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ABSTRACT
Among the variety of alignment approaches (e.g., us-

ing machine learning, subsumption computation, for-
mal concept analysis, etc.) similarity-based ones rely
on a quantitative assessment of pair-wise likeness be-
tween entities. Our own alignment tool, OLA, features
a similarity model rooted in principles such as: com-
pleteness on the ontology language features, weighting
of different feature contributions and mutual influence
between related ontology entities. The resulting similar-
ities are recursively defined hence their values are cal-
culated by a step-wise, fixed-point-bound approximation
process. For the OAEI 2005 contest, OLA was provided
with an additional mechanism for weight determination
that increases the autonomy of the system.

1. PRESENTATION OF THE SYSTEM
OLA (for OWL-Lite Alignment) is an open-source tool
jointly developed by teams at University of Montréal
and INRIA Rhône Alpes. It features similarity-based
alignment and a set of auxiliary services supporting the
manipulation of alignment results [5, 6].

1.1 General purpose statement
The primary goal behind the OLA tool design is to per-
form alignment of ontologies expressed in OWL, with a
short-term emphasis on OWL-Lite and long-term one
on OWL-DL. However, its GUI component, VisOn1

allows for many other services involving alignments (in
the sense of [4]) to be accessed.

1.1.1 Functional specifications
From a mere algorithm for automated alignment con-
struction, OLA has grown for the last year to an en-

1see http://www.iro.umontreal.ca/∼owlola/

vironment for alignment manipulation. Indeed, in its
current version, the system offers, via its GUI compo-
nent VisOn, the following services:

• parsing and visualization of OWL-Lite and OWL-
DL ontologies,

• computation of similarities between entities from
two ontologies,

• extraction of alignments from a pair of ontologies,
provided with a set of similarity matrices, one per
category of ontology entities (see below),

• manual construction of alignments by composing
entity pairs from two ontologies,

• use of an existing (partial) alignment as a seed
for automated alignment construction (alignment
completion),

• alignment visualization,
• comparison of two alignments.

In the remainder, the focus will be limited to the auto-
mated alignment construction with OLA.

1.1.2 Principles of the alignment in OLA
The following fundamental principles underly the de-
sign of the three key mechanisms in OLA, internal rep-
resentation of the ontology, similarity computation and
alignment extraction, that are involved in the global
ontology alignment process:

All-encompassing comparison : We tend to believe
that all the available knowledge about a pair of on-
tology entities should be taken into account when
aligning. This does not exclude the possibility of
ignoring particular aspects, i.g., OWL instances
in case of OWL class comparison. However such
a choice should be deliberately made by the tool
user, here through appropriate weight assignment,
or, if performed by an automated mechanisms,
should reflect some particularity, either of the en-
tire ontology (e.g., global absence of instances in
both ontologies) or of the pair of entities at hand
(e.g., local absence of instances in the pair of classes
to be compared).
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Highest automation level : Although we recognize
that the entire alignment process often needs to
be set on a semi-automated basis, we nevertheless
argue in favor of a completely automated process
for ”draft” alignment generation. Thus, we see the
OLA user providing a minimal set of parameters
at the initial steps of the process whereas the tool
will suggest one or more candidate alignments at
the end, without any other human intervention.

Category-dependent comparison : Following the syn-
tactic structure of the OWL language, entities are
divided into categories, e.g., classes, objects, prop-
erties, relations, and only entities of the same cat-
egory are compared. Moreover, the entities of a
category are compared using similarity functions
of the same basic shape. The respective category
functions comprise the same factors and the same
weights. They are further customized for each pair
of category entities by projecting them over the ac-
tual feature space of the entities (which may be far
smaller than the complete space of the category).

Comparability of similarity results : To enable com-
parison of similarity scores between different align-
ment tasks but also for some computational rea-
sons, a set of useful properties is insured for the
similarity functions: normalization, positiveness,
maximalness2, and symmetry3.

1.1.3 Current limitations
• Although it would be of certain value for align-

ment, OLA currently offers no inference mecha-
nisms that could help complete the entity descrip-
tions. In particular, inheritance is not used to ex-
pand entities, mostly out of efficiency considera-
tions.

• Although neighborhoods play crucial role in the
similarity definition, two neighbor entities are not
necessarily affecting each other’s respective simi-
larities to a pair of other entities. As only descrip-
tive knowledge is taken into account, given two
such entities, say e1 and e2, for e2 to appear in
a similarity expression for e1, it should be consid-
ered as part of the description of the latter. For
instance, a data type is not seen as being described
by a property whose range the datatype repre-
sents. Consequently, datatypes are compared in
an ontology-independent manner.

• Category borders are not similarity-permeable: Only
entities from the same category are compared for
similarity and hence for alignment.

1.2 Specific techniques used

2With normalization, this amounts to forcing scores of 1 for
identical entities within identical ontologies
3The price to pay for symmetry is the impossibility of de-
tecting subsumption by this purely numerical procedure.

OLA features an alignment process that splits into three
basic steps: constructing the intermediate representa-
tion of the compared ontologies as labeled graphs, com-
puting the similarity of each pair of same-category en-
tities from the respective ontology graphs, extracting
an alignment from the similarity matrices for each cat-
egory.

1.2.1 OL-Graph construction
OL-Graphs are graph structures that provide an easy-
to-process inner representation of OWL ontologies. An
OL-Graph is a labeled graph where vertices correspond
to OWL entities and edges to inter-entity relationships.
As described in [6], the set of different vertex categories
is: class (C), object (O), relation (R), property (P ),
property instance (A), datatype (D), datavalue (V ),
property restriction labels (L). Furthermore, we dis-
tinguish between datatype relations (Rdt) and object
relations (Ro), and between datatype properties (Pdt)
and object ones (Po).

The OL-Graph model allows the following relationships
among entities to be expressed:

• specialization between classes or relations (denoted
S),

• instanciation (denoted I) between objects and classes,
property instances and properties, values and datatypes,

• attribution (denoted A) between classes and prop-
erties, objects and property instances;

• restriction (denoted R) expressing the restriction
on a property in a class,

• valuation (denoted U) of a property in an object.

The OL-Graph of an ontology is built after the ontology
is parsed4. The process of OL-Graph construction is
described in [8].

1.2.2 Similarity model
The similarity functions used in OLA are designed in
a category-specific manner and cover all the available
descriptive knowledge about an entity pair. Thus, given
a category X of OL-Graph nodes, the similarity of two
nodes from X depends on:

• the similarities of the terms used to designate them,
i.e., URIs, labels, names, etc.,

• the similarity of the pairs of neighbor nodes in the
respective OL-Graphs that are linked by edges ex-
pressing the same relationships (e.g., class node
similarity depends on similarity of superclasses, of
property restrictions and of member objects),

• the similarity of other local descriptive features de-
pending on the specific category (e.g., cardinality
intervals, property types)

4So far, we use the OWL API [1].
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Funct. Node Factor Measure

SimO o ∈ O λ(o) simL

a ∈ A, (o, a) ∈ A MSimA

SimA a ∈ A r ∈ R, (a, r) ∈ R SimR

o ∈ O, (a, o) ∈ U MSimO

v ∈ V , (a, v) ∈ U MSimV

SimV v ∈ V value literal type dependent
SimC c ∈ C λ(c) simL

p ∈ P , (c, p) ∈ A MSimP

c′ ∈ C, (c, c′) ∈ S MSimC

simD d ∈ D λ(r) XML-Schema
SimR r ∈ R λ(r) simL

c ∈ C, (r, domain, c) ∈ R MSimC

c ∈ C, (r, range, c) ∈ R MSimC

d ∈ D, (r, range, d) ∈ R SimD

r′ ∈ R, (r, r′) ∈ S MSimR

SimP p ∈ P r ∈ R, (p, r′) ∈ S SimR

c ∈ C, (p, all, c) ∈ R MSimC

n ∈ {0, 1,∞}, (p, card, n) ∈ R equality

Table 1: Similarity function decomposition
(card = cardinality and all = allValuesFrom).

Datatype and datavalue similarities are external to our
model and therefore they are either user-provided or
measured by a standard function (e.g., string identity
of values and datatype names/URIs).

Formally, given a category X together with the set of
relationships it is involved in, N (X), the similarity mea-
sure SimX : X2 → [0, 1] is defined as follows:

SimX(x, x′) =
∑

F∈N (X)

πX
F MSimY (F(x),F(x′)).

The function is normalized, i.e., the weights πX
F sum to

a unit,
∑

F∈N (X) πX
F = 1. for the computability The

set functions MSimY compare two sets of nodes of the
same category (see [6] for details). Table 1 illustrates
the set of similarities in our model.
Following the lessons learned with our participation in
the EON 2004 alignment contest [?], we have adapted
the above measure to fit cases where particular pair
of entities is described only by a small subset of the
entire set of category descriptors. Thus, a descriptive
factor is ignored for similarity computation whenever
neither of the compared entities possesses a neighbor
with the underlying link label (e.g., no instances for a
pair of compared classes). In this case, not only its
weight is set to 0, but also the weights of the remaining
”active” factors are increased correspondingly. To scale
that principle up to the entire set of descriptive factors,
the following simple mechanism has been realized in
OLA: In order to keep both normalization and equity
in similarity values, the weights of all non-null factors
for a given entity pair are divided through their sum.
Thus, for a category X, the similarity measure Sim+

X :
X2 → [0, 1] becomes:

Sim+
X(x, x′) =

SimX(x, x′)∑
F∈N+(x,x′) πF

where N+(x, x′) is the set of all relationships F for
which F(x) ∪ F(x′) 6= ∅ 5.

OLA relies on various functions for identifiers compar-
ison. Both string distances and lexical distances are
used. Lexical distances rely on an exploration of Word-
Net 2.0 [7] with a quantitative assessment of the “relat-
edness” between two, possibly multi-word, terms. More
specifically, the degree of relatedness between two Word-
Net entries is computed as the ratio between the depth,
in graph-theoretic sense, of the most specific common
hypernym and the average of both term depths. The
computation of multi-word term similarity consists in
first splitting the terms into a set of tokens each and
then comparing all possible pairs of tokens from oppo-
site sets using the above depth-based principle. The
global term similarity is then computed as a similarity-
based matching between both sets (see above).

As circular dependencies are impossible to avoid with
the above definitions, the computing of the similarity
values requires non-standard mechanisms. Following [2,
9], an equation system is composed out of the similar-
ity definitions where variables correspond to similari-
ties of node pairs while coefficients come from weights.
The process of iterative, fixed-point-bound resolution
of that system, as well as the related convergence and
determinism issues are described in [6].

1.3 Implementation
OLA is implemented in Java. Its architecture follows
the one of the Alignment API and the recent implemen-
tation that was described in [4]. OLA relies on the OWL
API [1] for parsing OWL files. An entire subsystem is
dedicated to the onstruction of OL-Graphs on top of the
parsed ontologies. A set of further components that of-
fer similarity computation services: substring distances,
edit distances, Hamming distance, WordNet interface
(via the JWNL library [3]), etc., that were originally
designed for OLA are now part of the Alignment API.
The VisOn GUI component offers a uniform interface
to all services provided by Alignment API and OLA.
In particular, it visualizes both the input data, i.e., the
OL-Graphs, and the final result, i.e., the alignment file,
of the global process.

1.4 Adaptations made for the contest
Along the preparation of the AOEI 2005 contest, a row
of changes have been made to the system in order to
make it fit the complexity of the alignment discovery
task. The most striking one is the introduction of a
weight-computing mechanism that eliminates the ne-
cessity for the tool user to provide initial weights and
hence makes a significant step towards full automation
of the alignment process.

5That is, there exists at least one y such that (x, y) ∈ F or
at least one y

′ such that (x′
, y

′) ∈ F .
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1.4.1 Weight computing mechanism
As it is far from obvious for novice users how to weigh
the different similarity factors, we initiated work on in-
corporating a weight computing mechanism within the
system. The intended mechanism is both intuitive and
effective so that alignment practitioners with various
skill levels could find a match for their knowledge and
experience. So far, we used a simple heuristic method
that, according to the obtained results, performs rea-
sonably well. The basic idea of the method consists
in distributing the weights among similarity factors in
the generic similarity function of a node category ac-
cording to the relative importance of the corresponding
category in the entire ontology. That is to say we use
the average number of links of the corresponding type
per entity of the category at hand. For instance, the
greater the number of super-class links in the ontology,
the higher the weight of the super-class factor in the
class similarity formula.

1.4.2 Similarity measure for entity names
OLA uses two alternative modes of comparison for en-
tity names (URIs, labels, etc.): a string measure6 (a
default) and a lexical similarity measure that relies on
WordNet 2.0 (see above).

The highly sophisticated lexical similarity measure that
was used in OLA for the EON competition has been re-
placed by a simpler but more purposeful one. Indeed,
the initial function compared multi-word terms on three
separate axes: nouns, verbs and adjectives, as provided
by WordNet 2,0. Such comparison seemed appropriate
for cases where the meanings of a word fall in more
than one part-of-speech category. The inter-word simi-
larities on each axis were aggregated by an independent
best-match computations while the three resulting val-
ues were further combined to a single one via a weighted
sum.

The new measure trades separate matchings on speech-
part-wise basis to a single global matching along entry
similarities that aggregate all three possible aspects of a
word. Thus, the words are compared to each other with
all possible meanings and the highest similarity over a
single pair of meanings is taken for the words.

For the OAEI competition, as we had to rely on a fixed
parameter set for the entire collection of tests, we have
chosen to force the use of the string distance. Indeed,
it showed better performances while being much more
efficient than the WordNet-based computation.

Nevertheless, the improved lexical similarity was not
completely discarded: it is currently used as a pre-
processing tool that helps decide automatically the dis-
tribution of weights among similarity factors.

6subString distance provided by the Alignment API

1.4.3 Minor adaptations
Following experiences from EON 2004, a set of simple
but decisive modifications have been applied in order
to prevent the precision leak in the tests. First, the
instances have been excluded from the alignments by
default, although the possibility is given to the user
to reverse this choice. Then, entities external to the
ontologies at hand have also been excluded from the
alignment (but not from the similarity computation).
Finally, one-to-one alignment production has been en-
forced in OLA to increase the potential recall of the
resulting alignment.

2. RESULTS
The comments are grouped by test categories.

2.101 Tests 10X
OLA performed very well on the tests of this group.
This seems to be due to the fact that while the lan-
guage varies along the individual tests of the group, the
basic ontology entities involved in the similarity compu-
tation remain unchanged with respect to the reference
ontology.

2.102 Tests 2XX
The performances of the algorithm seem to suggest that
three sub-groups of tests can be distinguished. The first
one comprises the tests 21X, 22X, 23X and 24X, with a
small number of exceptions where the performance have
been:

• Quite good: This is the case of tests 201, 202,
with random class names. The random names
were putting a strain on the ability of the algo-
rithm to propagate similarity along the network of
node pairs. Obviously, our technique needs some
improvements on that point.

• Satisfactory: In the case of tests 248, 249, there
is a combination of missing (or random) names
with one other missing factor. For tests 248, 249,
the missing factors are hierarchy (sub-class links)
and instances, respectively. Both play important
role in similarity computation of classes, whenever
these are stripped of their names as is the case
with these two ontologies. Hence the sharp drop in
precision and recall with respect to the preceding
tests.

• Weak: The notorious failure here have been the
tests 205, 209, which are the only ones to use of
synonymous names in the ontology entities (with
respect to the intial ontology). As WordNet has
been plugged-out of the similarity computation,
these results are not surprising.

The second groups is made of the tests 25X. Here OLA
performances varied substantially: from extremely poor
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(254) to satisfactory (252, 259).

The last five ontologies of the group, the 26X ones, have
proven to represent a serious obstacle for OLA. The
performances of the system here were poor to very poor.

2.103 Tests 30X
The real-world ontologies of the group 30X made OLA
perform in an unimpressive way. We believe that this
is due to the fact that string similarity was systemati-
cally used as identifier comparison means. Indeed, ten-
tative runs with WordNet as basis for name similarity
yielded way more precise alignments on that group. Un-
fortunately, they also brought down the overall statis-
tics from the entire test set such as mean precision and
mean recall. Hence the choice of the WordNet-based
lexical similarity for a default name comparison means
has been dropped.

3. GENERAL COMMENTS

3.1 Comments on the results
The results show a substantial progress has been made
since the EON 2004 alignment contest. With respect to
the performances of OLA at that forum, we made a big
leap amounting to about 25% in both mean precision
and mean recall.

Nevertheless, we see that a vast space for improvement
lays ahead of our project. The weaknesses of the current
similarity mechanisms can be summarized as follows.
First, the tuning of the algorithm is still a rigid pro-
cess. Indeed, while the weights can now be computed
following a specific footprint of the ontology, a mecha-
nism for the choice of a particular name similarity on
the same basis has yet to be defined.

Second, although we take into account the biggest possi-
ble amount of knowledge about entities, there are sources
of similarity that have been ignored so far, in particular
entity comments.

3.2 Discussions on the way to improve the pro-

posed system
Besides expanding the lexical processing to comments
in entities and providing a flexible decision mechanism
for the choice of the default name similarity, a possible
improvement of the system will be the integration of a
learning module for weight estimation. As for similarity,
the biggest challenge here is to define the representation
of the input data, i.e., the descriptors of the entries for
the learning algorithm.

Another research track would be the definition of an
optimal matching algorithm. In fact, the current proce-
dures are sub-optimal in the sense that they only chose
local optima for each aligned entity. Consequently, as
strict 1:1 matchings are to be produced, a single bad

choice could easily generate a chain of wrong alignment
decisions and thus negatively impact the performances
of the tool.

3.3 Comments on the experiment
Two months during summer period is definitely too
short to run shuch an experiment.

4. CONCLUSION
In its latest version, OLA has proven a more robust
tool for alignment than it was a year before. While
the difficulties with real-world ontologies persist, the
progress on noisy ones has been substantial.

The next key topic of the research around OLA will be
the automation of the weight computation for a specific
pair of ontologies.

5. RAW RESULTS

5.1 Link to the set of provided alignments
A .zip archive of all the contest results is available at
the following URL:

http://www.iro.umontreal.ca/∼owlola/OAEI.html

5.2 Link to the system and parameters file
A similar archive with the parameters and the .jar files
used in the contest-related experiments is available at
the following URL:

http://www.iro.umontreal.ca/∼owlola/OAEI.html

5.3 Matrix of results
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# Name Prec. Rec. Time

101 Reference alignment 1 1
103 Language generalization 1 1
104 Language restriction 1 1
201 No names 0.71 0.62
202 No names & no comments 0.66 0.56
203 No comments 1 1
204 Naming conventions 0.94 0.94
205 Synonyms 0.43 0.42
206 Translation 0.94 0.93
207 0.95 0.94
208 0.94 0.94
209 0.43 0.42
210 0.95 0.94
221 No specialisation 1 1
222 Flatenned hierarchy 1 1
223 Expanded hierarchy 1 1
224 No instance 1 1
225 No restrictions 1 1
228 No properties 1 1
230 Flattened classes 0.95 0.97
231 1 1
232 1 1
233 1 1
236 1 1
237 0.97 0.98
238 0.99 0.99
239 0.97 1
240 0.97 1
241 1 1
246 0.97 1
247 0.97 1
248 0.59 0.46
249 0.59 0.46
250 0.3 0.24
251 0.42 0.3
252 0.59 0.52
253 0.56 0.41
254 0.04 0.03
257 0.25 0.21
258 0.49 0.35
259 0.58 0.47
260 0.26 0.17
261 0.14 0.09
262 0.2 0.06
265 0.22 0.14
266 0.14 0.09
301 Real: BibTeX/MIT 0.42 0.38
302 Real: BibTeX/UMBC 0.37 0.33
303 Real: Karlsruhe 0.41 0.49
304 Real: INRIA 0.74 0.66
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