46. �hal-00922277�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49699077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00922277
https://hal.archives-ouvertes.fr

D2.2.6: Specification of the delivery
alignment format

Coordinator: Jérôme Euzenat (INRIA Rhône-Alpes)
François Scharffe (Innsbruck Universität),

Luciano Serafini (Universitá Trento)

Abstract.
This deliverable focusses on the definition of a delivery alignment format for tools producing alignments
(mapping tools). It considers the many formats that are currently available for expressing alignments and
evaluate them with regard to criteria that such formats would satisfy. It then proposes some improvements
in order to produce a format satisfying more needs.
Keyword list: ontology matching, ontology alignment, ontology mapping, mediation, format, interoperabil-
ity, OWL, SWRL, SBO, Alignment API, C-OWL, SEKT-ML, SKOS.

Copyright c© 2006 The contributors

Document Identifier KWEB/2005/D2.2.6/v1.1
Project KWEB EU-IST-2004-507482
Version v1.1
Date March 28, 2006
State final
Distribution public

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Communities as
project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science
Technikerstrasse 13
A-6020 Innsbruck
Austria
Contact person: Dieter Fensel
E-mail address: dieter.fensel@uibk.ac.at

École Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department
Swiss Federal Institute of Technology
IN (Ecublens), CH-1015 Lausanne
Switzerland
Contact person: Boi Faltings
E-mail address: boi.faltings@epfl.ch

France Telecom (FT)
4 Rue du Clos Courtel
35512 Cesson Sévigné
France. PO Box 91226
Contact person : Alain Leger
E-mail address: alain.leger@rd.francetelecom.com

Freie Universität Berlin (FU Berlin)
Takustrasse 9
14195 Berlin
Germany
Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3
39100 Bolzano
Italy
Contact person: Enrico Franconi
E-mail address: franconi@inf.unibz.it

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de l’Europe -
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: Jerome.Euzenat@inrialpes.fr

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road
57001 Thermi-Thessaloniki
Greece. Po Box 361
Contact person: Michael G. Strintzis
E-mail address: strintzi@iti.gr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1
30539 Hannover
Germany
Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

National University of Ireland Galway (NUIG)
National University of Ireland
Science and Technology Building
University Road
Galway
Ireland
Contact person: Christoph Bussler
E-mail address: chris.bussler@deri.ie

The Open University (OU)
Knowledge Media Institute
The Open University
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

University of Karlsruhe (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB
Universität Karlsruhe
D-76128 Karlsruhe
Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

University of Liverpool (UniLiv)
Chadwick Building, Peach Street
L697ZF Liverpool
United Kingdom
Contact person: Michael Wooldridge
E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Manchester (UoM)
Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL
United Kingdom
Contact person: Carole Goble
E-mail address: carole@cs.man.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

University of Trento (UniTn)
Via Sommarive 14
38050 Trento
Italy
Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Amsterdam (VUA)
De Boelelaan 1081a
1081HV. Amsterdam
The Netherlands
Contact person: Frank van Harmelen
E-mail address: Frank.van.Harmelen@cs.vu.nl

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, Building G10
1050 Brussels
Belgium
Contact person: Robert Meersman
E-mail address: robert.meersman@vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document,
even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
École Polytechnique Fédérale de Lausanne
Free University of Bozen-Bolzano
Institut National de Recherche en Informatique et en Automatique
National University of Ireland Galway
Universidad Politécnica de Madrid
University of Innsbruck
University of Karlsruhe
University of Manchester
University of Sheffield
University of Trento
Vrije Universiteit Amsterdam
Vrije Universiteit Brussel

4

Changes

Version Date Author Changes

0.1 03.08.2005 Jérôme Euzenat creation
0.2 01.11.2005 François Scharffe input on SEKT Mapping language
0.3 12.11.2005 Jérôme Euzenat description of the alignment API
0.4 27.11.2005 Jérôme Euzenat various contributions
0.5 10.12.2005 Jérôme Euzenat mapping integration
0.6 14.12.2005 Jérôme Euzenat refined introduction and chapter 3
0.6a 15.12.2005 François Scharffe,

Luciano Serafini
improved chapter 2 and 4

0.7 16.12.2005 Jérôme Euzenat refined conclusion and various improvements
0.8 22.12.2005 Jérôme Euzenat general harmonisation
0.9 07.01.2006 Jérôme Euzenat minor fixes
1.0 30.01.2006 Jérôme Euzenat added SKOS renderer + quality control cor-

rections
1.1 02.02.2006 Jérôme Euzenat corrected small mistake in the SEKTMappin-

gRenderer and bibliography

Executive Summary

Ontology heterogeneity on the semantic web is a problem that prevents applications from inter-
operating. In order to solve this problem a lot of effort has been devoted to design algorithms
for matching ontologies. These algorithms can directly deliver the programs (transformations,
mediators, translators, bridging axioms) that help solving these problems.

However, all these programs are generated from a roughly similar basis expressing the relation
between ontology entities, that we call an alignment. Because alignments can be used by all these
applications as well as other tools for generating or editing them, it would be useful that the
applications share a common alignment format.

This deliverable investigates the specification of a format for ontology alignment. It starts by
defining what is expected from such a format in the context of the semantic web. Then we review
the existing formats that have been developed (or not) for expressing alignments: OWL, SBO,
C-OWL, SWRL, Alignment format, SEKT Mapping language and SKOS. We observe that there
is a continuum from lightweight formats that do not commit to any ontology language but have
limited expressiveness to heavyweight formats that can express complex alignments with the helps
of an expressive language.

Committing to some ontology language is a problem if we want the alignment format to be
used by many tools. In particular, we would like that this format be used by lightweight applica-
tions such as those considering folkosomies or directories. Another argument in favour of these
simple formats is that most of the ontology matching tools are not able to deliver complex align-
ments. However, when alignments are provided by users, the definition of complex alignments is
possible and should be preserved by the format.

Therefore, it is necessary to attempt at reconciling these different formats.
In a first approach, it is necessary to ensure some interoperability between these formats. We

present some limited attempts to bring interoperability. In particular, we show how the Alignment
format can generate most of the other formats (starting, of course, from a lightweight alignment)
and how SEKT Mapping language allows to generate more expressive alignments in other formats.

Moreover, the Alignment format, made from the beginning the provision to extension and, in
particular, language extensions. We describe in the last chapter, the specification of an embedding
of the SEKT Mapping language within the Alignment format as a Level 2 alignment. The re-
sulting format remains language independent but brings the expressiveness of the SEKT Mapping
language. This result is further extended by more standard metadata as well as libraries of type
comparators.

Contents

1 Introduction: Requirements for an alignment format 2
1.1 Context . 2
1.2 Motivations . 3
1.3 Requirements . 4
1.4 Document outline . 4

2 Existing formats 5
2.1 OWL . 5
2.2 MAFRA Semantic bridging ontology (SBO) . 6
2.3 Contextualized OWL (C-OWL) . 8
2.4 SWRL . 10
2.5 Alignment format . 11
2.6 SEKT Mapping language (OML) . 16
2.7 SKOS . 20

3 Comparison of existing formats 23
3.1 Criteria . 23
3.2 Comparison . 25
3.3 Synthesis . 25

4 Interoperability 27
4.1 Generating SEKT-ML/C-OWL/SKOS from Alignment API 27
4.2 Generating RDF, OWL and WSML from the SEKT Mapping Language API . . . 31
4.3 Conclusions . 34

5 Towards a unified format 36
5.1 Mapped entities . 36
5.2 Library of comparators and operators . 38
5.3 Extended library of relations . 40
5.4 Metadata normalization . 40
5.5 Example . 43
5.6 Limitations . 45

6 Conclusions 46

1

Chapter 1

Introduction: Requirements for an
alignment format

1.1 Context

Like the web, the semantic web will have to be distributed and heterogeneous. Its main problem is
the integration of the resources that compose it. For contributing solving this problem, data will be
expressed in the framework of ontologies. However, ontologies themselves can be heterogeneous
and some work has to be done to achieve interoperability.

Semantic interoperability can be grounded on ontology reconciliation: finding relationships
between concepts belonging to different ontologies. We call this process “ontology matching”.
The ontology matching problem can be described in one sentence: given two ontologies each
describing a set of discrete entities (which can be classes, properties, rules, predicates, etc.), find
the relationships (e.g., equivalence or subsumption) holding between these entities. This set of
relations is called an alignment.

[Bouquet et al., 2004] provided a definition of the alignment structure so as to be able to use
and reuse it in various situations. Given two ontologies O and O′, alignments are made of a set
of correspondences (called mappings when the relation is oriented) between pairs of (simple or
complex) entities 〈e, e′〉 belonging to O and O′ respectively.

A correspondence is described as a quadruple:

〈e, e′, R, n〉
where:

– e and e′ are the entities (e.g., formulas, terms, classes, individuals) between which a relation
is asserted by the correspondence;

– R is the relation, between e and e′, asserted by the correspondence. For instance, this
relation can be a simple set-theoretic relation (applied to entities seen as sets or their inter-
pretation seen as sets), a fuzzy relation, a probabilistic distribution over a complete set of
relations, a similarity measure, etc.

– n is a degree of confidence in that correspondence (this degree does not refer to the relation
R, it is rather a measure of the trust in the fact that the correspondence is appropriate – “I
trust 70% the fact that the correspondence is correct/reliable/. . . ” – and can be compared

2

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

with the certainty measures provided by meteorological agencies). The trust degree can be
computed in many ways, including users’ feedback or log analysis.

So, the simplest kind of correspondence (level 0) is:

URI1 = URI2

while a more elaborate one could be:

URI1(x, y, z) ⇐.85 URI2(x,w) ∧ URI3(z, concat(y, w))

The first one express the equivalence (=) of what is denoted by two URIs (with full confidence),
while the second one is a Horn-clause expressing that if there exists a w such that URI2(x,w)
and URI3(w, concat(y, z)) is true in one ontology then URI1(x, y, z) must be true in the other
one (and the confidence in this clause is here quantified with a .85 degree).

1.2 Motivations

This definition of an alignment is rather abstract and does not provide a concrete format that can
be used for expressing these alignments. “Reifying” alignments in a standardised format can be
very useful in various contexts:

– for collecting hand-made or automatically created alignments in libraries that can be used
for linking two particular ontologies;

– for modularising matching algorithms, e.g., by first using terminological alignment methods
for labels, having this alignment agreed or amended by a user and using it as input for a
structural alignment method;

– for comparing the results with each others or with possible “standard” results;
– for generating from the output of different algorithms, various forms of interoperability

enablers. For instance, one might generate transformations from one source to another,
bridge axioms for merging two ontologies, query wrappers (or mediators) which rewrite
queries for reaching a particular source, inference rules for transferring knowledge from
one context to another.

The goal of this deliverable is to propose some language to express these reified alignments so that
they can be exchanged between applications.

We claim that alignments are more intelligible than transformations: they only express cor-
respondences between ontology entities, not the way they must be used (as a transformation of
ontologies, a query transformation or a data translation?). This can be the basis for studying their
properties (moreover, these properties can also be inferred from the methods used for generating
alignments).

The problem is thus to design an alignment format which is general enough for covering most
of the needs (in terms of language and alignment output) and developed enough for offering the
above functions.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 3

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

1.3 Requirements

The requirements that can be put on the format to be defined are the following:

– being Web ready: in particular using URIs and semantic web languages (XML, RDF);
– being language independent: this allows alignments between ontologies written in different

languages;
– being simple so that current ontology matching tools can manipulate it without having to

implement a full-fledged knowledge representation language;
– being expressive so that it can cover an important part of the usable relations between on-

tologies;
– supporting many different uses: in particular not being committed to one particular usage

(being used as axioms in one language, or being used for some particular transformation);
– supporting as many different kinds of manipulation (trimming, composing, etc.) as possible.

[Euzenat, 2004] proposed an alignment format and an application programming interface
(API) for manipulating alignments, illustrated through a first implementation. This first imple-
mentation offered a relatively limited expression language but provided many support function. It
has been used in the Ontology Alignment Evaluation Initiative campaigns as well as in other tools.

A number of other formats have been proposed for expressing alignments in the context of
numerous applications. The purpose of this deliverable is to define an alignment format that can
satisfy most of the needs of existing formats.

1.4 Document outline

In the next chapter, the various formats that can be used for expressing alignments in a declarative
manner are presented. Chapter 3, then evaluates the similarity and differences between these
formats in order to better understand the need of such a format. We demonstrate how some of
these formats are able to achieve limited interoperability with others (mostly through export/import
functions). In the last chapter we specify a common format which is based on both the Alignment
format and SEKT Mapping language and which can be the basis for an expressive and independent
alignment format.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 4

Chapter 2

Existing formats

At the beginning of Knowledge web there were very few formats (in fact only the SBO was
documented). Independently, many different efforts proposed their own format or at least what
could be considered an alignment format. We briefly present here the various formats that have
been proposed so far for expressing relations between ontologies on the world wide web. We
mostly compare these formats based on their syntax. Each section ends with a conclusion that
summarises the benefits and drawbacks of the formats from that standpoint.

A deeper analysis of some of these in terms if semantics and expressiveness are provided in
deliverable 2.2.5 [Hitzler et al., 2005].

2.1 OWL

OWL in itself can be considered as a language for expressing correspondences between ontolo-
gies. As a matter of fact, the equivalentClass and equivalentProperty primitives have
been introduced for relating elements in ontologies describing the same domain. This use is even
documented by the W3C best practices working group [Uschold, 2005]. However, these primi-
tives are only shorthands for other primitives (i.e., subClassOf, subPropertyOf) that already
allow to relate entities. So the following OWL ontology:

<owl:Class rdf:about="http://ian.ac.uk#Nappy">

<owl:equivalentClass rdf:resource="http://jim.us#Diaper"/>

</owl:Class>

<owl:Class rdf:about="http://ian.ac.uk#City">

<owl:subClass ="http://jim.us#City"/>

</owl:Class>

<owl:Property rdf:about="http://ian.ac.uk#cv">

<owl:subProperty rdf:resource="http://jim.us#Résumé"/>

</owl:Property>

can already be seen as an alignment expressing the equivalence of classes Nappy and Diaper, the
coverage of class City in ontology identified by ian by City in that identified by jim, and that
of the cv property by the Résumé property in the same ontologies. Moreover, any ontology, as
soon as it involves entities from different ontologies, expresses alignments. For instance:

5

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

<owl:Class rdf:ID="Woman">

<owl:equivalentClass>

<owl:Class>

<owl:subClassOf rdf:resource="http://www.example.org/ontology2#Person"/>

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.example.org/ontology2#gender"/>

<owl:hasValue rdf:resource="http://www.example.org/ontology2#W"/>

</owl:Restriction>

</owl:subClassOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

expresses that a Woman in ontology http://www.example.org/ontology1 is equivalent to a
Person in ontology http://www.example.org/ontology2 whose gender is W.

2.1.1 Conclusion

Not surprisingly, the OWL language can be used as an alignment expression language. However,
using it this way has some drawbacks:

1. It forces to use one ontology language: OWL. It is still possible to relate this way ontologies
that are expressed in other languages (without benefiting from the construction of complex
terms). However, the alignment will not benefit from the content of the ontologies them-
selves.

2. It mixes alignment and definitions. This is a problem for the clarity of alignments as well as
for lightweight applications which do not want to interpret the OWL language.

3. It is interpreted only in the framework of a global interpretation of one OWL theory. It is
difficult to use this expression for only importing data expressed under one ontology into
another one (because this application requires sorting out definitions from correspondences).

Other languages have been set up for overcoming these problems: SKOS solves the first prob-
lem (but introduces its own language), SWRL solves problem (2) and C-OWL attempts to solve
problem (3). These languages will be presented hereafter.

2.2 MAFRA Semantic bridging ontology (SBO)

MAFRA [da Silva, 2004; Mädche et al., 2002] means “Mapping framework”1. It is a whole
system for extracting mappings from ontologies and executing them as data transformation from
one ontology to another. The system was first designed to work with the DAML+OIL language.

MAFRA does not define a real exchange format for ontology alignment. Rather, it provides
an ontology, called Semantic Bridge Ontology. The instantiation of this ontology constitutes an
ontology mapping document which is finally such a format. The serialisation of this format has
not been described in detail in documents so we freely use our own transcription2.

1It is also the name of a city in Portugal featuring a rich palace.
2[Mädche et al., 2002] presents SBO as a DAML+OIL ontology, but it seems to have evolved a lot since then and

we have not been able to find a serialisation that could stand as a proper format.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 6

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

The main concepts in this ontology are SemanticBridges and Services. A SemanticBridge

is tied to the Services that are able to implement the bridge (as a data transformation). A
Service can be thought of as a function: f : Argn −→ Argm which maps tuples of argu-
ments into tuples of arguments. It is identified (one can imagine by a URI). The arguments are
typed and can be ontology concepts, property paths, litterals or arrays of such. For instance, the
service CopyAttribute (which copies an attribute from an ontology to another) is defined by:

pt.ipp.isep.gecad.mafra.services.ttransformations.CopyAttribute: path -> path

pt.ipp.isep.gecad.mafra.services.ttransformations.CountProperties: path -> integer

SemanticBridges (which can be ConceptBridges or PropertyBridges) express a rela-
tion between two sets of entities by composing elementary services that are applied to them. For
instance, a SemanticBridge between two ontologies such as this one defines Individual and
the target ontology defines both Man and Woman will be expressed in the following way:

ConceptBridge: Indiv2Woman

x: <o1#Individual>; genre == ’W’ -> <o2#Woman>

ConceptBridge: Indiv2Man

x: <o1#Individual>; genre == ’M’ -> <o2#Man>

exclusive: Indiv2Woman, Indiv2Man

Entities to be mapped are identified within the ontology (instances) through a path. Paths serve
dual purposes of navigating within the ontology structure and providing the context further char-
acterising the concerned entities. In this context paths play exactly the same role as in Xpath. They
are further enriched with conditions (in the example above, <o1#Individual>; genre == ’W’

is a path with condition that the final step genre has value W (the complete example involves reg-
ular expressions on the string value). More complex bridges can then be expressed, as an example
given in [da Silva, 2004]:

PropertyBridge: spouseIn2noMarriages

y: <o1#Individual:spouseIn>

-> <o2#Individual:noMarriages> = countProperties(y)

It means that the occurence of property spouseIn in ontology o1 will be translated in the
count of these properties to be recorded in the property noMarriages in ontology o2. Here
<o1#Individual:spouseIn> is a path and countProperties is a service.

An ontology mapping document satisfying SBO is a collection of such bridges plus informa-
tion on the concerned ontologies as well as constraints (such as the "exclusive" of the first example
expressing that only one of the two bridges can be triggered).

2.2.1 Conclusion

SBO provided a framework for expressing alignments. This format is used as output of ontology
matchers and input of data transformations.

The format provided by SBO is not very clear since all the language is described in UML. This
is a minor problem that could be solved by exposing some RDF/XML format (a previous version
of the framework had been described as a DAML ontology [Mädche et al., 2002]). Moreover, this
format is a relatively complex language that is tied to the MAFRA architecture.

It does not separate the declarative aspect of relations from the more operational one of service:
the relations are described in functions of the services able to implement them. The services can

KWEB/2005/D2.2.6/v1.1 March 28, 2006 7

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

be arbitrary small (like string concatenation) or large (like implementing a complete alignment by
a program). On the one hand, this guarantees that these alignments can be used: SBO-documents
can readily be used as data transformations. On the other hand, this does not help using these
alignments in other ways (for merging ontologies or mediating queries for instance).

2.3 Contextualized OWL (C-OWL)

C-OWL is an extension of the OWL language to express mappings between heterogeneous on-
tologies. The constructs in C-OWL are called bridge rules, and they allow to express a family of
semantic relations between concepts/roles and individuals interpreted in heterogeneous domains.
Given two ontologies O1 and O2 a bridge rule from O1 to O2 expresses a semantic relation be-
tween a concept/role/individual of O1 and a concept/role/individual of O2. Bridge rules are direc-
tional in the sense that bridge rules from O1 to O2 are not the inverse of the bridge rules from O2

to O1.

Abstract syntax There are five types of bridge rules for concepts, five for roles and five for
individuals. We report the abstract syntax with their intuitive in the following table.

Abstract syntax Intuitive meaning

i : A
⊑−→ j : B

the concept A in ontology i is more specific that the concept
B in the ontology j

i : A
⊒−→ j : B

the concept A in ontology i is more general that the con-
cept B in the ontology j

i : A
≡−→ j : B

the concept A in ontology i is equivalent to the concept B
in the ontology j

i : A
⊥−→ j : B

the concept A in ontology i is disjoint from the concept B
in the ontology j

i : A
∗−→ j : B

the concept A in ontology i overlaps with the concept B in
the ontology j

The above table reports only the bridge rules on concepts, but analogous expressions are possible
in C-OWL when A and B are either roles or individuals.

Bridge rules form O1 to O2 must be read from the target ontology (O2) viewpoint. Namely
they express how the target ontology (ontology 2) sees or translates the source ontology (ontology
1) in itself. Furthermore, the relations “more general”, “less general”, etc., are not restricted to
be mere set theoretical relations, as the domains of interpretation of the two ontologies may be
completely different (a mediating relation between the elements of the domain of interpretation is
required).

Concrete syntax C-OWL concrete syntax is given in XML form, and it looks like the one given
in the following example of a C-OWL file

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY cowl "http://www.itc.it/cowl#" >

KWEB/2005/D2.2.6/v1.1 March 28, 2006 8

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

]>

<rdf:RDF

xmlns ="&cowl;"

xmlns:cowl ="&cowl;"

xmlns:owl ="&owl;"

xmlns:rdf ="&rdf;"

xmlns:rdfs ="&rdfs;"

xml:base ="http://www.itc.it/cowl/example#"

>

<cowl:Mapping>

<cowl:sourceOntology>

<owl:Ontology rdf:about="http://www.itc.it/ontologies/source.owl"/>

</cowl:sourceOntology>

<cowl:targetOntology>

<owl:Ontology rdf:about="http://www.itc.it/ontologies/target.owl"/>

</cowl:targetOntology>

<cowl:bridgeRule>

<cowl:Into>

<cowl:source>

<owl:Class rdf:about="http://www.itc.it/ontologies/source.owl#Article"/>

</cowl:source>

<cowl:target>

<owl:Class rdf:about="http://www.itc.it/ontologies/target.owl#Publication"/>

</cowl:target>

</cowl:Into>

</cowl:bridgeRule>

<cowl:bridgeRule>

<cowl:Onto>

<cowl:source>

<owl:Class rdf:about="http://www.itc.it/ontologies/source.owl#Person"/>

</cowl:source>

<cowl:target>

<owl:Class rdf:about="http://www.itc.it/ontologies/target.owl#GraduateStudent"/>

</cowl:target>

</cowl:Onto>

</cowl:bridgeRule>

<cowl:bridgeRule>

<cowl:Equivalent>

<cowl:source>

<owl:Class rdf:about="http://www.itc.it/ontologies/source.owl#Student"/>

</cowl:source>

<cowl:target>

<owl:Class rdf:about="http://www.itc.it/ontologies/target.owl#Student"/>

</cowl:target>

</cowl:Equivalent>

</cowl:bridgeRule>

<cowl:bridgeRule>

</cowl:Mapping>

</rdf:RDF>

Semantics The full details of the formal semantic for C-OWL bridge rules is provided in [Bou-
quet et al., 2003]. The semantics of bridge rules from an ontology O1 to ontology O2 is given
w.r.t. a distributed interpretation. A distributed interpretation for O1 and O2 is a 3-tuple I =
〈I1, I2, r12〉 where I1 and I2 are models of O1 and O2 respectively, and r12, called the domain

relation is a subset of ∆I1 × ∆I2 . The domain relation models a translation function from the
domain of interpretation of O1 to the domain of interpretation of O2. Intuitively 〈d, d′〉 ∈ r12

means that d′ is one among the possible translation of d into ∆I2 .

1. I |= 1 : A
⊑−→ 2 : B if r12(A

I1) ⊆ BI2 ;

2. I |= 1 : A
⊒−→ 2 : B if r12(A

I1) ⊇ BI2 ;

KWEB/2005/D2.2.6/v1.1 March 28, 2006 9

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

3. I |= 1 : A
≡−→ 2 : B if r12(A

I1) = BI2 ;

4. I |= 1 : A
⊥−→ 2 : B if r12(A

I1) ∩ BI2 = ∅;
5. I |= 1 : A

∗−→ 2 : B if r12(A
I1) ∩ BI2 6= ∅;

Decision procedure A tableaux based decision procedure for ontology spaces, i.e., a set of
ontologies connected via bridge rules, is described in [Serafini et al., 2005] and has been imple-
mented in a peer-to-peer distributed reasoning system called DRAGO 3 and described in [Serafini
and Tamilin, 2005]. The decision procedure supports only bridge rules between concepts, with the
exception of the

∗−→ bridge rules.

2.3.1 Conclusion

The C-OWL proposal can express relatively simple alignments (no constructed classes are ex-
pressed, only named classes are used). The more expressive part lays in the relations used by the
mapping. These alignment have a clear semantics, however it is given from a particular standpoint:
that of the target ontology. C-OWL is based on the OWL language but relatively independent from
this language which is confined at expressing the entities (the alignment part being specific).

2.4 SWRL

Some people want to be able to express rules and not only concept definitions. SWRL [Horrocks
et al., 2004] (Semantic Web Rule Language) is a rule language for the semantic web. It extends
OWL with an explicit notion of rule (from RuleML) that is interpreted as first order Horn-clauses.
These rules can be understood as correspondences between ontologies (especially when elements
from the head and the body are from different ontologies).

SWRL mixes the vocabulary from RuleML for exchanging rules with the OWL vocabulary
for expressing knowledge. It defines a rule (ruleml:imp) with a body (ruleml:body) and head
(ruleml:head) parts.

<ruleml:imp>

<ruleml:_body>

<swrlx:classAtom>

<owlx:Class owlx:name="http://www.example.org/ontology2#Person" />

<ruleml:var>p</ruleml:var>

</swrlx:classAtom>

<swrlx:individualPropertyAtom swrlx:property="http://www.example.org/ontology2#gender">

<ruleml:var>p</ruleml:var>

<owlx:Individual owlx:name="W" />

</swrlx:individualPropertyAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:classAtom swrlx:property="http://www.example.org/ontology1#Woman">

<ruleml:var>p</ruleml:var>

</swrlx:classAtom>

</ruleml:_head>

</ruleml:imp>

3http://trinity.dit.unitn.it/drago

KWEB/2005/D2.2.6/v1.1 March 28, 2006 10

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

This last rule expresses that a Person in ontology http://www.example.org/ontology2
with W as the value of its gender attribute is a Woman in ontology http://www.example.org/ontology1.

The introduction of variables within constructs of the OWL language provides more expres-
siveness to the language (in particular it allows to express what was called role-value maps in
description logics or feature path equations in feature algebras). SWRL also provide a set of
built-in predicates on the various datatypes provided by XML Schema as well as operators on
collections (like count).

2.4.1 Conclusion

SWRL rules can be used for expressing the correspondences between ontologies. These cor-
respondences are expressed between formulas and interpreted as Horn-clauses. They have the
advantage over genuine OWL to be well identified as rules and are easier to manipulate as an
alignment format than OWL which is also used to express ontologies.

Like the OWL example, these rules have the drawback of forcing the use of OWL and are
interpreted as merging ontologies. Again, the expression of a rule like the one above fixes the use
that can be made: the rule will help considering some people of the first ontology as women in the
second ontology. However, the rules work as a set of logical rules, not rewrite rules, so this really
provides the use for merging, not transforming4.

2.5 Alignment format

As briefly sketched above and before [Euzenat, 2003], in first approximation, an alignment is
a set of pairs of elements from each ontology. However, as already pointed out in [Noy and
Musen, 2002], this first definition does not cover all needs and all alignments generated. So
[Euzenat, 2004] provided an Alignment format on several levels, which depends on more elaborate
alignment definitions.

2.5.1 Alignment

The alignment description can be stated as follows:

a level used for characterising the type of correspondence (see below);
a set of correspondences which express the relation holding between entities of the first ontology

and entities of the second ontology. This is considered in the following subsections;
an arity (default 1:1) Usual notations are 1:1, 1:m, n:1 or n:m. We prefer to note if the mapping

is injective, surjective and total or partial on both side. We then end up with more alignment
arities (noted with, 1 for injective and total, ? for injective, + for total and * for none and
each sign concerning one mapping and its converse): ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+,
?:*, *:?, 1:*, *:1, +:*, *:+, *:*. These assertions could be provided as input (or constraint)
for the alignment algorithm or as a result by the same algorithm.

This format is simpler than most of the alignment representations presented here, but is supposed
producible by most matching tools.

To this strict definition can be added much more information (in particular when the format is
expressed in RDF) such as:

4http://co4.inrialpes.fr/align

KWEB/2005/D2.2.6/v1.1 March 28, 2006 11

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

– the generating algorithm;
– date of creation;
– is the alignment homogeneous (in language or entity).

2.5.2 Level 0

The very basic definition of a correspondence is the one of a pair of discrete entities in the language
(identified by URIs). This first level of alignment has the advantage not to depend on a particular
language. Its definition is roughly the following:

entity1 the first aligned entity. It is identified by an URI and corresponds to some discrete entity
of the representation language.

entity2 the second aligned entity with the same constraint as entity1.
relation (default "=") the relation holding between the two entities. It is not restricted to the

equivalence relation, but can be more sophisticated (e.g., subsumption, incompatibility
[Giunchiglia and Shvaiko, 2003], or even some fuzzy relation).

strength (default ⊤) denotes the confidence held in this correspondence. Since many alignment
methods compute a strength of the relation between entities, this strength can be provided
as a normalised measure. The measure should belong to an ordered set M including a
maximum element ⊤ and a minimum element ⊥. Currently, we restrict this value to be
a float value between 0. and 1.. If found useful, this could be generalised into any lattice
domain.

id an identifier for the correspondence.

A simple pair can be characterised by the default relation "=" and the default strength ⊤. These
default values lead to consider the alignment as a simple set of pairs.

On this level, the aligned entities may be classes, properties or individuals. But they also can
be any kind of complex term that is used by the target language. For instance, it can use the
concatenation of firstname and lastname considered in [Rahm and Bernstein, 2001] if this is an
entity, or it can use a path algebra like in:

hasSoftCopy.softCopyURI = hasURL

However, in the format described above and for the purpose of storing it in some RDF format,
it is required that these entities (here, the paths) are discrete and identifiable by a URI.

A full example of the Level 0 Alignment format in RDF is the following:

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>

<!DOCTYPE rdf:RDF SYSTEM "align.dtd">

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’

xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:xsd=’http://www.w3.org/2001/XMLSchema#’>

<Alignment>

<xml>yes</xml>

<level>0</level>

<type>**</type>

<onto1>http://www.example.org/ontology1</onto1>

<onto2>http://www.example.org/ontology2</onto2>

<map>

KWEB/2005/D2.2.6/v1.1 March 28, 2006 12

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

<Cell>

<entity1 rdf:resource=’http://www.example.org/ontology1#reviewedarticle’/>

<entity2 rdf:resource=’http://www.example.org/ontology2#article’/>

<measure rdf:datatype=’&xsd;float’>0.6363636363636364</measure>

<relation>=</relation>

</Cell>

</map>

<map>

<Cell>

<entity1 rdf:resource=’http://www.example.org/ontology1#journalarticle’/>

<entity2 rdf:resource=’http://www.example.org/ontology2#journalarticle’/>

<measure rdf:datatype=’&xsd;float’>1.0</measure>

<relation>=</relation>

</Cell>

</map>

</Alignment>

</rdf:RDF>

It describes a many-to-many Level 0 alignment between two bibliographic ontologies. It con-
tains two correspondences that identify reviewedarticle to article and journalarticle

to journalarticle respectively. These correspondence use the equivalence relation and a
confidence measure (.64 in the former case and 1. in the latter).

Level 0 alignments are basic but found everywhere: there are no algorithm that cannot account
for such alignments. It is, however, somewhat limited: there are other aspects of alignments that
can be added to this first approximation.

2.5.3 Level 1

Level 1 replaces pairs of entities by pairs of sets (or lists) of entities. A level 1 correspondence is
thus a slight refinement of level 0, which fills the gap between level 0 and level 2. However, it can
be easily parsed and is still language independent.

2.5.4 Level 2 (L)

More general correspondence expressions can be useful. For instance, [Masolo et al., 2003] pro-
vides a number of bridges from their ontology of services to the currently existing semantic web
service description language in first order logic. These kind of correspondences can be expressed
with level 2 alignments.

Level 2 considers sets of expressions of a particular language (L) with variables in these ex-
pressions. Correspondences are thus directional and correspond to a clause:

∀xf (f =⇒ ∃xgg)

in which the variables of the left hand side are universally quantified over the whole formula and
those of the right hand side (which do not occur in the left hand side) are existentially quantified.
This level can express correspondences like:

∀x, z grandparent(x, z) =⇒ ∃y; parent(x, y) ∧ parent(y, z)

This kind of rules (or restrictions) is commonly used in logic-based languages or in the
database world for defining the views in “global-as-view” of “local-as-view” approaches [Cal-
vanese et al., 2002]. It also resembles the SWRL rule language [Horrocks et al., 2003] when used

KWEB/2005/D2.2.6/v1.1 March 28, 2006 13

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

with OWL (see §4.1.3 for a simple example of such rules). These rules can also be generalised to
any relation and drop the orientation constraint.

Level 2 can be applied to other languages than OWL (SQL, regular expressions, F-Logic,
etc.). For instance, the expression can apply to character strings and the alignment can denote
concatenation like in:

name = firstname+" "+lastname

The Alignment format has been given an OWL ontology and a DTD for validating it in
RDF/XML. It can be manipulated through the Alignment API which is presented below.

2.5.5 Alignment API

A JAVA API can be used for implementing this format and linking to alignment algorithms and
evaluation procedures. It is briefly sketched here.

Classes

The OWL API is extended with the (org.semanticweb.owl.align) package which describes
the Alignment API. This package name is used for historical reasons. In fact, the API itself is fully
independent from OWL or the OWL API.

It is essentially made of three interfaces. We present here, under the term “features”, the
information that the API implementation must provide. For each feature, there are the usual reader
and writer accessors:

Alignment The Alignment interface describes a particular alignment. It contains a specification
of the alignment and a list of cells. Its features are the following:

xml (value: "yes"/"no") indicates if the alignment can be read as an XML file compliant
with the DTD;

level (values "0", "1", "2*") indicates the level of alignment format used;
type (values: "11", "1?", "1+", "1*", "?1", "??", "?+", "?*", "+1", "+?", "++", "+*", "*1",

"*?", "?+", "**") the type of alignment;
onto1 (value: URL) the first ontology to be aligned;
onto2 (value: URL) the second ontology to be aligned;
map (value: Cell*) the set of correspondences between entities of the ontologies.

Cell The Cell interface describes a particular correspondence between entities. It provides the
following features:

rdf:resource (value: URI) the URI identifying the current correspondence;
entity1 (value: URI) the URI of some entity of the first ontology;
entity2 (value: URI) the URI of some entity of the second ontology;
measure (value: float between 0. and 1.) the confidence in the assertion that the relation

holds between the first and the second entity (the higher the value, the higher the
confidence);

relation (value: Relation) the relation holding between the first and second entity.

Relation The Relation interface does not mandate any particular feature.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 14

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

To these interfaces, implementing the format, are added a couple of other interfaces:

AlignmentProcess The AlignmentProcess interface extends the Alignment interface by pro-
viding an align method. This interface must be implemented for each alignment algo-
rithm.

Evaluator The Evaluator interface describes the comparison of two alignments (the first one
could serve as a reference). Its features are the following:

align1 (value: URI) a first alignment, sometimes the reference alignment;
align2 (value: URI) a second alignment which will be compared with the first one.

An additional AlignmentException class specifies the kind of exceptions that are raised by
alignment algorithms and can be used by alignment implementations.

Functions

Of course, this API does provide support for manipulating alignments. It offers a number of
services for manipulating the API. As in [Bechhofer et al., 2003], these functions are separated in
their implementation. The following primitives are available:

parsing/serialising an alignment from a file in RDF/XML (AlignmentParser.read(), Alignment.write());
computing the alignment, with input alignment (Alignment.align(Alignment, Parameters));
thresholding an alignment with threshold as argument (Alignment.cut(double));
hardening an alignment by considering that all correspondences whose strength is strictly greater

than the argument is converted to ⊤, the others being ⊥ (Alignment.harden(double));
comparing one alignment with another (Evaluator.eval(Parameters)) and serialising them

(Evaluator.write());
outputting alignment in a particular format (SWRL, OWL, XSLT, RDF, etc.)

(Alignment.render(visitor));

In addition, alignment and evaluation algorithms accept parameters. These are put in a struc-
ture that allows storing and retrieving them. The parameter name is a string and its value is any
Java object. It is advised to have them serialised as a string because external interface (such as the
Procalign command-line interface will provide them as such). The parameters can be the various
weights used by some algorithms, some intermediate thresholds or the tolerance of some iterative
algorithms.

This Alignment API has been implemented in Java on top of the OWL API. This implemen-
tation has been used for various purposes: online alignment at Innsbruck, Evaluation tool in the
Ontology Alignment Evaluation Initiative, many extensions of it use it for implementing matching
algorithms (oMAP from CNR, OLA form INRIA/University of Montréal) or support it (FOAM
from Karlsruhe, CMS from Southampton).

2.5.6 Conclusion

The Alignment format used with the Alignment API allows to express alignments without com-
mitting to some language. It is not targeted towards a particular use of the alignments and offer
generators for a number of other formats. But, by opposition to the languages presented so far,
this genuine format does not offer much expressiveness.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 15

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

However, one good feature of this format is its openness which allows to introduce new re-
lations and if necessary new type of expressions while keeping the compatibility with poorly
expressive languages.

2.6 SEKT Mapping language (OML)

2.6.1 Introduction

The Ontology Management Working Group5, jointly with the SEKT6 and DIP7 European projects,
aims at developping a complete ontology management suite for the semantic web. As part of this
effort the SEKT project has developed an ontology mapping language [de Bruijn et al., 2004].
This language provides a complete format as a basis to represent ontology mappings. This format
serves to express mappings resulting from a matching algorithm or from a graphical mapping tool.
It has the advantage of being independant from the ontology language, thus giving a common basis
to research on schema matching techniques.

The Ontology Mapping Language is also used to specify semantic web services data mediators
in the WSMO (Web Services Modeling Ontology)8 [Roman et al., 2004]. The mediation between
semantic web services is a crucial part in this field. When different services have to communicate
together but are described using different ontologies, a data mediator comes into play to align
the different vocabularies. The core part of a mediator definition is a mapping between the two
ontologies plus some non functional properties. At run-time, the mediator is used to rewrite queries
and transform instances, thus allowing communication between the services.

This section presents the language in its human-readable abstract syntax form. An RDF vo-
cabulary is also available [Scharffe, 2005].

2.6.2 Presentation of the mapping language

This language provides a set of constructs to express mappings between classes, attributes, rela-
tions and instances of an ontology.

A set of operators associated to each type of entities gives the possibility to combine them.
Table 2.2 presents the different operators for each type of entity.

Each operator has a cardinality, an effect and some related semantics. The semantics are
related to the logical formalism used to represent the ontologies. For example the semantics of the
’and’ operator between two classes is linked to the semantic of ’and’ in OWL if the mappings are
grounded to OWL.

The conditions under which the mappings are valid are specified by introducing a conditional
field in the mapping rules. These conditions may be a class condition or an attribute condition. The
class conditions are based on their nested attribute values, occurrences or types while the attribute
condition are based on their own values or types. Table 2.3 displays the different conditions the
mapping language can express.

To get a clear but expressive language, limited constructs for the most common cases of map-
pings are defined, allowing the user to define arbitrary logical expressions to represent those which

5http://www.omwg.org
6http://www.sekt-project.org
7http://dip.semanticweb.org
8http://www.wsmo.org

KWEB/2005/D2.2.6/v1.1 March 28, 2006 16

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Language Construct Description

ClassMapping Mapping between two classes
AttributeMapping Mapping between two attributes
RelationMapping Mapping between two relations
ClassAttributeMapping Mapping between a class

and an attribute
ClassRelationMapping Mapping between a class

and a relation
ClassInstanceMapping Mapping between a class

and an instance
IndividualMapping Mapping between two instances

Table 2.1: SEKT-ML mapping types.

Entity Operator

Class and, or, not, join
Attribute and, or, not, inverse, symetric,

reflexive, transitive closure, join
Relation and, or, not, join

Table 2.2: SEKT-ML logical constructions.

Range Name

attributeValueCondition
Class conditions attributeTypeCondition

attributeOccurenceCondition
Attribute Conditions valueCondition

typeCondition

Table 2.3: SEKT-ML attribute comparators

KWEB/2005/D2.2.6/v1.1 March 28, 2006 17

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Figure 2.1: Two ontologies.

do not have constructs. These logical expressions must be written according to the two ontology
modelling languages.

The syntax of this language has been designed to be intuitive and human readable. This results
in a verbose syntax far from the often used XML syntaxes. However XML and RDF syntaxes are
available. The language comes with a Java API that provides parsing and serialising methods to
and from an object model of the mapping document. Figure 2.1 presents two simple ontologies
representing the same domain but with a different modelling perspective. We will give the mapping
having the ’Living Thing’ ontology as source and the ’Creature’ ontology as target.

The top concepts Living_Thing and Creature presents a terminological mismatch of syn-
onymy. On both ontologies the concepts human and animal are modelled using the same label.
These three cases are simple class to class mappings expressed in the mapping language. Here are
the statements representing these mappings.

classMapping(

annotation(<"rdfs:label"> ’Creature to LivingThing’)

annotation(<"http://purl.org/dc/elements/1.1/description">

’Map the person concept to the livingThing concept’)

bidirectional

<"http://ontologies.omwg.org/creature#Creature">

<"http://ontologies.omwg.org/livingThing#Living Thing">)

classMapping(

annotation(<"rdfs:label"> ’Animal to Animal’)

bidirectional

<"http://ontologies.omwg.org/creature#Animal">

<"http://ontologies.omwg.org/livingThing#Animal">)

classMapping(

annotation(<"rdfs:label"> ’human to human’)

bidirectional

<"http://ontologies.omwg.org/creature#Human">

<"http://ontologies.omwg.org/livingThing#Human">)

The annotation fields allow the input of annotations, for instance, title or description. This
field is also used when the mappings are resulting from an algorithm, whereby information like
the confidence degree of the mapping and the algorithm used are stated. The RDFS and Dublin
Core namespaces are used to indicate the nature of the descriptions. Another field express the

KWEB/2005/D2.2.6/v1.1 March 28, 2006 18

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

directionality of the mappings. By default a mapping is bidirectional, meaning that the source and
target entities are equivalent. It may also be unidirectional, meaning that the target entity somehow
subsumes the source one.

The complexities come when mapping the Male and Female concepts in the living Thing

ontology to the subconcepts of Human, namely Adult and Child in the creature ontology. A
Human Male or Female is an Adult/Child if his or her age is greater than or equal to/lower than
18. This kind of mapping is represented using a condition. The concepts are considered mapped
only if the condition specified in the mapping rule is valid. Following is the representation of such
a condition for this example.

classMapping(

annotation(<"rdfs:label"> ’conditional female to adult’)

unidirectional

<"http://ontologies.omwg.org/creature#Female">

<"http://ontologies.omwg.org/livingThing#Adult">

attributeValuecondition(

<"http://ontologies.omwg.org/Creature#age ’>=18’))

classMapping(

annotation(<"rdfs:label"> ’conditional female to child’)

unidirectional

<"http://ontologies.omwg.org/creature#Female">

<"http://ontologies.omwg.org/livingThing#Child">

attributeValuecondition(

<"http://ontologies.omwg.org/creature#age ’<18’))

The same rules must then be written for the male concept in order to realise a complete map-
ping. A mapping between the female/male concepts in the source ontology and the female/male
gender attribute in the target one may also be created. This kind of mapping is saying: "The in-
stances of the female concept in the source ontology are equivalent to the instances having a gender
attribute with the value ’female’ in the target ontology". Here is the representation in terms of the
mapping language.

classAttributeMapping(

annotation(<"rdfs:label"> ’map female to gender:female’)

unidirectional

<"http://ontologies.omwg.org/creature#Female">

<"http://ontologies.omwg.org/livingThing#gender:female">)

classAttributeMapping(

annotation(<"rdfs:label"> ’map the male to the gender:male’)

unidirectional

<"http://ontologies.omwg.org/creature#Male">

<"http://ontologies.omwg.org/livingThing#gender:male">)

2.6.3 Conclusion

The SEKT Mapping language is an expressive alignment format offering many kinds of relations
and entity constructor to the users. One of its main advantages is its ontology language indepen-
dence, giving a common format for expressing mappings.

So this proposal has a middle man position: it is independent from any particular language but
expressive enough for covering a large part of the other languages.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 19

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

2.7 SKOS

SKOS [Miles and Brickley, 2005b; 2005a] means “Simple Knowledge Organisation System”. The
SKOS core vocabulary is an RDF Schema aiming at expressing relationships between lightweight
ontologies (as known as folkosomies) or thesauri. It is currently under development and thus quite
unstable at the time of writing.

The goal of SKOS is to be a layer on top of other formalisms able to express the links between
entities in these formalisms.

Concept and relation descriptions

SKOS allows to identify the concepts that are present in the other ontologies. The concept descrip-
tion part of SKOS, seems quite redundant with other languages of that family; it seems that it is
designed for being able to take advantage of these concepts (e.g., in a GUI) rather to only express
the alignments.

Here are such concept descriptions dedicated to the description of the SKOS and OWL con-
cepts. It defines various ways of presenting the concept (with labels in several languages and
alternate labels and symbols). It also provides the opportunity to add various notes and informal
definitions to the concept.

<skos:Concept rdf:about="http://www.w3c.org#skos">

<skos:prefLabel>Simple Knowledge Organisation System</skos:prefLabel>

<skos:altLabel>SKOS</skos:altLabel>

<skos:altLabel xml:lang="fr">Système simple d’organisation de la

connaissance</skos:altLabel>

<skos:hiddenLabel xml:lang="fr">SSOC</skos:hiddenLabel>

<skos:definition>The SKOS core vocabulary is a RDFS schema which aims at

expressing relationships between lightweight ontologies

(as known as folkosomies) or thesauri.</skos:definition>

<skos:editorialNote>This is not an official definition</skos:editorialNote>

</skos:Concept>

<skos:Concept rdf:about="http://www.w3c.org#owl">

<skos:prefLabel>Web ontology language</skos:prefLabel>

<skos:altLabel>OWL</skos:altLabel>

<skos:altLabel xml:lang="de">EULE</skos:altLabel>

<skos:prefSymbol rdf:resource="http://www.cs.umd.edu/users/hendler/2003/OWL2.gif" />

<skos:definition>OWL is an ontology language for the web recommended by W3C.</skos:definition>

<skos:historyNote>OWL is not an acronym</skos:historyNote>

<skos:hasTopConcept rdf:resource="&owl;#Thing"/>

</skos:Concept>

SKOS also alows to describe collections of concepts given by their enumeration:

<skos:Collection rdf:about="http://www.example.org#alignmentFormats">

<rdfs:label>Alignment formats</rdfs:label>

<skos:member rdf:resource="http://www.w3c.org#skos"/>

<skos:member rdf:resource="http://www.w3c.org#owl"/>

<skos:member rdf:resource="http://www.w3c.org#swrl"/>

<skos:member rdf:resource="http://www.wsmg.org#ml"/>

<skos:member rdf:resource="http://knowledgeweb.semanticweb.org/heterogeneity#alignapi"/>

<skos:member rdf:resource="http://www.example.org#mafra"/>

</skos:Collection>

KWEB/2005/D2.2.6/v1.1 March 28, 2006 20

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

property domain range inverse property

broader concept concept narrower transitive
related concept concept related symmetric

Table 2.4: SKOS relation properties.

property domain range inverse

subject resources concept isSubjectOf
primarySubject resource concept isPrimarySubjectOf

Table 2.5: SKOS annotation properties.

Concept relations

SKOS defines so-called “semantic relationships” that express relations between SKOS concepts.
For instance, that a term used in a thesauri is broader than another. There are three such relations
as defined in Table 2.4.

The relations between concepts enable the assertion of the relative inclusion of concepts as
broader or narrower terms as well as another, informal, relation. The following displays the
RDFSchema concept that is narrower than ontologyLanguage but broader than SKOS. It is
also related to folkosomyLanguages.

<skos:Concept rdf:about="http://www.w3c.org#rdfschema">

<skos:prefLabel>RDF Schema</skos:prefLabel>

<skos:altLabel>RDFS</skos:altLabel>

<skos:broader rdf:resource="http://www.example.org#ontologyLanguage"/>

<skos:narrower rdf:resource="http://www.w3c.org#skos"/>

<skos:related rdf:resource="http://www.example.org#folkosomyLanguage"/>

<skos:editorialNote>This is not an official definition</skos:editorialNote>

<skos:Concept/>

Broader and narrower are transitive properties while related is symmetric.

Annotations

In addition, but of least interest here, SKOS defines annotation properties that enable users to
use SKOS concepts for describing resources (annotate them directly with SKOS). It defines the
vocabulary displayed in Table 2.5.

This is used below to express that SKOS is the primarySubjectOf its specification and a
subjectOf this document.

<skos:Concept rdf:about="http://www.w3c.org#skos">

<skos:isPrimarySubjectOf rdf:resource="http://www.w3.org/TR/2005/swbp-skos-core-spec" />

<skos:isSubjectOf rdf:resource="http://www.inrialpes.fr/exmo/cooperation/kweb/heterogeneity/deli/kweb-226

</skod:Concept>

and the SKOS guide [Miles and Brickley, 2005a] could have the following annotations:

KWEB/2005/D2.2.6/v1.1 March 28, 2006 21

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

<foaf:Document>

<skos:primarySubject rdf:resource="http://www.w3c.org#skos" />

<skos:subject rdf:resource="http://www.w3c.org#rdfs" />

</foaf:Document>

meaning that its primarySubject is SKOS and a secondarySubject is RDFSchema.

2.7.1 Conclusion

SKOS has the advantage of being a lightweight vocabulary defining from the ground a rich collec-
tion of relations between entities. Since it uses URIs for referring to objects it is fully integrated
in the semantic web architecture and is not committed to a particular language. In fact one of the
main advantage of SKOS is that it lifts any kind of organised description into an easily usable set
of classes. The relation part has the advantage of being very general but the drawback of lacking
formal semantics (more semantics on these terms can be brought by using the OWL vocabulary).

One of the main interest of SKOS, would be to define relations and concepts as instantiating
the SKOS vocabulary like in:

<rdf:Class rdf:about="http://www.w3c.org/owl#Class">

<rdfs:subClassOf rdf:resource="http://www.w3c.org/skos#Concept"/>

</rdf:Property>

<rdf:Property rdf:about="http://www.w3c.org/owl#subClassOf">

<rdfs:subPropertyOf rdf:resource="http://www.w3c.org/skos#narrower"/>

</rdf:Property>

However, this mixes three vocabularies (RDFS, OWL and SKOS). This is one of the main
weakness of SKOS. Like other formats which do not separate the ontologies from the correspon-
dences, SKOS, in its most convenient form mixes the highest power of RDF Schema and the
expression of the alignments. This form of extensibility (through RDFS) prevents any non RDFS
understanding application to fully grasp SKOS content.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 22

Chapter 3

Comparison of existing formats

We have drawn local conclusions concerning each format presented in the previous chapter. We
will here compare these formats globally in order to see emerging patterns. For that purpose, we
define a set of evaluation criteria (§3.1), we apply them to the different formats (§3.2) and we
finally analyse these results (§3.3).

3.1 Criteria

In order to meet the requirements stated in Chapter 1, we explicit them here in a number of criteria
to be applied to the existing systems. Several kinds of criterion can be presented with regard to
each of the requirements.

3.1.1 Web compatibility

The capacity of the format to be manipulated on the web. This involves, its possible expression in
XML, RDF and/or RDF/XML, as well as, the possibility to identify entities by URIs. This should,
in principle, enable the extensibility of the format by introducing new properties as well as the
referencing of particular correspondences individually.

This aspect is covered by the RDF/XML and URI criteria of Table 3.1.

3.1.2 Languages independence

The ability to express alignments between entities described in different languages. This is often
related to the use of URIs. In fact, language independence is mostly related to simplicity.

This aspect is covered by the Language and Model criteria of Table 3.1.

3.1.3 Simplicity

The capacity to be dealt with in a simple form by simple tools. In particular, requiring inference for
correctly manipulating the alignment (or requiring that the alignment format covers an important
part of some ontology representation language), is not a sign of simplicity. A well structured
format will help achieving this goal.

This aspect is covered by the Relations, Terms, Type rest, Cardinality, Variables and Built-in
criteria of Table 3.1.

23

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

speed velocity✲✛
=

mph m/s
✲

✛

λx.x × 0.447

λx.x × 2.237

Figure 3.1: Two conceptually equivalent properties, with different associated mappings.

3.1.4 Expressiveness

The capacity of the format to express complex alignments. This means that alignments are not
restricted to matching entities identifies by URIs but can assemble them. The constructions for ex-
pressing alignments can be arbitrary complex (in fact, it can be more complex than the knowledge
expressed in the ontologies).

This aspect is covered by the Relations, Terms, Type rest, Cardinality, Variables and Built-in
criteria of Table 3.1.

This expressiveness can be considered from the standpoint of the richness of constructors avail-
able for expressing the terms in correspondence and the relations that can be expressed between
these terms. In particular, we can distinguish the kind of terms, typing constraints, cardinality
constraints, interdependence constraints expressed through variables and paths.

3.1.5 Extendibility

Extendibility is the capacity to extend the format with specific purpose information in such a way
that the tools which use this format are not disturbed by the extensions. Most of the system pre-
sented here exhibit one kind of extendibility tied to the use of RDF which allows any new relation
and object to be added. More particular kind of extendibility are exhibited by SBO and SEKT
Mapping language in the plug-in architechture enabling the addition of new transformations, and
the Alignment format in which the language itself can be extended.

This aspect is covered by the “+” signs in Table 3.1.

3.1.6 Purpose independence

Purpose independence is rather a consequence of various factors expressed below. We mention
the intended use of each of the formats. It is clear for instance that a format designed for data
integration, with very precise selection constraints, will rather be difficult to use in transforming
ontologies. As an example, consider an ontology pair with a couple of equivalent attributes speed
and velocity as in Table 3.1. A schema-level purpose independent alignment would record that
these two properties are equivalent. However, when using this alignment, it may be necessary to
use more information, namely that the first one is expressed in miles-per-hour and the second one
is expressed in meter-per-second, so equivalent values require conversions.

This aspect is covered by the Target application criterion of Table 3.1.

3.1.7 Executability

Executability is the capacity to be directly usable in mediators. This means there are tools available
for directly interpreting the format as a program processing knowledge. Executability is rather

KWEB/2005/D2.2.6/v1.1 March 28, 2006 24

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Format OWL SBO C-OWL SWRL Alignment SEKT-ML SKOS

Target app. Merging Data transf. Data int. Data int. Generic Data transf. Merging
Language OWL UML OWL OWL + RDFS

Model OWL OWL+ OWL
Execution Logical Transf Logical Logical Logical Alg.

RDF/XML
√ √ √ √ √ √

URI
√ √ √ √ √ √

Measures
√

Relations sc/sp sc/sp imp sc/sp+ sc/sp/. . . sc/sp
Terms C/P/I C/P/I C/P/I C/P/I URI C/P/I C/P

Type rest
√ √ √ √ √

Cardinality
√ √ √

Variables
√

Built-in
√

+
√

+

Table 3.1: Features of the presented systems

opposed to language independence.
This aspect is covered by the Execution criterion of Table 3.1.

3.2 Comparison

Table 3.1 provides the value of all the formats presented in the previous section for each of the
criterion.

3.3 Synthesis

In fact, the real difference between these formats lies in the continuum between:

– very general languages easy to understand but unable to express the complexity of complex
alignments (SKOS, Level 0 Alignment format), and

– very expressive languages which semantics dictates the use and which requires deep under-
standing of the language (OWL, SWRL, C-OWL, MAFRA).

The SEKT Mapping language stands in the middle of this continuum.
While most of the matching algorithms are only able to express the first kind of alignments,

both kinds of languages are useful.
Most of the expressive formats have a surface heterogeneity due to the languages on which they

are based (UML, OWL, WSML), however, they have very similar features for refering to ontology
constructs (classes, properties), using logical formula constructions (conjunction, implications,
quantifiers), as well as datatype and collection buit-in operators. It is even surprising that there
is not much heterogeneity in these expressive languages given that complexity is a factor of: the
language used for expressing the ontologies, the language used for expressing the related entities,
the semantics given to alignments and the language used for expressing relations.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 25

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

It would thus be useful to avoid that these expressing languages to commit to one kind of
language so that their results cannot be used by others. We investigate hereafter, how this can be
achieved.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 26

Chapter 4

Interoperability

This chapter considers solutions that can help reaching short term convergence. It should help
potential users who hesitate to commit to a particular format to be able to switch as much as
possible from one format to another.

To that extent, there are different possible solutions. The first one involves using some trans-
formation language (like XSLT) for translating from one format to another. This requires (and
shows the benefit) of having the format in XML syntax.

Another solution consists of benefiting from API to generate the adequate format. This op-
portunity is mostly provided by language independent formats (the Alignment format and SEKT
Mapping language).

We present below a number of these bridges between languages, first from the Alignment API
(Section 4.1 and second form the SEKT Mapping language (Section 4.2.

4.1 Generating SEKT-ML/C-OWL/SKOS from Alignment API

The obtained alignment can, of course, be generated in the RDF serialisation form of the Align-
ment format. However, there are other formats available.

The API provides the notion of a visitor of the alignment cells. These visitors are used in the
implementation for rendering the alignments. So far, the implementation is provided with four
such visitors:

RDFRendererVisitor displays the alignment in the RDF format described in §2.5. An XSLT
stylesheet is available for displaying the alignments in HTML from the RDF/XML format.

OWLAxiomsRendererVisitor generates an ontology merging both aligned ontologies and com-
prising OWL axioms for expressing the subsumption, equivalence and exclusivity relations.

XSLTRendererVisitor generates an XSLT stylesheet for transforming data expressed in the first
ontology in data expressed in the second ontology;

COWLMappingRendererVisitor generates a C-OWL mapping [Bouquet and Serafini, 2003],
i.e., a set of relations expressed between elements (in fact classes) of two ontologies.

SWRLRendererVisitor generates a set of SWRL [Horrocks et al., 2003] rules for inferring from
data expressed in the first ontology the corresponding data with regard of the second ontol-
ogy.

SEKTMappingRendererVisitor generates a mapping document as was defined in the SEKT
document [de Bruijn et al., 2004].

27

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

SKOSRendererVisitor generates a SKOS mapping document.

Some of these methods, like XSLT or SWRL, take the first ontology in the alignment as the
source ontology and the second one as the target ontology.

4.1.1 Generating axioms

OWL itself provides tools for expressing axioms corresponding to some relations that we are
able to generate such as subsumption (subClassOf) or equivalence (equivalentClass). From
an alignment, the OWLAxiomsRendererVisitor visitor generates an ontology that merges the
previous ontologies and adds the bridging axioms corresponding to the cells of the alignment.

They can be generated from the following command-line invocation:

$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment

file://localhost$CWD/rdf/onto1.owl file://localhost$CWD/rdf/onto2.owl -t .6

-r fr.inrialpes.exmo.align.impl.OWLAxiomsRendererVisitor

which returns:

<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">

<rdfs:comment>Aligned ontollogies</rdfs:comment>

<owl:imports rdf:resource="http://www.example.org/ontology1"/>

<owl:imports rdf:resource="http://www.example.org/ontology2"/>

</owl:Ontology>

<owl:Class rdf:about="http://www.example.org/ontology1#reviewedarticle">

<owl:equivalentClass rdf:resource="http://www.example.org/ontology2#article"/>

</owl:Class>

<owl:Class rdf:about="http://www.example.org/ontology1#journalarticle">

<owl:equivalentClass rdf:resource="http://www.example.org/ontology2#journalarticle"/>

</owl:Class>

</rdf:RDF>

4.1.2 Generating translations

Alignments can be used for translation as well as for merging. Such a transformation can be
made on a very syntactic level. The most neutral solution seems to generate translators in XSLT.
However, because it lacks deductive capabilities, this solution is only suited for transforming data
(i.e., individual descriptions) appearing in a regular form.

The XSLTRendererVisitor generates transformations that recursively replace the names of
classes and properties in individuals. The renderer produces stylesheets like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

KWEB/2005/D2.2.6/v1.1 March 28, 2006 28

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

<xsl:template match="http://www.example.org/ontology1#reviewedarticle">

<xsl:element name="http://www.example.org/ontology2#article">

<xsl:apply-templates select="*|@*|text()"/>

</xsl:element>

</xsl:template>

<xsl:template match="http://www.example.org/ontology1#journalarticle">

<xsl:element name="http://www.example.org/ontology2#journalarticle">

<xsl:apply-templates select="*|@*|text()"/>

</xsl:element>

</xsl:template>

<!-- Copying the root -->

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<!-- Copying all elements and attributes -->

<xsl:template match="*|@*|text()">

<xsl:copy>

<xsl:apply-templates select="*|@*|text()"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

4.1.3 Generating SWRL Rules

Finally, this transformation can be implemented as a set of rules which will “interpret” the corre-
spondence. This is more adapted than XSLT stylesheets because, we can assume that a rule engine
will work semantically (i.e., it achieves some degree of completeness with regard to the semantics)
rather than purely syntactically.

The SWRLRendererVisitor transforms the alignment into a set of SWRL rules which have
been defined in [Horrocks et al., 2003]. The result on the same example will be the following:

<?xml version="1.0" encoding="UTF-8"?>

<swrlx:Ontology swrlx:name="generatedAl"

xmlns:swrlx="http://www.w3.org/2003/11/swrlx#"

xmlns:owlx="http://www.w3.org/2003/05/owl-xml"

xmlns:ruleml="http://www.w3.org/2003/11/ruleml#">

<owlx:Imports rdf:resource="http://www.example.org/ontology1"/>

<ruleml:imp>

<ruleml:_body>

<swrlx:classAtom>

<owlx:Class owlx:name="http://www.example.org/ontology1#reviewedarticle"/>

<ruleml:var>x</ruleml:var>

</swrlx:classAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:classAtom>

<owlx:Class owlx:name="http://www.example.org/ontology2#journalarticle"/>

<ruleml:var>x</ruleml:var>

KWEB/2005/D2.2.6/v1.1 March 28, 2006 29

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

</swrlx:classAtom>

</ruleml:_head>

</ruleml:imp>

...

</swrlx:Ontology>

Of course, level 2 alignments would require specific renderers targeted at their particular lan-
guages.

4.1.4 Generating C-OWL mappings

The COWLMappingRendererVisitor transforms the alignment into a set of C-OWL mapping
which have been defined in [Bouquet and Serafini, 2003]. The result on the same example will be
the following:

<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:cowl="http://www.itc.it/cowl#"

xml:base="http://www.itc.it/cowl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<cowl:Mapping rdf:ID="">

<cowl:sourceOntology>

<owl:Ontology rdf:about="http://www.example.org/ontology1"/>

</cowl:sourceOntology>

<cowl:targetOntology>

<owl:Ontology rdf:about="http://www.example.org/ontology2"/>

</cowl:targetOntology>

<cowl:bridgeRule>

<cowl:Equivalent>

<cowl:source>

<owl:Class rdf:about="http://www.example.org/ontology1#reviewedarticle"/>

</cowl:source>

<cowl:target>

<owl:Class rdf:about="http://www.example.org/ontology2#journalarticle"/>

</cowl:target>

</cowl:Equivalent>

</cowl:bridgeRule>

...

</cowl:Mapping>

</rdf:RDF>

4.1.5 Generating SEKT-ML mappings

The SEKTMappingRendererVisitor transforms the alignment into a SEKT mapping docu-
ment which have been defined in [de Bruijn et al., 2004]. The result on the same example is the
following:

MappingDocument(<"">

source(<"http://www.example.org/ontology1">)

target(<"http://www.example.org/ontology2">)

KWEB/2005/D2.2.6/v1.1 March 28, 2006 30

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

classMapping(<"#s44261">

bidirectional

<"http://www.example.org/ontology1#reviewedarticle">

<"http://www.example.org/ontology2#article">

)

classMapping(<"#s4201">

bidirectional

<"http://www.example.org/ontology1#journalarticle">

<"http://www.example.org/ontology2#journalarticle">

)

)

Of course, level 2 alignments would require specific renderers targeted at their particular lan-
guages.

4.1.6 Generating SKOS

The SKOSRendererVisitor transforms the alignment into a SKOS document which have been
defined in [de Bruijn et al., 2004]. The result on the same example is the following:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:skos="http://www.w3.org/2004/02/skos/core#">

<skos:Concept rdf:about="http://www.example.org/ontology1#journalarticle">

<skos:related rdf:resource="http://www.example.org/ontology2#journalarticle"/>

</skos:Concept>

<skos:Concept rdf:about="http://www.example.org/ontology1#reviewedarticle">

<skos:related rdf:resource="http://www.example.org/ontology2#article"/>

</skos:Concept>

</rdf:RDF>

4.2 Generating RDF, OWL and WSML from the SEKT Mapping
Language API

The Mapping language presented in Section 2.6 is used via a Java API. It provides classes and
methods for parsing mapping documents, manipulating the mappings objects in memory and seri-
alising them in various formats. Apart from the original abstract syntax format the API proposes
exporting in RDF, OWL-DL and WSML. An example of mapping exported in these various for-
mats is given in this section.

4.2.1 RDF syntax of the mapping language

We first give the RDF triples corresponding to the mapping document header:

_"http://sw.deri.org/~francois/mappings/creature2livingThing"

rdf#type

KWEB/2005/D2.2.6/v1.1 March 28, 2006 31

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

map#mappingDocument

_"http://sw.deri.org/~francois/mappings/creature2livingThing"

map#onto1

_"http://sw.deri.org/~francois/ontologies/o1"

_"http://sw.deri.org/~francois/mappings/creature2livingThing"

map#onto2

_"http://sw.deri.org/~francois/ontologies/o2"

_"http://sw.deri.org/~francois/mappings/creature2livingThing"

dc#creator

_"http://sw.deri.org/~francois/foaf.rdf"

A simple and a more complex mapping rule examples are following. We use for this example
o1 and o2 as shortened namespaces.

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule1"

rdf:type

map#ClassMapping

_"http://sw.deri.org/~francois/mappings/creature2livingThing"

map#ClassMapping

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule1"

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule1"

map#directionality

xsd:string^^"bidirectional"

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule1"

map#hasSource

o1#creature

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule1"

map#hasTarget

o2#livingThing

_"http://sw.deri.org/~francois/mappings/creature2livingThing"

map#ClassMapping

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule2"

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule2"

map#directionality

xsd:string^^"unidirectional"

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule2"

map#hasSource

o1#Female

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule2"

map#hasTarget

o2#Adult

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule2"

map#condition

map#attributeValueCondition

KWEB/2005/D2.2.6/v1.1 March 28, 2006 32

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

_"http://sw.deri.org/~francois/mappings/creature2livingThing#rule2"

map#conditionId

xsd:string^^"cond"

xsd:string^^"cond" map#onAttribute o1#age

xsd:string^^"cond" map#conditionOperator map#greaterOrEqual

xsd:string^^"cond" map#conditionValue xsd:integer18

4.2.2 Generating OWL

Simple mappings might be expressed in OWL-DL. This gives some restriction since OWL cannot
express rules. It is however planned to extend this export using the SWRL extension of OWL.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

<!ENTITY base "http://sw.deri.org/~francois/mappings/Creature2livingThing/">

]>

<rdf:RDF

xmlns:rdf="&rdf;"

xmlns:owl="&owl;"

xmlns:xsd="&xsd;"

xml:base="&base;">

<owl:Ontology rdf:about="&base;">

<owl:imports rdf:resource="http://sw.deri.org/~francois/ontologies/creature/"/>

<owl:imports rdf:resource="http://sw.deri.org/~francois/ontologies/livingthing/"/>

</owl:Ontology>

<owl:Class rdf:about="http://ontologies.omwg.org/creature#Creature">

<rdfs:comment>Map the creature concept to the livingThing concept</rdfs:comment>

<owl:equivalentClass>

<owl:Class rdf:about="http://sw.deri.org/~francois/ontologies/livingthing#Living Thing/">

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="http://ontologies.omwg.org/livingThing#Adult"/>

<owl:subClassOf rdf:resource="http://ontologies.omwg.org/creature#Female"/>

</owl:Class>

</rdf:RDF>

</xml>

4.2.3 Generating WSML

WSML (Web Services Modelling Language) is also generated using the export method of a map-
ping document. It uses a variant of WSML (WSML-DL) which cannot express rules.

ontology _"http://sw.deri.org/~francois/mappings/Creature2livingThing/"

nfp

endnfp

axiom mappingRuleNumber1

KWEB/2005/D2.2.6/v1.1 March 28, 2006 33

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

nfp

rdfs#label hasValue "Creature to LivingThing"

_"http://purl.org/dc/elements/1.1/description" hasValue "Map the creature concept to

the livingThing concept"

MappingConfidenceMeasure hasValue "1.0"

endnfp

definedBy

?x memberOf _"http://ontologies.omwg.org/livingThing#LivingThing" impliedBy

?x memberOf _"http://ontologies.omwg.org/creature#Creature".

axiom mappingRuleNumber2

nfp

rdfs#label hasValue "Creature to LivingThing"

_"http://purl.org/dc/elements/1.1/description" hasValue "Map the creature concept to

the livingThing concept"

MappingConfidenceMeasure hasValue "1.0"

endnfp

definedBy

?x memberOf _"http://ontologies.omwg.org/livingThing#LivingThing" implies

?x memberOf _"http://ontologies.omwg.org/creature#Creature".

axiom mappingRuleNumber3

nfp

rdfs#label hasValue "conditional female to adult"

MappingConfidenceMeasure hasValue "1.0"

endnfp

definedBy

?x memberOf _"http://ontologies.omwg.org/livingThing#Adult" impliedBy

?x memberOf _"http://ontologies.omwg.org/creature#Female".

4.3 Conclusions

Figure 4.1 summarises the transformations presented in this chapter. At first sight, it could seem
that the alignment format is the ideal exchange format because it allows to generate, directly or
indirectly, so many different formats. However, this is not the case because the SEKT Mapping
language is more expressive than the alignment format. The alignment format can only generate
simple alignments. So the best option is to enhance the expressiveness of the Alignment format so
that it more fully covers the expressive formats. To that extent, the best option is certainly embed
the SEKT Mapping language within the Alignment format.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 34

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Alignment format

✲

✲

✲

✲

✲

✲

✲

XSLT

C-OWL

SWRL

SEKT-ML

OWL

RDF

SKOS

✲

✲ OWL

WSML

Figure 4.1: Possible export function among alignment formats.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 35

Chapter 5

Towards a unified format

In this chapter we attempt at going deeper into the format integration satisfying our initial require-
ments. As mentioned above, the Alignment format made provision for embedding expressive
languages in order to suit particular needs. So, instead of confining the users to simple match
between ontologies, it can be extended to express more complex alignments. The benefit from the
standpoint of applications using this format is that they can still use the simple alignment that may
exist.

We will specify this embedding here in order to demonstrate the applicability and to provide a
format which can support expressive languages while preserving its applicability in less expressive
contexts (in particular it can be passed to algorithms that do not read the correspondence content
but only manipulate its form, like applying thresholds).

The extension is based on the SEKT Mapping language because it was designed from the
beginning to be independent from the target language and it offers a dedicated RDF expression.
The format specified here can be considered as a Level 2 format of the Alignment format. We will
further identify it as "2OML".

This first section presents the new kind of entities that can be mapped at this more expressive
level. This entity construction language is completed by adding comparators and operators on
datatypes that appear in entity construction (Section 5.2). Then, the specific kinds of relations
that are used in the SEKT Mapping language are introduced (Section 5.3). In Section 5.4, some
enhancements to the standard metadata provided by the Alignment format are presented in order
to achieve compatibility with the SEKT Mapping language, as well as satisfy the needs expressed
during experiments (Section 5.4). Finally, section 5.5 provides an example of the new format.

5.1 Mapped entities

The main change in considering Level 2 extensions of the Alignment format lays in the definition
of the entities that are mapped. In the Alignment format, these entities were only identified by
their URI. In the SEKT Mapping language specification these entities are typed and compound
entities. We describe below the proposed syntax for the mapped entities to be embedded within
the alignment format. It is expressed as a grammar because, the compactness of the grammar form
helps better understanding it (especially as a format). However, the resulting documents are proper
RDF/XML so it would be useful when the language is stable to provide a RDF-Schema (or other
formalisms).

36

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

This syntax roughly follows that of the SEKT Mapping language, but makes explicit the type
of entities that were left implicit in [Scharffe, 2005].

There are basically four kinds of entities: classes, attributes, relations and instances. They can
be simply identified by their URIs like in the genuine Alignment format. However, they can as well
be composed within the format: this is what provides this format more expressiveness. The SEKT
Mapping language features boolean constructors (And, Or and Not) and relation constructors
(Inverse, Transitive, Symmetric and Reflexive closures as well as Join).

Contrary to the SEKT Mapping language, we have introduced the constraints on these objects
within the objects themselves because it is where they apply and are useful. In addition we found
necessary to add a notion of “path” in the attributes and relations in order to access some of them.

The language, though RDF, is given below under the form of a grammar (the language names-
pace is http://knowledgeweb.semanticweb.org/heterogeneity/alignment/2oml/):

〈classexpr〉 ::= <Class rdf:about= 〈uriref 〉 > 〈classcond〉* </Class>
| <Class> 〈classconst〉 〈classcond〉* </Class>

〈classconst〉 ::= <and rdf:parseType="Collection"> 〈classexpr〉 〈classexpr〉+ </and>
| <or rdf:parseType="Collection"> 〈classexpr〉 〈classexpr〉+ </or>

| <not> 〈classexpr〉 </not>

〈classcond〉 ::= <attributeValueCondition> 〈restriction〉 </attributeValueCondition>
| <attributeTypeCondition> 〈restriction〉 </attributeTypeCondition>
| <attributeOccurenceCondition> 〈restriction〉 </attributeOccurenceCondition>

〈restriction〉 ::= <Restriction>

<property> 〈path〉 </property>
<comparator rdf:resource=" 〈uriref 〉 "/>
<value> 〈pov〉 </value>
</Restriction>

〈pov〉 ::= 〈path〉 | 〈value〉 | 〈uriref 〉

〈value〉 ::= 〈simplevalue〉
| <Apply rdf:resource=" 〈uriref 〉 " rdf:parseType="Collection"> 〈pov〉*
</Apply>

〈path〉 ::= <Attribute rdf:about= 〈uriref 〉 />
| <Path rdf:resource="http//URI#empty">

| <Path><first><Attribute rdf:about= 〈uriref 〉 /></first> <next> 〈path〉
</next></Path>

〈attexpr〉 ::= <Attribute rdf:about= 〈uriref 〉 > 〈attcond〉* </Attribute>
| <Attribute> 〈attconst〉 〈attcond〉* 〈atttranf 〉 </Attribute>

〈attconst〉 ::= <and rdf:parseType="Collection"> 〈attexpr〉 〈attexpr〉+ </and>

| <or rdf:parseType="Collection"> 〈attexpr〉 〈attexpr〉+ </or>

| <not> 〈attexpr〉 </not>

KWEB/2005/D2.2.6/v1.1 March 28, 2006 37

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

〈attcond〉 ::= <valueCondition> 〈restriction〉 </valueCondition>
| <typeCondition> 〈restriction〉 </typeCondition>

〈atttransf 〉 ::= <transf rdf:resource=" 〈uriref 〉 "> 〈pov〉* </transf>
| <service rdf:resource=" 〈uriref 〉 id=" 〈uriref 〉 "> 〈pov〉* </service>

〈relexpr〉 ::= <Relation rdf:about= 〈uriref 〉 > 〈relcond〉* </Relation>
| <Relation> 〈relconst〉 〈relcond〉* </Relation>

〈relconst〉 ::= <and rdf:parseType="Collection"> 〈relexpr〉 〈relexpr〉+ </and>

| <or rdf:parseType="Collection"> 〈relexpr〉 〈relexpr〉+ </or>

| <not> 〈relexpr〉 </not>
| <inverse> 〈relexpr〉 </inverse>
| <symetric> 〈relexpr〉 </symetric>
| <transitive> 〈relexpr〉 </transitive>
| <reflexive> 〈relexpr〉 </reflexive>
| <join> 〈relexpr〉 〈relexpr〉+ 〈joinexpr〉 </join> // todo

〈instexpr〉 ::= <Instance rdf:about" 〈uriref 〉 "/>

The roots of this grammar (classexpr, attexpr, relexpr and instexpr) are the entities that will
now appear within the Alignment Cell elements.

5.2 Library of comparators and operators

Since mapped entities can feature conditions applying to data values, it is necessary to define the
available predicates on these values and sometimes available constructors. The SEKT Mapping
language specification does not cover this aspect. In the grammar above, these are identified in the
comparator and the Apply constructors by URIs.

For that purpose, we draw on the Web standards and propose the use of the XQuery and XPath
functions [Malhotra et al., 2005] relying in XML Schema datatypes just like SWRL [Horrocks
et al., 2004] does. Figure 5.1 reproduces the hierarchy of these datatypes (these are limited to a
subset of atomic types).

The comparators and constructors are presented in Table 5.1 and 5.2. For most of them, they
are taken from XQuery and XPath function. However, their namespace is the same as the one of
the language.

Type Id Origin explaination

numeric add XQuery Returns the arithmetic sum of the first argu-
ment through the last argument.

numeric subtract XQuery Returns the arithmetic difference of the first
argument minus the second argument.

numeric multiply XQuery Returns the arithmetic product of the first ar-
gument by the last argument.

Table 5.1: XML Schema datatypes and constructors (built-in for
dates have been omitted).

KWEB/2005/D2.2.6/v1.1 March 28, 2006 38

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Type Id Origin explaination

numeric divide XQuery Returns the arithmetic quotient of the first ar-
gument over the second argument.

numeric integer-divide XQuery Returns the integer part of the arithmetic quo-
tient of the second argument over the third ar-
gument.

numeric mod XQuery Returns the modulo of the arithmetic quotient
of the second argument over the third argu-
ment.

numeric pow Returns the first argument raised to the second
argument power.

numeric unary-minus XQuery Returns its argument with the sign changed.
string concat XQuery Concatenates two strings.
string substring XQuery Returns the substring of its first argument

starting at the position denoted by its second
argument and ending at the one denoted by
the third argument.

string length XQuery Returns the integer corresponding to the num-
ber of characters of the string in argument.

string normalize-space XQuery Returns the whitespace-normalised value of
the string in argument.

string upper-case XQuery Returns the upper-cased value of the string in
argument.

string lower-case XQuery Returns the lower-cased value of the string in
argument.

string translate XPath/XQuery Returns its string argument with occurrences
of characters contained in the second argu-
ment replaced by the character at the corre-
sponding position in the string of the third ar-
gument.

string replace XQuery Returns its first string argument with every
substring matched by the regular expression
the second argument replaced by the replace-
ment string of the third argument.

string tokenize XQuery Returns a sequence of strings whose values
are ordered substrings of the first argument
separated by substrings that match the regu-
lar expression the second argument.

uri resolveURI XQuery Returns the URI reference value of its argu-
ment resolved.

collection concatenate XQuery Returns the concatenation of its list argu-
ments.

collection intersection Returns a list containing elements found in
both the first list argument and the second list
argument.

Table 5.1: XML Schema datatypes and constructors (built-in for
dates have been omitted).

KWEB/2005/D2.2.6/v1.1 March 28, 2006 39

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Type Id Origin explaination

collection union Returns a list containing the elements found
in any of its list arguments.

collection difference Returns a list containing the elements of the
first list argument that are not members of the
second list argument.

integer length Lisp Returns the number of elements in its list ar-
gument.

Table 5.1: XML Schema datatypes and constructors (built-in for
dates have been omitted).

One possibility that is left out in this preliminary version is that of introducing new datatypes.
For instance, introducing a nucleic acid datatype with efficient operations could be useful in some
applications (not in all of course).

5.3 Extended library of relations

The Alignment format requires the implementation of relations that are expressed by the cor-
respondences. Those that are present in the level 0 implementation of the Alignment API are
relatively imprecise (they are =, <, >, <> for equivalence, subsumption and disjointness). In order
to take into account the variety of relations from the SEKT Mapping language, it is necessary to
introduce new relations.

Moreover, the SEKT Mapping language distinguishes the orientation of the relations (by the
bidirectional or unidirectional indicator). The Alignment format does not offer the possibility to
express this for the reason that the correspondences are considered as relations instead of functions
(as the word mapping indicates). Hence, there is no directionality: their goal is the expression
of the relation. The directionality indicates the possibility to exploit the relation in one way or
another: this is a matter of implementation of the relation (as is the choice to identify a source and
a target in the SEKT Mapping language).

To overcome this problem, the directionality information is introduced within the relation for
expressing if it is an "equivalence" relation or not.

Table 5.3 provides the various relations introduced in the extension. Obviously it is still possi-
ble to introduce more such relations if necessary (e.g., AttributePropertyEquivalence for instance).
Each relation has the same semantics as the corresponding one in the Mapping language [Scharffe,
2005].

Some relations, like InstanceClassEquivalence and ClassInstanceEquivalence, may seem re-
dundant. In fact they are here because the first element always belongs to the first identified
ontology while the second one belongs to the second ontology.

5.4 Metadata normalization

The Alignment format defines a number of standard metadata which are or can be embedded
within the format. It also allows to add non standard annotations just like new RDF relations

KWEB/2005/D2.2.6/v1.1 March 28, 2006 40

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Type Id Origin explaination

all equal XQuery Satisfied iff the first argument and the second
argument are the same.

all not-equal SWRL The negation of equal.
ordered less-than XQuery Satisfied iff the first argument and the second

argument are both in some implemented type
and the first argument is less than the second
argument according to a type-specific order-
ing (partial or total), if there is one defined for
the type. The ordering function for the type
of untyped literals is the partial order defined
as string ordering when the language tags are
the same (or both missing) and incomparable
otherwise.

ordered less-than-or-equal SWRL Either less than, as above, or equal, as above.
ordered greater-than XQuery Similarto less-than.
ordered greater-than-or-equal SWRL Similar to less-than-or-equal.
string contains XQuery Satisfied iff the first argument contains the

second argument (case sensitive)
string starts-with XQuery Satisfied iff the first argument starts with the

second argument.
string ends-with XQuery Satisfied iff the first argument ends with the

second argument.
string matches XQuery Satisfied iff the first argument matches the

regular expression in the second argument.
collection contains XQuery Satisfied iff the first argument contains the

second argument
collection includes XQuery Satisfied iff the first argument contains all the

elements the second argument.
collection includes-strictly XQuery Satisfied iff the first argument contains more

elements than the the second argument.
collection empty Satisfied iff its first list argument is an empty

list.

Table 5.2: XML Schema datatypes and comparators.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 41

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

anyAtomicType

|- xs:anyURI

|- ordered

| |- xs:string

| |- xs:date

| |- xs:time

| |- xs:duration

| |- xs:boolean

| |- numeric

| |- xs:float

| |- xs:decimal

| | |- xs:integer

| |- xs:double

|- collection

|- list

Figure 5.1: Hierarchy of simple types and collections

Alignment format Level 2 SEKT-ML Relation SEKT Direction

ClassEquivalence ClassMapping bidirectional
ClassMapping ClassMapping unidirectional
AttributeEquivalence AttributeMapping bidirectional
AttributeMapping AttributeMapping unidirectional
RelationEquivalence RelationMapping bidirectional
RelationMapping RelationMapping unidirectional
InstanceEquivalence InstanceMapping bidirectional
InstanceMapping InstanceMapping unidirectional
ClassAttributeEquivalence ClassAttributeMapping bidirectional
ClassAttributeMapping ClassAttributeMapping unidirectional
ClassRelationEquivalence ClassRelationMapping bidirectional
ClassRelationMapping ClassRelationMapping unidirectional
ClassInstanceEquivalence ClassInstanceMapping bidirectional
ClassInstanceMapping ClassInstanceMapping unidirectional
AttributeClassEquivalence AttributeClassMapping bidirectional
AttributeClassMapping AttributeClassMapping unidirectional
RelationClassEquivalence RelationClassMapping bidirectional
RelationClassMapping RelationClassMapping unidirectional
InstanceClassEquivalence InstanceClassMapping bidirectional
InstanceClassMapping InstanceClassMapping unidirectional

Table 5.3: SEKT Mapping language relations adapted for the Alignment format.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 42

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

Annotation Type Content

type charchar the kind of alignment it is (1:1 or n:m for instance)
level xsd:string the language level used in the alignment (level 0 for the

initial alignment API, level 2OML for the language defined
before)

method classname the algorithm that provided it (or if it has been provided by
hand)

measure xsd:double the confidence in each correspondence

Table 5.4: Standard annotations for the Alignment format.

Annotation Type Content

dc:creator xsd:string/URI the person who produced the alignment
dc:date xsd:date the date of creation or modification for the alignment
purpose xsd:string the purpose for which the alignment has been produced
parameters Parameters the parameters passed to the generating algorithm
time xsd:duration the time spent for generating the alignment
limitations xsd:string the limitations of the use of the alignment
properties undef the properties satisfied by the correspondences (and their

proof if necessary)
certificate undef the certificate from a issuing source
arguments Arguments the arguments in favour or against a correspondence [Eu-

zenat et al., 2005]

Table 5.5: New annotations for the Alignment format.

can be added to any RDF nodes (and the current implementation of the Alignment API allows to
preserve this).

However, while using the Alignment API we have felt the need to use annotations which
purpose is general enough so they could be included in a standard format. Moreover, the kind
of annotations put on alignments is also extensible. So far, alignments contain the annotations
featured in Table 5.4.

Other valuable information that may be added to the alignment format are presented in Ta-
ble 5.5.

5.5 Example

Here is an example of the alignment format embedding the SEKT Mapping language. It corre-
sponds to the three kinds of mappings that have been presented in Section 2.6.

<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>

<!DOCTYPE rdf:RDF SYSTEM "align.dtd">

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’

xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

KWEB/2005/D2.2.6/v1.1 March 28, 2006 43

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

xmlns:owmg=’http://www.owmg.org/SEKT-ML’

xmlns:xsd=’http://www.w3.org/2001/XMLSchema#’>

<Alignment>

<xml>yes</xml>

<dc:creator rdf:resource="http://www.inrialpes.fr/exmo/people/euzenat"/>

<dc:date>2005/12/12</dc:date>

<method>manual</method>

<purpose>example</purpose>

<level>2oml</level>

<type>**</type>

<onto1>http://ontologies.omwg.org/creature</onto1>

<onto2>http://ontologies.omwg.org/livingThing</onto2>

<map>

<Cell>

<dc:description>Map the person concept to the livingThing concept</dc:description>

<entity1 rdf:resource=’http://ontologies.omwg.org/creature#creature’/>

<entity2 rdf:resource=’http://ontologies.omwg.org/livingThing#livingThing’/>

<measure rdf:datatype=’&xsd;float’>1.</measure>

<relation>ClassEquivalence</relation>

</Cell>

<Cell>

<rdfs:label>conditional female to child</rdfs:label>

<entity1>

<omwg:Class rdf:about="http://ontologies.omwg.org/creature#female">

<omwg:attributeValueCondition>

<omwg:Restriction>

<omwg:property>

<omwg:Attribute rdf:resource="http://ontologies.omwg.org/creature#age"/>

</omwg:property>

<omwg:comparator rdf:resource="http://www.owmg.org/SEKT-ML#SuperiorBoundCondition"/>

<omwg:value rdf:datatype=’&xsd:int’>18</omwg:value>

</omwg:Restriction>

</omwg:attributeValueCondition>

</omwg:Class>

</entity1>

<entity2 rdf:resource=’http://ontologies.omwg.org/livingThing#child’/>

<measure rdf:datatype=’&xsd;float’>1.</measure>

<relation>ClassMapping</relation>

</Cell>

<Cell>

<rdfs:label>map female to gender:female</rdfs:label>

<entity1 rdf:resource=’http://ontologies.omwg.org/creature#female’/>

<entity2>

<omwg:Class rdf:about="http://ontologies.omwg.org/livingThing#Animal">

<omwg:attributeValueCondition>

<omwg:Restriction>

<omwg:property>

<omwg:Attribute rdf:resource="http://ontologies.omwg.org/livingThing#gender"/>

</omwg:property>

<omwg:comparator rdf:resource="&xsd;equal"/>

<omwg:value rdf:datatype=’&xsd:string’>female</omwg:value>

</omwg:Restriction>

</omwg:attributeValueCondition>

</omwg:Class>

</entity2>

<measure rdf:datatype=’&xsd;float’>1.</measure>

KWEB/2005/D2.2.6/v1.1 March 28, 2006 44

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

<relation>ClassAttributeMapping</relation>

</Cell>

</map>

</Alignment>

</rdf:RDF>

5.6 Limitations

We have attempted here at casting most of the SEKT Mapping language within the Alignment
format. This latter format has the benefit of being simple when simple things must be expressed.
However, it already shows some limits of this simplicity that may be useful to overcome in the
future. We briefly consider them here:

Cardinality conditions Cardinality conditions can be expressed in languages like OWL and could
easily be added to the set of conditions on classes and properties.

Global conditions it may be useful to express global conditions over the considered entities (i.e.
conditions that apply across the two main entities related by the correspondence). These
conditions should be expressed within the entities.

Variables In exactly the same vein, if rules like SWRL Rules have to be expressed, it will be
necessary to introduce variables that allows to unify terms from both side of the rule. These
variables are better expressed at the correspondence level and

It may be necessary to improve this level 2 format in the future if these features become
necessary.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 45

Chapter 6

Conclusions

There are now many different languages that can express alignments for different purposes. We
have reviewed a number of these languages from the standpoint of their syntax, i.e., rather as an
exchange format between applications which need alignments.

There are two main groups of formats: very expressive ones that can be compared with ontol-
ogy languages and simple formats that do not require heavy inference means for being used. One
of these languages (SEKT Mapping language) stands in the middle.

In order to take advantage of the numerous alignment algorithms in a variety of contexts, we
have demonstrated how, from some independent formats, it is possible to generate other formats.

But this step is not enough for sharing. So we have specified, in the last chapter, the use of the
SEKT Mapping language as an expressive language embedded within the Alignment format. This
provides we a format that is powerful enough for being comparable with expressive languages and
yet independent from the ontology languages. It remains compatible with the initial goal of the
Alignment format: being independent from ontology languages.

The implementation of this proposal is planned for next year. We will do our best for pre-
serving the compatibility of tools that already run with both the SEKT Mapping language and the
Alignment format. So this implementation will progress carefully. Simultaneously we consider
providing the semantics of this format (with regard to the semantics of the ontology language
used), in the same way as it is proposed in deliverable 2.2.5 [Hitzler et al., 2005].

Another topic that will be considered next year by the work package 2.2 is the generation
of effective programs such as query mediators or ontology transformations from this alignment
format.

46

Bibliography

[Bechhofer et al., 2003] Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the semantic
web with the OWL API. In Proc. 2nd International Semantic Web Conference (ISWC), Sanibel

Island (FL US), 2003.

[Bouquet and Serafini, 2003] Paolo Bouquet and Luciano Serafini. On the difference between
bridge rules and lifting axioms. Technical Report DIT-03-004, University of Trento (IT), Jan-
uary 2003.

[Bouquet et al., 2003] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuck-
enschmidt. C-owl – contextualizing ontologies. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - ISWC 2003, volume 2870 of Lecture Notes in Computer Science

(LNCS), pages 164–179, Sanibel Island (FL, USA), October 2003. Springer Verlag.

[Bouquet et al., 2004] Paolo Bouquet, Jérôme Euzenat, Enrico Franconi, Luciano Serafini, Gior-
gos Stamou, and Sergio Tessaris. Specification of a common framework for characterizing
alignment. deliverable D2.2.1, Knowledge web NoE, 2004.

[Calvanese et al., 2002] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A
framework for ontology integration. In Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Debo-
rah McGuinness, editors, The emerging semantic web, pages 201–214. IOS Press, Amsterdam
(NL), 2002.

[da Silva, 2004] Nuno Alexandre Pinto da Silva. Multi-dimensional service-oriented ontology

mapping. PhD thesis, Universidade de Trás-os-Montes e Alto Douro, 2004.

[de Bruijn et al., 2004] Jos de Bruijn, Douglas Foxvog, and Kerstin Zimmerman. Ontology me-
diation patterns library. Deliverable D4.3.1, SEKT, 2004.

[Euzenat et al., 2005] Jérôme Euzenat, Loredana Laera, Valentina Tamma, and Alexandre Vio-
llet. Negociation/argumentation techniques among agents complying to different ontologies.
deliverable 2.3.7, Knowledge web NoE, 2005.

[Euzenat, 2003] Jérôme Euzenat. Towards composing and benchmarking ontology alignments.
In Proc. ISWC-2003 workshop on semantic information integration, Sanibel Island (FL US),
pages 165–166, 2003.

[Euzenat, 2004] Jérôme Euzenat. An API for ontology alignment. In Proc. 3rd international

semantic web conference, Hiroshima (JP), pages 698–712, 2004.

47

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

[Giunchiglia and Shvaiko, 2003] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. In
Proc. IJCAI 2003 Workshop on ontologies and distributed systems, Acapulco (MX), pages 139–
146, 2003.

[Hitzler et al., 2005] Pascal Hitzler, Jérôme Euzenat, Markus Krötzsch, Luciano Serafini, Heiner
Stuckenschmidt, Holger Wache, and Antoine Zimmermann. Integrated view and comparison
of alignment semantics. deliverable 2.2.5, Knowledge web NoE, 2005.

[Horrocks et al., 2003] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: a semantic web rule language combining OWL and RuleML,
2003. www.daml.org/2003/11/swrl/.

[Horrocks et al., 2004] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: a semantic web rule language combining OWL and RuleML,
2004. http://www.w3.org/Submission/SWRL/.

[Mädche et al., 2002] Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA
– a mapping framework for distributed ontologies. In Proceedings of the International Confer-

ence on Knowledge Engineering and Knowledge Management (EKAW), pages 235–250, 2002.

[Malhotra et al., 2005] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath
2.0 functions and operators. Technical report, World Wide Web Consortium (W3C), 2005.

[Masolo et al., 2003] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and
Alessandro Oltramari. Ontology library. Deliverable D18, Wonderweb, 2003.

[Miles and Brickley, 2005a] Alistair Miles and Ban Brickley. Skos core guide. Technical
report, World Wide Web Consortium (W3C), http://www.w3.org/TR/2005/swbp-skos-core-
guide, 2005.

[Miles and Brickley, 2005b] Alistair Miles and Ban Brickley. Skos core vocabulary. Technical re-
port, World Wide Web Consortium (W3C), http://www.w3.org/TR/2005/swbp-skos-core-spec,
2005.

[Noy and Musen, 2002] Natasha Noy and Mark Musen. Evaluating ontology-mapping tools: re-
quirements and experience. In Proc. 1st workshop on Evaluation of Ontology Tools (EON2002),

EKAW’02, 2002.

[Rahm and Bernstein, 2001] Erhard Rahm and Philip Bernstein. A survey of approaches to auto-
matic schema matching. The VLDB Journal, 10(4):334–350, 2001.

[Roman et al., 2004] Dumitru Roman, Holger Lausen, and Uwe Keller. Web service modeling
ontology standard (WSMO-standard). Working Draft D2v0.2, WSMO, 2004.

[Scharffe, 2005] François Scharffe. Mapping and merging tool design. deliverable D7.2, Ontol-
ogy Management Working Group, 2005.

[Serafini and Tamilin, 2005] L. Serafini and A. Tamilin. DRAGO: Distributed reasoning archi-
tecture for the semantic web. In A. Gomez-Perez and J. Euzenat, editors, Proc. of the Second

European Semantic Web Conference (ESWC’05), volume 3532 of Lecture Notes in Computer

Science, pages 361–376. Springer-Verlag, May 2005.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 48

D2.2.6: Specification of the delivery alignment format IST Project IST-2004-507482

[Serafini et al., 2005] Luciano Serafini, Alex Borgida, and Andrei Tamilin. Aspects of distributed
and modular ontology reasoning. In Proceedings of the International Joint Conference on

Artificial Intelligence - IJCAI-05, Edinburgh, Scotland, 2005.

[Uschold, 2005] Mike Uschold. Achieving semantic interoperability using RDF and OWL - v4,
2005.

KWEB/2005/D2.2.6/v1.1 March 28, 2006 49

Related deliverables

A number of Knowledge web deliverable are clearly related to this one:

Project Number Title and relationship

KW D2.2.1 Specification of a common framework for characterising alignment pro-
vided the framework for alignments.

KW D2.2.2 Specification of a benchmarking methodology for alignment techniques
describes the use of the Alignment format in evaluation.

KW D2.2.3 State of the art on ontology alignment provides use cases and motivation for
using ontology alignment.

KW D2.2.5 Integrated view and comparison of alignment semantics compares several
alignment formalisms on the basis of their expressiveness.

KW D2.3.7 Negotiation/argumentation techniques among agents complying to differ-
ent ontologies defines in particular a service and protocol for exchanging and
negotiating alignments that take advantage of the features required to align-
ment formats.

KW D2.5.1 Specification of coordination of rules and ontology languages described
SWRL and C-OWL in detail.

SEKT D4.4.1 Ontology Mediation Management V1 defines the Mapping language at the
source of the SEKT-ML described here.

50

