
HAL Id: hal-00922318
https://hal.inria.fr/hal-00922318

Submitted on 25 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An integrative proximity measure for ontology alignment
Jérôme Euzenat, Petko Valtchev

To cite this version:
Jérôme Euzenat, Petko Valtchev. An integrative proximity measure for ontology alignment. Proc.
ISWC-2003 workshop on semantic information integration, Oct 2003, Sanibel Island, United States.
pp.33-38. �hal-00922318�

https://hal.inria.fr/hal-00922318
https://hal.archives-ouvertes.fr

An integrative proximity measure for ontology alignment∗

Jérôme Euzenat
INRIA Rhône-Alpes

Jerome.Euzenat@inrialpes.fr

Petko Valtchev
Université de Montréal

Petko.Valtchev@umontreal.ca

Abstract

Integrating heterogeneous resources of the web will require
finding agreement between the underlying ontologies. A
variety of methods from the literature may be used for this
task, basically they perform pair-wise comparison of enti-
ties from each of the ontologies and select the most similar
pairs. We introduce a similarity measure that takes advan-
tage of most of the features of OWL-Lite ontologies and
integrates many ontology comparison techniques in a com-
mon framework. Moreover, we put forth a computation
technique to deal with one-to-many relations and circulari-
ties in the similarity definitions.

1 The ontology alignment problem

Like the Web, the semantic Web will necessarily be dis-
tributed and heterogeneous. Therefore, the integration of
resources found on the semantic Web is a key issue. A
standard approach to the resulting problem lies in the use
of ontologies for data description. However, the available
ontologies could themselves introduce heterogeneity: given
two ontologies, the same entity can be given different names
in each of them or simply be defined in different ways,
whereas both ontologies may express the same knowledge
but in different languages.

Semantic interoperability can be grounded in ontology
reconciliation. The underlying problem, which we call the
“ontology alignment” problem, can be described as follows:
given two ontologies each describing a set of discrete en-
tities (which can be classes, properties, rules, predicates,

∗This work has been partially supported by grants from the French con-
sulate in Montréal and the Centre Jacques Cartier. We thank an anonymous
reviewer for interesting critical remarks that have helped improving this
presentation.

etc.), find the relationships (e.g., equivalence or subsump-
tion) that hold between these entities. Alignment results
can be used for various purposes such as displaying the cor-
respondences, transforming one source into another or cre-
ating a set of bridge axioms between the ontologies. An
overview of alignment methods is presented in §2.

The present paper focuses on automatic and autonomous
ontology alignment, although more interactive scenarios
may be built on top of the proposed technique (e.g., com-
plete a partial alignment or use the result as a suggestion to
the user). It will be also assumed that the ontologies are
described within the same knowledge representation lan-
guage: OWL-Lite (§3).

The language is based on various features: classes and
subsumption, properties and type constraints, etc., and the
goal of this paper is to define a similarity measure that en-
compasses all those features (§4.1) while overcoming ma-
jor alignment problems such as circularities (§4.2) and the
presence of external data types. Our approach is based
on previous work on object-based knowledge representa-
tion similarity which is here adapted to the current web lan-
guages. Interested readers are refered to [14] for a detailed
discussion of the proposed measure.

2 Alignment methods

There has been important background work that can be used
for ontology alignment: in discrete mathematics for match-
ing graphs and trees [7], in databases for reconciling and
merging schemas [11], in machine learning for clustering
compound objects described in a restricted FOL [1].

Basically, aligning amounts at defining a pair-wise dis-
tance between entities (which can be as reduced as an equal-
ity predicate) and computing the best match between them,

i.e., the one that minimizes the total distance (or maximizes
a similarity measure). But there are many different ways to
compute such a distance. Roughly speaking, they can be
classified as (this complements the taxonomy provided in
[11] and only consider features found in actual systems):

terminological (T) comparing the labels of the entities;
string-based (TS) does the terminological match-
ing through string structure dissimilarity (e.g., edit-
ing distance);terminological with lexicons (TL) does
the terminological matching modulo the relationships
found in a lexicon (i.e., considering synonym as equiv-
alent and hyponyms as subsumed);

internal structure comparison (I) comparing the internal
structure of entities (e.g., the value range or cardinality
of their attributes);

external structure comparison (S) comparing the rela-
tions of the entities with other entities;taxonomical
structure (ST) comparing the position of the entities
within a taxonomy;external structure comparison
with cycles (SC) an external structure comparison ro-
bust to cycles;

extensional comparison (E) comparing the known exten-
sion of entities, i.e. the set of other entities that are
attached to them (in general instances of classes);

semantic comparison (M) comparing the interpretations
(or more exactly the models of the entities).

Some contributions can be found in Table 1, we only pro-
vide some salient points for each of them: [3] matches con-
ceptual graphs using terminological linguistic techniques
and comparing superclasses and subclasses. [12] computes
the dissimilarity between two taxonomies by comparing for
each class the labels of their superclasses and subclasses.
FCA-Merge [13] uses formal concept analysis techniques
to merge two ontologies sharing the same set of instances
while properties of classes are ignored. Anchor-Prompt
[10] uses a bounded path comparison algorithm with the
originality that anchor points can be provided by the users
as a partial alignment. Cupid [8] is a first approach com-
bining many of the other techniques. It aligns acyclic struc-
tures taking into account terminology and data types (in-
ternal structure) and giving more importance to leaves. [9]
creates a graph whose nodes are candidate aligned pairs and
arcs are shared properties. Arcs are weighted by their rel-
evance to the nodes and similarity values are propagated
through this graph until a fixed point is reached. T-tree [5]

infers dependencies between classes (bridges) of different
ontologies sharing the same set of instances based only on
the “extension” of classes. Semantic similarity is compa-
rable to the work on subsumption in description logics. In
addition, a number of other systems use machine learning
techniques for finding class similarity from instances [4].

Many of these algorithm use various techniques for find-
ing a alignment, though they still neglect some aspects of
the ontology definitions. Moreover, they are not often ro-
bust to cycles in definitions, e.g., the fixed-point computa-
tion in [9] is not proven to converge. Our goal is to design
a measure that integrates all aspects of OWL-Lite and can
deal with cyclic definitions.

3 Ontology representation

For that purpose, we will first exhibit a representation for
OWL-Lite ontologies (§3.1) that emphasises entities and
their relationships (§3.2).

3.1 The web ontology language OWL

OWL [2] is a language for expressing ontologies on the
web. Due to space restrictions, we only present here the
ontology constructors proposed by the language (the reader
can find elsewhere more information on their semantics).
OWL can be thought of as a description logic embedded in
a frame-like syntax. It comes in three flavors: OWL-Lite,
OWL-DL, and OWL-Full. We concentrate on OWL-Lite
which is sufficient for many purposes while creating vari-
ous difficulties for alignment algorithms.

OWL-Lite is an extension of RDF which allows the def-
inition of individuals as instances of a class and the expres-
sion of relations between individuals. Additionally1, OWL-
Lite:

• uses RDF Schema keywords (rdfs:subClassOf,
rdfs:Property, rdfs:subPropertyOf,
rdfs:range, rdfs:domain) for defining tax-
onomies of classes and properties and restricting the
range of properties;

1We do not present all the constructors, some of them can be easily de-
fined from the others. E.g.,owl:sameClassAs can be defined through recip-
rocalrdfs:subClassOf assertions. Any semantically grounded measure should
be able to account for these equivalences.

Reference T TS TL I S ST SC E M
Dieng & Hug [3] x x x

Staab & Mädche [12] x x x
FCA-Merge [13] x x

Anchor Prompt [10] x x x x
Cupid [8] x x x x

Similarity flooding [9] x x x
T-tree [5] x x

Table 1: Various contributions to alignment at a glance.

• allows the definition of a class (owl:Class) as more
specific or equivalent to the intersection of other
classes;

• allows the assertion of equality (owl:sameAs) or dif-
ference (owl:differentFrom) between two individ-
uals;

• characterizes properties as transitive
(owl:TransitiveProperty), symmetric
(owl:SymmetricProperty) or inverse of another
property (owl:inverseOf);

• can restrict the range of a property in a class to be
another class (owl:allValuesFrom) or assert that
some objects of a particular class must be in the prop-
erty (owl:someValuesFrom).

• can restrict the number of object in a particu-
lar relation with another one through the use of
cardinality constraints (owl:minCardinality and
owl:maxCardinality). In OWL-Lite, these con-
straints can only take values 0, 1, or infinite.

OWL makes use of external data types. In particular it
relies on the XML Schema data types without having to
know them.

3.2 Representation

Instead of computing similarity on an OWL-Lite syntax, it
will be computed on a corresponding graph based syntax.
Such a graph will contain several types of nodes: class (C),
object (O), relation (R), property (P), property instance
(A), datatype (D), datavalue (V), property restriction labels
(L). These nodes are linked by various kinds of relation-
ships:

• rdfs:subClassOf between two classes or two prop-
erties (S);

• rdf:type (I) between objects and classes, property
instances and properties, values and datatypes;

• A between classes and properties, objects and property
instances;

• owl:Restriction (R) expressing the restriction on
a property in a class;

• valuation (U) of a property in an individual

The relation symbols will be used as set-valued fonctions
(F(x) = {x;∃y; 〈x, y〉 ∈ F}). Additionaly, each node is
identified (λ : C ∪ O ∪ R ∪ P ∪ D ∪ A −→ URIRef) by
a URI reference and can be attached annotations.

Finally, to provide the most complete basis for compari-
son, one may wish to bring knowledge encoded in relation
types to the object level. This could be done by adding
some edges between objects that are reverse, symmetric
or transitive for an existing edge or a pair of edges. Re-
lation types can be handled by saturation of the graph or
in a lazy way: forowl:TransitiveProperty by adding
transitivity arcs; forowl:SymmetricProperty by adding
symmetric arcs; forowl:inverseOf by adding the re-
verse arcs (both in generic and individual descriptions); for
owl:FunctionnalProperty by adding a cardinality con-
straint; owl:InverseFunctionnalProperty is not ac-
counted for at that stage.

4 Principles of similarity

Alignment amounts at finding the best correspondance be-
tween entities of two ontologies. This requires the defini-
tion of a similarity on entity pairs (§4.1). Since relation-

ships between entities constitute a major part of the ontolog-
ical knowledge, a sensible similarity measure must process
them suitably, in particular, by comparing two entities with
respect to the sets of “surrounding” entities in the corre-
sponding ontologies. Consequently, relationships entail de-
pendencies between similarity values which further require
an effective computation mechanism to avoid the pitfalls of
circularity (§4.2).

4.1 Similarity measure

The graphic representation chosen for OWL-Lite highlights
the various categories of entities, of links between entities
and of descriptive features for entities. The target corre-
spondence between two ontologies maps entities from one
ontology to the most similar entities of the other one, a prin-
ciple that is based on a dedicated similarity measure. We
choose to use a similarity measure for ease of explaination.
A dual disimilarity can be obtained by an easy transforma-
tion. The measure ranks a pair of entities to a real number in
[0 1] whereby 0 (1) stands for completely different (similar)
entities. It is based on two key assumptions:

• all the components of an entity category area priori
relevant for similarity assessment, although their rel-
ative importance can be tuned through weights. This
is backed by most of the techniques used for ontology
alignment (see §2);

• the entities within each category are dealt with in the
same way, but comparison means for different cate-
gories may diverge.

In summary, the approach followed here consists in as-
signing each entity category, e.g., a class, a specific mea-
sure which is defined as a function of the results computed
on the related entity categories, e.g., a property, a sub-class,
etc., by the respective measures. We choose to aggregate
the various components through a weighted sum. Some
other aggregation operators could be used but at the expense
of the difficulty to find a solution. Weights allow to tune
the importance of a component in the similarity whereby
a zero weight amounts to completely ignoring the compo-

nent. E.g., for two classes classesc, c′ :

SimC(c, c′) = πC
L simL(λ(c), λ(c′))

+ πC
OMSimO(I(c), I ′(c′))

+ πC
S MSimC(S(c),S ′(c′))

+ πC
P MSimP (A(c),A′(c′))

The similarity is normalised: the sum of all weights is
1, i.e.,πC

L + πC
S + πC

O + πC
P = 1, whereas set similarities

(MSim) are basically averages of components similarities,
as illustrated by the measure for super-class sets:

MSimC(S, S′) =

∑

〈c,c′〉∈Pairing(S,S′) SimC(c, c′)

max(|S|, |S′|)

HerePairing(S, S′) is a mapping of element ofS to ele-
ments ofS′ which maximises theMSimC similarity. Thus,
the similarity between the sets is the average of the values
on matched pairs (see definition in [14]). Table 2 lists all
the defined measures.

The target similarity values ultimately depend on the sim-
ilarities between data types, values and URIRef and the way
these are propagated through the relationships in the graphs.
Measures for data types and values should be provided to-
gether with an abstract data type definition, URIRef can be
compared by an equality predicate or by a string similarity
applied to suffixes.

4.2 Computing similarities

One may notice from the above example thatSimC(c, c′)
depends on the result ofSimC on other classes, both
through specialization and properties. In the second case,
the dependancy may easily lead to a “deadlock” where
SimC(c1, c2) depends onSimC(c3, c4) and vice versa.
Consequently, similarities can only be expressed as equa-
tions. More precisely, a system is composed in which a
variable corresponds to an entity pair whereas an equation
is drawn from the definition of that pair similarity, namely
by substituting all similarity occurences by the correspond-
ing variables:

x1,1 = SimC(c1, c
′
1) y1,1 = SimP (p1, p

′
1)

x1,2 = SimC(c1, c
′
2) y1,2 = SimP (p1, p

′
2)

. . .

Function Node Factor Measure
SimO o ∈ O λ(o) simL

a ∈ A, (o, a) ∈ A MSimA

SimA a ∈ A r ∈ R, (a, r) ∈ R SimR

b ∈ O ∪ V MSimV /MSimO

SimV v ∈ V value literal type dependent
SimC c ∈ C λ(c) simL

p ∈ P , (c, p) ∈ R MSimP

c′ ∈ C, (c, c′) ∈ S MSimC

simD d ∈ D λ(r) XML-Schema specific
SimR r ∈ R λ(r) simL

c ∈ C, (r, domain, c) ∈ R MSimC

c ∈ C, (r, range, c) ∈ R MSimC

d ∈ D, (r, range, d) ∈ R SimD

r′ ∈ R, (r, r′) ∈ S MSimR

SimP p ∈ P r ∈ R, (p, r′) ∈ S SimR

c ∈ C, (p, allValuesFrom, c) ∈ R MSimC

n ∈ {0, 1,+∞}, (p, cardinality, n) ∈ R equality

Table 2: Similarity function decompositon.

In case some similarity values (or some similarity or dis-
similarity assertions) are provided as an input to the pro-
gram, the corresponding equation can be replaced by the
assertion of the similarity between the objects.

If each of theMSim were deterministic (only one entity
is compared to another), this system would be solvable di-
rectly because all variables are of degree one. However, in
the case of OWL-Lite, the system is not linear since there
could be many candidate pairs for the best match. Never-
theless, the resolution of the resulting system can still be
carried out as an iterative process that simulates the compu-
tation of the fixed point of a vector function, as shown by
Bisson [1]. The trick consists in defining an approximation
of theMSim-measures, solving the system, replacing the
approximations by the newly computed solutions and iter-
ating. The first values for theseMSim-measures are the
maximum similarity found for a pair, without considering
the dependent part of the equations. The subsequent values
are those of the complete similarity formula filled by the
solutions of the system. The system converges: the simi-
larities cannot decrease between steps – in an equation, the
“ground” part remains steady while dependencies may only
propagate their own increase – and the similarity is bounded

by 1 – no variable value can exceed 1 since none of its com-
ponents can (inductively). The process halts when none of
the values increases by more thanǫ with respect ot the pre-
vious iteration. The algorithm may well converge to a local
optimum, i.e., a different matching in one equation may, at
least theoretically, lead to a different global solution. A so-
lution could lay in a random change of some matchings.

The result of the process is an approximation of the sim-
ilarity between entities from opposite ontologies. The ulti-
mate alignment goal is a satisfactory mapping between on-
tologies which uses the similarity values as a basis for the
ranking of entity pairs.

5 Conclusion

In order to be able to align ontologies written in OWL-Lite,
we adapted a method developed for measuring object-based
similarity to OWL-Lite. This method has the benefit of con-
sidering many of the features of ontology descriptions in
computing the alignment: it deals successfully with exter-
nal data types, internal structure of classes as given by their
properties and constraints, external structure of classes as

given by their relationships to other classes and the avail-
ability of individuals.

This is an improvement towards other methods that take
advantage of only a subpart of the language features. The
proposed methods does not only compose linearly individ-
ual methods for assessing the similarity between entities,
it uses an integrated similarity definition that make them
interact during computation. Moreover, it copes with the
unavoidable circularities that occur within ontologies.

Yet, this measure does not cover all syntactic
constructions of OWL-Lite (e.g.,owl:AllDifferent,
owl:InverseFunctionnalProperty). A more com-
plete description of this similarity measure is in prepara-
tion [6]. We also plan to neatly integrate some features of
OWL-DL (e.g.,owl:oneOf). Moreover, thorough tests of
our measure must be performed to find weights and external
similarity measures that provide satisfactory results.

The proposed similarity measure is not semantically jus-
tified, but exhibits good features such as not imposing in-
jective mapping. However, we would like it to be at least
syntax-independent for OWL-Lite. To that extent, we must
ensure that whatever the description of two entities, if they
are semantically equivalent, they behave identically with re-
spect to the similarity measure. This will amounts to ei-
ther normalising the graph (addingowl:minCardinality
constraints for eachowl:someValueFrom for instance) or
comparing heterogeneous components.

References

[1] Gilles Bisson. Learning in FOL with similarity mea-
sure. InProc. 10th American Association for Artificial
Intelligence conference, San-Jose (CA US), pages 82–
87, 1992.

[2] Mike Dean and Guus Schreiber (eds.). OWL web
ontology language: reference. Working draft, W3C,
2003. http://www.w3.org/TR/owl-ref/.

[3] Rose Dieng and Stefan Hug. Comparison of "personal
ontologies" represented through conceptual graphs.
In Proc. 13th ECAI, Brighton (UK), pages 341–345,
1998.

[4] An-Hai Doan, Jayant Madhavan, Pedro Domingos,
and Alon Halevy. Ontology matching: A machine

learning approach. In Steffen Staab and Rudi Studer,
editors,Handbook on Ontologies in Information Sys-
tems, pages 397–416. Springer-Verlag, Heildelberg
(DE), 2003.

[5] Jérôme Euzenat. Brief overview of T-tree: the
Tropes taxonomy building tool. InProc. 4th
ASIS SIG/CR workshop on classification re-
search, Columbus (OH US), pages 69–87, 1994.
ftp://ftp.inrialpes.fr/pub/sherpa/publications/euzenat93c.ps.gz.

[6] Jérôme Euzenat and Petko Valtchev. Alignment in
OWL-Lite, 2003. in preparation.

[7] John Hopcroft and Robert Karp. Ann5/2 algorithm
for maximum matchings in bipartite graphs.SIAM
Journal on Computing, 2(4):225–231, 1973.

[8] Jayant Madhavan, Philip Bernstein, and Erhard
Rahm. Generic schema matching using Cupid. In
Proc. 27th VLDB, Roma (IT), pages 48–58, 2001.
http://research.microsoft.com/ philbe/CupidVLDB01.pdf.

[9] Sergey Melnik, Hector Garcia-Molina, and Erhard
Rahm. Similarity flooding: a versatile graph matching
algorithm. InProc. 18th International Conference on
Data Engineering (ICDE), San Jose (CA US), 2002.

[10] Natalya Noy and Mark Musen. Anchor-PROMPT:
Using non-local context for semantic match-
ing. In Proc. IJCAI 2001 workshop on ontol-
ogy and information sharing, Seattle (WA US),
pages 63–70, 2001. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-47/.

[11] Erhard Rahm and Philip Bernstein. A survey of ap-
proaches to automatic schema matching.VLDB Jour-
nal, 10(4):334–350, 2001.

[12] Steffen Staab and Alexander Mädche. Measuring sim-
ilarity between ontologies.Lecture notes in artificial
intelligence, 2473:251–263, 2002.

[13] Gerd Stumme and Alexander Mädche. FCA-merge:
bottom-up merging of ontologies. InProc. 17th IJCAI,
Seattle (WA US), pages 225–230, 2001.

[14] Petko Valtchev. Construction automatique de tax-
onomies pour l’aide à la représentation de connais-
sances par objets. Thèse d’informatique, Université
Grenoble 1, 1999.

