
HAL Id: hal-00922476
https://hal.inria.fr/hal-00922476

Submitted on 26 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDF Entailment as a Graph Homomorphism
Jean-François Baget

To cite this version:
Jean-François Baget. RDF Entailment as a Graph Homomorphism. Proc. 4th international semantic
web conference (ISWC), Nov 2005, Galway, Ireland. pp.82-96, �10.1007/11574620_9�. �hal-00922476�

https://hal.inria.fr/hal-00922476
https://hal.archives-ouvertes.fr


RDF Entailment as a Graph Homomorphism

Jean-François Baget

INRIA Rhône-Alpes
655 avenue de l’Europe

38334 Saint Ismier
France

jean-francois.baget@inrialpes.fr

Abstract. Semantic consequence (entailment) in RDF is ususally com-
puted using Pat Hayes Interpolation Lemma. In this paper, we reformu-
late this mechanism as a graph homomorphism known as projection in
the conceptual graphs community.
Though most of the paper is devoted to a detailed proof of this result,
we discuss the immediate benefits of this reformulation: it is now easy
to translate results from different communities (e.g. conceptual graphs,
constraint programming, . . . ) to obtain new polynomial cases for the NP-
complete RDF entailment problem, as well as numerous algorithmic
optimizations.

1 Introduction

Simple RDF is the knowledge representation language on which RDF (Resource
Description Framework) and its extension RDFS are built. As a logic, it is pro-
vided with a syntax (its abstract syntax will be used here), and model theoretic
semantics [1]. These semantics are used to define entailments: an RDF graph G

entails an RDF graph H iff H is true whenever G is. However, since an infinity
of interpretations must be evaluated according to this definition, an operational
inference mechanism, sound and complete w.r.t. entailment, is needed. This is
the purpose of the interpolation lemma [1]: a finite procedure characterizing en-
tailments. It has been extended to take into account more expressive languages
(RDF, RDFS [1], and other languages e.g. [2]). All these extensions rely on a
polynomial-time initial treatment of the graphs, the hard kernel remaining the
basic simple entailment, which is a NP-hard problem.

In this paper, we intend to contribute to the study of this fundamental simple
entailment by reformulating it as a graph homomorphism, extensively studied
both in mathematics and in graph theory. This will allow the RDF community
to import numerous results from related problems: colored homomorphisms [3],
conceptual graphs projection [4], or constraint satisfaction problems [5]. The
experience acquired during the last 20 years in these different communities can
help us to quickly develop efficient algorithms for RDF entailment, as well as
understand what are the polynomial cases for this problem.

However, the bulk of the paper presented here is devoted to the reformula-
tion as a graph homomorphism itself. All necessary proofs have been included,



independently from the proof of the interpolation lemma [1]. Indeed, we believe
that our proof framework can be used as a basis to apply our reformulation to
many extensions of simple RDF: in that case, an in-depth understanding of that
proof is required.

Section 2 is devoted to the basic definitions and results of [1]. In section 3, we
reformulate the interpolation lemma as a directed, multigraph homomorphism.
Section 4 provides a standalone proof of this result, via a reformulation of entail-
ment as a directed hypergraph homomorphism. In section 5, we provide a list of
results that can be translated to simple RDF entailments. Finally, in section 6,
we discuss the advantages and limitations of this approach.

2 Simple RDF: Syntax, Semantics, and Inferences

This section presents simple RDF, the basic logic on which RDF and RDFS are
built: we recall here definitions and results presented in [1]. We first present the
abstract syntax of RDF: note that we distinguish here an RDF tripleset (a set of
triples) from its associated graph (that will be presented in the next section). The
semantics of RDF triplesets allows to formally define the notion of entailment,
that is characterized by the interpolation lemma. Note also that though we use
here the terms of interpretations, entailment, it refers here without ambiguity to
what is called simple interpretation or simple entailment in [1]. These definitions
precise our notations, and the examples given introduce the running example
used all along this paper. The reader should refer to [1] for more explanations.

2.1 RDF Abstract Syntax

We consider a set of terms V partitioned in three pairwise disjoint sets: a set U
of URI references (or urirefs), a set B of blanks, and a set L of literals (itself
partitioned into two disjoint sets, the set LP of plain literals and the set LT of
typed literals). Let V ⊆ V be a subset of V , then we denote by U(V ) (resp. B(V ),
LP (V ), L(V ), LT (V )) the set of urirefs of V (resp. of blanks of V , of literals of
V , of plain literals of V , of typed literals of V ). Without loss of generality, and
for the sake of simplicity, we have not taken language tags into account here.

Definition 1 (RDF tripleset). An RDF tripleset is a subset of (U∪B)×U×V.
Its elements are called RDF triples.

An RDF triple 〈s, p, o〉 can be read “there is a relation of sort p whose subject
is the entity s an whose object is the entity o”. Let G be an RDF tripleset. We
denote by V(G) the terms of V that appear in any triple of G, i.e. V(G) = {v ∈
V | ∃〈s, p, o〉 ∈ G, x = s or x = p or x = o}.

Example 1. Let V = {u1, u2, b1, b2, l} be a set of terms where u1 and u2 are
urirefs, b1 and b2 are blanks, and l is a plain literal. Let us now consider the two
following RDF triplesets, used as a running example along this paper:

– H = {〈u1, u1, b1〉 〈u1, u1, b2〉, 〈b2, u2, l〉, 〈b1, u1, b2〉}
– G = {〈u1, u1, b1〉 〈b1, u1, b1〉, 〈b1, u2, l〉, 〈u1, u2, u2〉 }



2.2 Interpretations

Definition 2 (Simple Interpretations). Let V be a set of terms. An inter-
pretation of V is a 5-tuple 〈IR, IP , ιext, ιs, ιl〉 where IR is a set of resources con-
taining LP (V )1, IP is a set of properties, ιext : IP → 2IR×IR maps each property
to a set of pairs of resources (the extension of the property), ιs : U(V ) → IR∪IP

maps each uriref to a resource or a property, and ιl : LT (V ) → IR maps each
typed literal to a resource.

Example 2. Let V be the set of terms defined in Ex. 1. We consider the following
interpretation I = 〈IR, IP , ιext, ιs, ιl〉 of V defined by:

– IR = {♣,♥, l};
– IP = {♣,♥};
– ιext(♣) = {〈♣,♥〉, 〈♥,♥〉} and ιext(♥) = {〈♥, l〉};
– ιs(u1) = ♣ and ιs(u2) = ♥.

For the sake of clarity, it has been proposed in [1] to give a graphical represen-
tation of an interpretation as shown in Fig. 1.

u1 u2

♣ ♥
IP IR

l

ιext(♣) ιext(♥)

ιSιS

Fig. 1. A Graphical Representation of the Interpretation I .

Definition 3 (Models). Let G be an RDF tripleset, and V be a set of terms
that contains the set of terms of G, i.e. such that (U(V(G))∪L(V(G))) ⊆ V . An
interpretation 〈IR, IP , ιext, ιs, ιl〉 of V is a model of G iff there exists a mapping
ι : V(G) → IR ∪ IP such that:

1. for each plain literal l ∈ LP (V(G)), ι(l) = l;
2. for each typed literal l ∈ LT (V(G)), ι(l) = ιl(l);
3. for each uriref u ∈ U(V(G)), ι(u) = ιs(u);
4. for each blank b ∈ B(V(G)), ι(b) ∈ IR;

1 This inclusion allows to avoid, for the sake of simplicity, the set LV of literal values.



5. for each triple 〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈ ιext(ι(p)).

Example 3. Let us show that the interpretation I in Ex. 2 is a model for the
RDF tripleset H in Fig. 1. We have ι(u1) = ♣, ι(u2) = ♥, and ι(l) = l (all
these values are constrained by the interpretation I). Our only choice is with
the blanks: we chose ι(b1) = ι(b2) = ♥ ∈ IR. It remains now to check that for
each triple 〈s, p, o〉 of H , 〈ι(s), ι(o)〉 ∈ ιext(ι(p)). We will only check the triple
〈b2, u2, l〉: ιext(ι(u2)) = ιext(♥) = {〈♥, l〉} ⊇ 〈ι(b2), ι(l)〉. The condition is also
verified for the 4 other triples. It follows that I is a model of H . A tenacious
reader can now check that I is not a model of G (he has to prove that no mapping
ι respects these conditions).

2.3 The Interpolation Lemma

Definition 4 (Satisfiability, Entailment). Let G and H be two RDF triple-
sets. We say that G is satisfiable if there exists an interpretation that is a model
of G. We say that H is a semantic consequence of G (we also say that G entails
H, and note G |= H) if every model of G is also a model of H.

Example 4. The RDF tripleset H of Ex. 1 is satisfiable since the interpretation
I of Ex. 2 is a model of H . Since I is not a model of G (Ex. 1), we can conclude
that H does not entail G.

Definition 5 (Instance). Let G be an RDF tripleset, and let V be a set of
terms that contains the set of terms of G. Let us consider an instance mapping
α : V(G) → V mapping each blank of G to a term of V , and each uriref or
literal to itself. The RDF tripleset Gα = {〈α(s), p, α(o)〉 | 〈s, p, o〉 ∈ G} is called
an instance of G.

Example 5. Let us consider the set of terms V and the RDF tripleset G of Ex. 1.
We define an instance mapping α as follows: α(b1) = b1, α(b2) = b1 (every other
element of V is mapped to itself). The instance Hα is the RDF tripleset defined
by: Hα = {〈u1, u1, b1〉, 〈b1, u2, l〉, 〈b1, u1, b1〉} (notice that a second occurence of
〈u1, u1, b1〉 has been removed from the set).

Theorem 1 (Interpolation Lemma). Let G and H be two RDF triplesets.
Then G |= H iff there exists an instance H ′ of H such that H ⊆ G.

Example 6. Since the RDF tripleset Hα of Ex. 5 is a subset of the RDF tripleset
G of Ex. 1, then G |= H .

3 RDF Triplesets as Directed, Labelled Multigraphs

RDF triplesets are given a standard graphical representation: the drawing of
the graph (as a mathematical structure) associated with the tripleset (hence the
usual name of RDF graphs). It is generally assumed that most people are more
comfortable with this representation than with triples, at least when the graphs



involved are not to big. The graphs whose drawings correspond to this represen-
tation are directed, labelled multigraphs (there can be many arcs between two
nodes, a requirement since two arcs can have different labels). In this section, we
reformulate the usual characterization of entailment (the interpolation lemma of
[1], expressed on the RDF tripleset) as a graph homomorphism: graphs are no
longer only used for a representation purpose, but also for reasonings.

3.1 Standard Graphical Representation of an RDF Tripleset

Definition 6 (Directed, Labelled Multigraphs). A directed labelled multi-
graph (or M-graph) over a set of terms V is a 4-tuple G = 〈N, A, γ, ǫ〉 where N

is a finite set of nodes, A is a finite set of arcs, γ : A → N ×N maps each arc
to a pair of nodes called its ends (the first being the origin and the second the
destination), and ǫ : N ∪ A → V maps each node and arc to a term.

Let G be an RDF tripleset. We call entities of G the subset of V(G) that
contains the terms appearing either as subject or object in a triple of G, i.e.

ent(G) = {x ∈ V(G) | ∃〈s, p, o〉 ∈ G, x = s or x = o} (it is called the nodeset in
[2]). The M-graph M(G) = 〈N, A, γ, ǫ〉 associated with the RDF tripleset G is
built as follows:

1. To each term e ∈ ent(G) we associate a distinct node m(e). Then N =
{m(e) | e ∈ ent(G)}. Each node is labelled by the element of the set of terms
associated to it: ǫ(m(e)) = e.

2. To each triple t = 〈s, p, o〉 ∈ G we associate a distinct arc m(t). Then
A = {m(t) | t ∈ G}. The ends of the arc m(t) are the nodes associated with
the subject and the object of the triple t: γ(m(t)) = 〈m(s), m(o)〉. The label
of the arc m(t) is the property of the triple t: ǫ(m(t)) = p.

Example 7. The M-graph M(H) = 〈N, A, γ, ǫ〉 obtained from the graph H of
Ex. 1 is defined by: N = {1, 2, 3, 4}, A = {a, b, c, d}, γ(a) = 〈1, 2〉, γ(b) = 〈2, 3〉,
γ(c) = 〈1, 3〉, γ(d) = 〈3, 4〉, ǫ(1) = u1, ǫ(2) = b1, ǫ(3) = b2, ǫ(4) = l, ǫ(a) = u1,
ǫ(b) = u1, ǫ(c) = u1, and ǫ(d) = u2.

The M-graph M(G) associated with an RDF tripleset G can be drawn as
follows: each node labelled by a uriref or a blank is represented by an oval, and
each node labelled by a literal is represented by a rectangle. The label of the
node is written inside the oval or rectangle associated to it (it is not mandatory
to write the label when it is a blank). Each arc a with γ(a) = 〈x, y〉 is represented
by an arrow from the figure associated with x to the figure associated with y.
The label ǫ(a) is written next to this arrow.

Example 8. Fig. 2 represents the drawing of the M-graph M(H) of Ex. 7 (usu-
ally conflated with the RDF tripleset H itself).

Note that the complexity in both time and space of the transformation M
is linear in the size of the tripleset if the graph is encoded by an adjacence list,
and is quadratic if it is encoded by an incidence matrix.



u1 u1

u1
u1

u2b1

b2

l

Fig. 2. Drawing of the M-graph associated with an RDF tripleset.

3.2 Simple Entailment as a Multigraph Homomorphism

Here we caracterize RDF entailment as a M-graph homomorphism. Graphs ho-
momorphisms have been extensively studied in mathematics as well as in com-
puter science (e.g. [3]), though the generalization we use here is more akin to
the projection used to caracterize entailment of conceptual graphs (CGs) [4].
Though we have decided not to present our results via a translation to CGs, the
reader can refer to [6] or [7] for precise relationships between RDF and CGs.

Definition 7 (Directed, Labelled Multigraph Homomorphism). Let G =
〈N, A, γ, ǫ〉 and G′ = 〈N ′, A′, γ′, ǫ′〉 be M-graphs over a set of terms V . Let ≤ be
a preorder over V . A directed, labelled multigraph homomorphism according to
≤ (or ≤-M-morphism) from G into G′ is a mapping π : N → N ′ that preserves
the preorder on labels as well as incidence of arcs, i.e.:

1. for each n ∈ N , ǫ′(π(n)) ≤ ǫ(n);
2. for each a ∈ A with γ(a) = 〈s, o〉, ∃a′ ∈ A′ such that γ′(a′) = 〈π(s), π(o)〉

and ǫ′(a′) ≤ ǫ(a).

Example 9. Let us consider the M-graphs associated with the triplesets G and
H of Ex. 1. Now we define ≤1 as the smallest preorder defined on the set of
terms V fulfilling these conditions:

– for each two blanks b1 and b2, b1 ≤1 b2;
– for each blank b and each uriref or literal c, c ≤1 b.

It implies that urirefs and literals are pairwise non comparable. Then there exists
a ≤1-M-morphism from H into G, illustrated by the dashed arrows in fig. 3.

It remains now to prove that such a ≤1-M-morphism caracterizes simple RDF
entailment.

Theorem 2. Let G and H be two RDF triplesets defined over a set of terms V .
Let ≤1 be the partial order on V defined in Ex. 9. Then G |= H if and only if
there is a ≤1-M-morphism from M(H) into M(G).

As proven below, this is a mere reformulation of the interpolation lemma.
Next section provides a standalone proof (that can be considered as an another
proof for the interpolation lemma). Further sections will be devoted to the ad-
vantages of this reformulation (complexity and algorithms).

Proof. We use the interpolation lemma to prove both directions of the equivalence:



u1

u1

u1 u1

u1

u1
u1

u2

u2

u2

u2

b1

b1

b2

l

l M(H)

M(G)

Fig. 3. ≤1-M-morphism from the M-graph M(H) into the M-graph M(G).

(⇒) Suppose G |=s H . Then there exists an instance mapping α such that Hα ⊆ G.
Let us consider the mapping π from the nodes of M(H) into the nodes of M(G)
defined as follows: for each node m(x) of M(H) (i.e. associated with the term x in
V(H)), π(m(x)) = m(α(x)) (where m(α(x)) is the node of M(G) associated with
the term α(x)). Let us now prove that π is a ≤1-M-morphism from M(H) into
M(G).

1. We first prove that π preserves the preorder on nodes labels. Let m(x) be an
arbitrary node of M(H). The label of m(x) is x. The label of π(m(x)) is the
label of m(α(x)), i.e. α(x). It remains to show that α(x) ≤1 x. If x is a blank,
then it is greater than anything else (def. of ≤1). Otherwise, α(x) = x. In both
cases, α(x) ≤1 x.

2. Finally, we prove that π preserves the incidence of arcs and the preorder on
their labels. Let a be an arc of H with γ(a) = 〈m(s), m(o)〉 and ǫ(a) = p.
By construction of M(H), 〈s, p, o〉 is a triple of H . The interpolation lemma
asserts that 〈α(s), p, α(o)〉 is a triple of G. By construction of M(G), it contains
an arc a′ such that γ(a′) = 〈m(α(s)),m(α(o))〉 and ǫ(a′) = p. We have ǫ(a′) =
p ≤1 ǫ(a) = p and, by definition of π, γ(a′) = 〈π(m(s)), π(m(o))〉. ⊓⊔

(⇐) Suppose a ≤1-M-morphism from M(H) into M(G). Let us consider the mapping
α : V(H) → V defined as follows: for every node m(b) in M(H) labelled by a
blank, α(b) = ǫ(π(m(b))), for every node m(x) ∈ M(H) labelled by an uriref or
a literal, α(x) = x. The mapping α is an instance mapping. It remains to prove
that Hα ⊆ G. Let us consider an arbitrary triple 〈α(s), p, α(o)〉 ∈ Hα. We have
to prove that this triple is an element of G. By construction of M(H), there
exists an arc a of M(H) such that γ(a) = 〈m(α(s)),m(α(o))〉 and ǫ(a) = p.
By definition of an homomorphism, there exists an arc a′ ∈ M(G) with γ(a′) =
〈π(m(α(s))), π(m(α(o)))〉 and ǫ(a′) ≤1 ǫ(a). Since it is an uriref, ǫ(a) = ǫ(a′) = p.
See that for every entity e ∈ H , π(m(α(e))) = m(α(e)). If e is a uriref or a literal,
α(e) = e, and we have to prove that π(m(e)) = m(e). It is true because there is a
unique node in M(G) labelled by e, and the node labelled by e in M(H) must be
mapped into it.2 If e is a blank, then α(e) = ǫ(π(m(e))) (by definition of α). Then
m(α(e)) = m(ǫ(π(m(e)))) = π(m(e)). It follows that γ(a′) = 〈m(α(s)),m(α(o))〉
and finally, that the triple 〈α(s), p, α(o)〉 (used to obtain a′) is in G. ⊓⊔

2 The reader familiar with conceptual graphs will recognize here the requirement for
a normality condition.



A first interest of this reformulation is in a representational point of view: in
fig. 3, not only data is graphically represented, but also inferences (the drawing
of the morphism that caracterizes entailment). Experiences in the CG commu-
nity (e.g. [8]) show that these “graphical inferences” are very easy to understand
for non-specialists in logics or computer science. We will also show (in Sect. 5)
that this reformulation offer great benefits for computational purposes.

4 RDF Triplesets as Directed, Labelled Hypergraphs

But before that, we will focus on another encoding of RDF triplesets (as hy-
pergraphs). A different representation of RDF triplesets (as bipartite graphs)
has been proposed in [9]. Its main advantage is its proximity to the tripleset’s
semantics. Here we use this representation (these bipartite graphs are the in-
cidence bipartites associated with our hypergraphs, so they can be considered
as the same mathematical objects) also for a reasoning purpose. Indeed we use
a transformation of RDF triplesets into hypergraphs (as in [9]) as well as a
transformation of interpretations into the same hypergraphs.

A first result (Lemma 2) shows that an interpretation I is a model for a
tripleset G iff there is a morphism from the hypergraph associated with G into the
one associated with H . The immediate interests are twofold: it provides us with
a clear graphical representation of interpretations (extending the representation
in [9] to interpretations), and, in the same way as in the previous section, it is
a graphical representation of the proof that an interpretation is a model of a
tripleset.

The same morphism, this time between two graphs associated with triplesets,
is used to caracterize simple RDF entailment (Theorem 3). It shows how the
graphs in [9] can be used for reasonings. Finally, we show the equivalence between
this caracterization and the one used in Theorem 2, effectively providing another
proof for the Interpolation Lemma.

Let us now discuss about the proof of Theorem 3 itself. It is grounded on
a very simple framework. Let us consider a logic L (here simple RDF). Let
us consider a set E (here the hypergraphs), and a transitive relation ⊑ (here
the existence of a morphism) on E . Let us now introduce a transformation H
associating an element of E to each formula and each interpretation of L. This
transformation must satisfy the following criteria:

1. i is a model of f if and only if H(f) ⊑ H(i);
2. for every satisfiable formula f of L, there exists a model i of f such that

H(i) = H(f).

These two criteria are then sufficient to prove that ⊑ is sound and complete
w.r.t. entailment of L, i.e. that f |= f ′ iff f ′ ⊑ f . Lemma 2 expresses the first
condition, and lemma 3 the second. Theorem 3 reformulates this soundness and
completeness result in the case of RDF triplesets.

Note that this framework has been successfully applied for conceptual graphs
[10], and remains valid for many extensions of simple RDF: we show in the next



section how it can be extended to RDF/RDFS, but it could also be used for the
extensions presented in [2]. A Master’s thesis is actually devoted in our team,
using this framework, to extend RDF entailment to path queries.

4.1 Preliminary Definitions

Definition 8 (Directed, Labelled Hypergraph). A directed labelled hyper-
graph (or H-graph) over a set of terms V is a triple G = 〈N, H, ǫ〉 where N is
a finite set of nodes, H ⊆ N+ is a finite set of hyperarcs, and ǫ : N ∪ H → V

maps each node and hyperarc to an element of the set of terms.

An H-graph can be represented as follows: a node is represented by a rectangle
in which we write its label. An hyperarc 〈x− 1, ..., xp〉 is represented by an oval
in which we write its label. For 1 ≤ i ≤ p, we draw a line between the oval and
the rectangle associated with the node xi, and write the number i next to this
line to indicate the ordering of this tuple. We have chosen this representation
by analogy with conceptual graphs (indeed, the CG semantically equivalent to
a tripleset has the same representation as this hypergraph).

We must now update our morphisms to this new structure. The following
lemma handles the required transitivity of the binary relation associated with
the existence of a morphism.

Definition 9 (Directed, Labelled Hypergraph Homomorphism). Let G =
〈N, H, ǫ〉 and G′ = 〈N ′, H ′, ǫ′〉 be two H-graphs over a set of terms V . Let ≤ be
a preorder over V . A directed, labelled hypergraph homomorphism according to
≤ (or ≤-H-morphism) from G into G′ is a mapping π : N → N ′ that preserves
the preorder on labels as well as incidence of hyperarcs, i.e.:

1. for each n ∈ N , ǫ′(π(n)) ≤ ǫ(n);

2. for each h = 〈n1, . . . , nk〉 ∈ H, ∃a′ = 〈π(n1), . . . , π(nk)〉 ∈ H ′ such that
ǫ′(a′) ≤ ǫ(a).

Lemma 1 (Composition). The composition of two ≤-H-morphisms is a ≤-
H-morphism.

Proof. Let G1, G2, G3 be three H-graphs over a set of terms V . Let ≤ be a preorder
on V . Let π1 (resp. π2) be a ≤-H-morphism according to ≤ from G1 into G2 (resp.
from G2 into G3). We prove that π2 ◦ π1 is a ≤-H-morphism from G1 into G3.

1. Let n be a node of G1. We have ǫ(π1(n)) ≤ ǫ(n) and ǫ(π2(π1(n))) ≤ ǫ(π1(n)) (def.
of H-morphism). Since a preorder is transitive, ǫ(π2(π1(n))) ≤ ǫ(n).

2. Let h1 = 〈n1, . . . , np be an hyperarc of G1. Then there exists an hyperarc h2 =
〈π1(n1), . . . , π1(np)〉 of G2 with ǫ(h2) ≤ ǫ(h1) (def. of H-morphism). Similarly,
there exists an hyperarc h3 = 〈π2(π1(n1)), . . . , π2(π1(np))〉 with ǫ(h3) ≤ ǫ(h2). We
also conclude thanks to the transitivity of ≤. ⊓⊔



4.2 Hypergraph Representation of a Simple Interpretation

Let I = 〈IR, IP , ιext, ιs, ιl〉 be an interpretation of a set of terms V . We associate
to this interpretation an H-graph H(I) = 〈N, H, ǫ〉 built as follows:

1. To each resource r ∈ IR ∪ IP we associate a distinct node h(r). Then N =
{h(r) | r ∈ IR ∪ IP }. Each of these nodes will be labelled by a subset of V .
Intuitively, ǫ(h(x)) = {v1, . . . , vk} means that v1, . . . , vk are all the terms of
V interpreted by the resource or property x in I. Let us now formally build
this labelling: each node is initially labelled by the emptyset {}. Then for
each element x of V :
– if x is a plain literal in LP (V ), ǫ(h(x)) = ǫ(h(x)) ∪ {x};
– if x is a typed literal in LT (V ), ǫ(h(ιl(x))) = ǫ(h(ιl(x))) ∪ {x};
– if x is an uriref in U(V ), ǫ(h(ιs(x))) = ǫ(h(ιs(x))) ∪ {x};
– otherwise, if x is a blank in B(V ), do nothing.

2. For each element p ∈ IP , for each pair 〈x, y〉 ∈ ιext(p), there exists an
hyperarc 〈h(x), h(p), h(y)〉 in H labelled by {iext}.

Example 10. Fig. 4 shows the representation of the H-graph associated with
the interpretation of Ex. 2. This representation is simpler than the usual one
(Fig. 1), and highlights the structure of the interpretation. However we have lost
information on the set IP , since a node that is not the second argument of an
hyperarc may belong to IP or not (though this information is never needed).

{iext}

{iext}

{iext}{u2}{u1}

1
1

1
2

2

2
3

3

3 {l}

Fig. 4. The H-graph associated with an interpretation.

4.3 Hypergraph Representation of an RDF Tripleset

Let G be an RDF tripleset. The directed, labelled hypergraph H(G) = 〈N, H, ǫ〉
associated with G is built as follows:

1. To each element e ∈ V(G) we associate a distinct node h(e). Then N =
{h(e) | e ∈ V(G)}. As for the hypergraph associated with an interpretation,
each node h(e) is labelled by a set. This set is the emptyset if e is a blank
and the singleton {e} otherwise.

2. To each triple t = 〈s, p, o〉 ∈ G we associate a distinct hyperarc h(t) =
〈h(s), h(p), h(o)〉. Then H = {〈h(s), h(p), h(o)〉 | 〈s, p, o〉 ∈ G}. The label of
the arc h(t) is {iext}.

Example 11. Fig. 5 shows the H-graph associated with the RDF tripleset H of
Ex. 1.



{}

{}

{iext}

{iext}

{iext}

{iext}

{u2}{u1} 1

1
1

1 2

2
2

2 3
3

3

3

{l}

Fig. 5. The H-graph associated with an RDF tripleset.

4.4 Simple Entailment as an Hypergraph Homomorphism

Lemma 2. Let G be an RDF tripleset, and V be a set of terms that contains
the set of terms of G. Let ≤2 be the partial order defined by e ≤2 e′ ⇔ e′ ⊆ e.
An interpretation I of V is a model of G iff there exists a ≤2-H-morphism from
H(G) into H(I).

Proof. We successively prove both directions of the equivalence.

(⇒) Let us consider a model I = 〈IR, IP , ιext, ιs, ιl〉 of G. We have to show that there
exists a ≤2-H-morphism from H(G) into H(I). Since I is a model of G, there exists
a mapping ι : V(G) → IR ∪ IP that respects the 5 conditions listed in Def. 3. We
build the mapping π from the nodes of H(G) into the nodes of H(I) as follows:
if h(x) is a node of G, then π(h(x)) = h(ι(x)). It remains to show that π is a
≤2-H-morphism.
1. Let h(x) be a node of x. Let us show that ǫ(π(h(x))) ≤2 ǫ(h(x)), i.e. ǫ(h(x)) ⊆

ǫ(π(h(x))).
- if x is a blank, then by construction ǫ(h(x)) = ∅ and is thus a subset of

any other set;
- otherwise, by construction, ǫ(h(x)) = {x}. It remains only to check that

x is an element of ǫ(π(h(x))) = ǫ(h(ι(x))). If x is a plain literal, then
ι(x) = x and the label of h(ι(x)) contains x. If x is an uriref (resp. a typed
literal), ι(x) = ιs(x) (resp. ιl(x)). Then the label of h(ι(x)) also contains
x.

2. Let us now prove that for every hyperarc a = 〈h(s), h(p), h(o)〉 ∈ H(G), there
exists an hyperarc a′ = 〈π(h(s)), π(h(p)), π(h(o))〉 ∈ H(I). If such an hyperarc
exists, it will be easy to check that ǫ(a′) ≤2 ǫ(a): all hyperarcs are labelled by
{iext}. Since a = 〈h(s), h(p), h(o)〉 ∈ H(G), then by construction there must
be a triple 〈s, p, o〉 in G. Thus (Def. 3) 〈ι(s), ι(o)〉 ∈ ιext(ι(p)). By construction
of H(I), it contains an hyperarc 〈h(ι(s)), h(ι(p)), h(ι(o))〉. And by construction
of π, this hyperarc is exactly 〈π(h(s)), π(h(p)), π(h(o))〉. ⊓⊔

(⇐) Now let us consider a ≤2-H-morphism π from H(G) into H(I). We build a mapping
ι : V(G) → IR ∪ IP as follows: for each node h(x) of H(G), consider the node h(y)
of H(I) such that h(y) = π(h(x)). Then ι(x) = y. It remains now to prove that ι

satisfies the 5 conditions of Def. 3. For each node h(x) of H(G), we consider the
node h(y) of H(I) such that h(y) = π(h(x)).

- If x is a plain literal, we must prove that ι(x) = x. By construction, ι(x) = y.
We know that h(x) is labelled by {x}. Since π maps h(x) into h(y), x ∈ ǫ(h(y))
and thus, by construction of H(I), x = y = ι(x).



- If x is a typed literal, we must prove that ι(x) = ιl(x). By construction,
ι(x) = y. As before, x ∈ ǫ(h(y)). By construction of H(I), ιl(x) = y = ι(x).

- If x is an uriref, proceed as for typed literals (replacing ιl with ιs).
- If x is a blank, then x is the subject or object of a triple of G. Thus h(x) is

the first or third argument of an hyperarc of H(G). Since π is a H-morphism,
π(h(x) = h(y) is the first or third argument of an hyperarc of H(I). By defin-
ition of ιext, y = ι(x) ∈ IR.

- Let us now prove that, for every triple 〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈ ιext(ι(p)).
If 〈xs, xp, xo〉 ∈ G, then, by construction of H(G), there exists an hyper-
arc 〈h(xs), h(xp), h(xo)〉 of H(G). Since π is a H-morphism, the hyperarc
〈π(h(xs)), π(h(xp)), π(h(xo))〉 = 〈h(ys), h(yp), h(yo)〉 is an hyperarc of H(I).
By construction of H(I), 〈ys, yo〉 ∈ ιext(yp), i.e.: 〈ι(xs), ι(xo)〉 ∈ ιext(ι(xp)).

⊓⊔

Lemma 3 (Isomorphic Interpretation). Let G be an RDF tripleset. Then
there exists an interpretation I of G such that H(I) = H(G).

Proof. By “reverse engineering” the transformation H, we can build from H(G) an
interpretation I such that H(I) = H(G). To each node in H(G) we associate a resource
of IR (note that we impose IP ⊆ IR). For each node x, for each term e ∈ ǫ(x), we impose
the term e to be interpreted (via ιs or ιl) by the resource associated with x. Finally,
for each hyperarc 〈s, p, o〉 in H(G), we add the pair of resources associated with s and
o to the extension of the resource asssociated with p. It is immediate to chack that, by
applying H to that interpretation, we obtain the H-graph H(G) (or more precisely, the
H-graph isomorphic to it).

Corollary 1. Each RDF tripleset is satisfiable.

Proof. Since there always exists a H-morphism from a graph into itself, we conclude
thanks to Lem. 2 that the isomorphic interpretation of any RDF tripleset G is a model
of G. Thus G is satisfiable.

Theorem 3. Let G and H be two RDF triplesets defined over a set of terms V .
Then G |= H if and only if there is a ≤2-H-morphism from H(H) into H(G).

Proof. We prove both directions of the equivalence.

(⇒) Let us suppose that G |= H . It means that every model of G is also a model of
H . In particular, the isomorphic interpretation I of G (see Lem. 3), being a model
of G, is also a model of H . Thanks to Lem. 2, it means that there exists a ≤2-H-
morphism from H(H) into H(I) = H(G). ⊓⊔

(⇐) Let us suppose that there exists a ≤2-H-morphism π from H(H) into H(G). We
have to prove that every model of G is also a model of H . Let us consider an
arbitrary model M of G. Thanks to Lem. 2, there exists a ≤2-H-morphism π′ from
H(G) into H(M). We use Lem. 1 to show that π′ ◦ π is a ≤2-H-morphism from
H(H) into H(G). Finally, we conclude (Lem. 2) that M is also a model of H . ⊓⊔

4.5 Relationships with Multigraphs

This section finishes with this last theorem, asserting the equivalence of M-
morphisms and H-morphisms for RDF simple entailment. Since the proof is



immediate, it is left out. It means that we can use indifferently M-graphs or
H-graphs for computing entailments, or for checking if an interpretation is a
model for a tripleset. It is also the final step providing another proof for the
interpolation lemma.

Theorem 4. Let G and H be two RDF triplesets defined over a set of terms
V . Then there is a directed, labelled hypergraph homomorphism from H(H) into
H(G) according to ≤2 if and only if there is a directed, labelled multigraph ho-
momorphism from M(H) into M(G) according to ≤1.

5 Complexity and Algorithms

It is now well known that simple RDF entailment (deciding whether or not
an RDF tripleset simply entails another one) is a NP-complete problem. It has
been proven via the equivalence with conceptual graphs [6, 7] or via a reduction
to graph colouring [2]. Thus checking if an interpretation is a model for an RDF
tripleset is also an NP-complete problem (we have shown here that they were
the same problem). The latter author also provides us with a polynomial case
for simple RDF entailment: when there is no blank node in the entailee H .

We present here links and guidelines allowing to quickly translate results
obtained in other knowledge representation communities (namely conceptual
graphs and constraint programming), thanks to our reformulation of entailment
as a graph homomorphism.

5.1 Constraint Networks and Polynomial Cases

The relationships between homomorphisms, conceptual graphs projection and
constraint satisfaction problems allow to obtain much more interesting polyno-
mial cases. Let us consider here the following equivalences:

1. the RDF tripleset G simply entails the RDF tripleset H

2. there is a ≤1-M-morphism from M(H) into M(G)
3. there is projection from the conceptual graph C(M(H)) into C(M(G))
4. the constraint network N (C(M(H)), C(M(G))) is satisfiable.

We do not have the place here to explicit the transformations involved,
though it should be done in an extended version of this paper. 1) ≡ 2) is proven
in this paper, 2) ≡ 3) is proven in [7], and 3) ≡ 4) is proven in [11]. The inter-
esting point is that these transformations are polynomial, and that the graphs
M(H), C(M(H)) and N (C(M(H)), C(M(G))) have exactly the same structure.
So every polynomial case based upon the structure of a constraint network or
upon the structure of the projected conceptual graph immediately translates
into a polynomial case based upon the structure of the entailee in simple RDF.

Both conceptual graphs projection [12] and constraint network satisfiability
[13] have been proven polynomial when the graphs are trees. It follows naturally
that simple RDF entailment is polynomial when the entailee M-graph is a



tree. A lot of work has been produced in the constraint satisfaction community
to generalize this result: more general cases (using hypertree decompositions)
are listed in [14], all can be directly translated to simple RDF entailment.

5.2 Algorithms

Since the Backtrack algorithm used to solve constraint satisfaction problems rely
on the structure of the associated graph, the same algorithm optimizations can
be used for the simple RDF entailment. Some of these optimizations have
been selected in [10] (in the conceptual graph formalism). The main point is
that these optimizations do not require any overhead cost. These algorithms are
considered as very efficient outside the phase transition.

6 Conclusion and Perspectives

We have presented here a reformulation of simple RDF entailment as a graph
homomorphism. The standalone proof of soundness and correctness is used as a
new proof of the interpolation lemma.This proof can be used as a framework to
study reasoning engines for extensions of simple RDF. Though we have shown
that a benefit of our reformulation was to offer the end-user with a graphical
illustration of reasonings, our main interest resides in using the graph structure
for an optimization purpose. The links we establish between RDF entailment,
graph homomorphism, conceptual graphs projection and constraint satisfaction
problems are an important step in that direction.

However, RDF is a language developped for the web. And the specific problem
that will be encountered is the huge size of the data. The rdf web entailment

problem should be presented as follows: given a RDF tripleset (a query) Q, is
there a set of RDF triplesets G1, ..., G2 available on the (semantic) web such
that they entail Q? Though there is no theoretical problem (we have just to
compute whether the merge of G1, ..., G2 entails Q), it is doubtful that it will be
possible to compute the merge of all triplesets available on the web. [15] provides
us with an algorithm that remains sound and complete without merging the
graphs (in conceptual graphs terms, when the target is not in nortmal form).
Moreover, this algorithm is less efficient than the standard backtrack, and do
not benefit effectively from the above mentioned optimizations. This example,
among other, shows that, though RDF entailment can benefit from results
obtained in similar formalisms, its new feature (a language designed for the
web) leads to particular problems that we should take into account.

References

[1] Hayes, P.: RDF Semantics. W3C Recommendation (2004) http://www.w3.org/

TR/2004/REC-rdf-mt-20040210/.
[2] ter Horst, H.J.: Extending the RDFS Entailment Lemma. In: Proceedings of the

Third International Semantic Web Conference, ISWC’04. Volume 3298 of LNCS.,
Springer (2004) 77–91



[3] Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph
Symmetry. Number 497 in NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. (1997)
107–166

[4] Chein, M., Mugnier, M.L.: Conceptual Graphs: fundamental notions. Revue
d’Intelligence Artificielle 6 (1992) 365–406

[5] Montanari, U.: Networks of Constraints: Fundamental Notions and Application
to Picture Processing. Information Sciences 7 (1974) 95–132

[6] Corby, O., Dieng, R., Hebert, C.: A Conceptual Graph Model for W3C Resource
Description Framework. In: International Conference on Conceptual Structures.
(2000) 468–482

[7] Baget, J.F.: Homomorphismes d’hypergraphes pour la subsomption en
RDF/RDFS. In: 10e conférence sur langages et modèles à objets (LMO). Vol-
ume 10. (2004) 203–216

[8] Genest, D.: Extensions du modèle des graphes conceptuels pour la recherche
d’informations. PhD thesis, Université de Montpellier II (2000)

[9] Hayes, J., Guttiérrez, C.: Bipartite Graphs as Intermediate Model for RDF.
In: Proceedings of the Third International Semantic Web Conference, ISWC’04.
Volume 3298 of LNCS., Springer (2004) 47–61

[10] Baget, J.F.: Simple conceptual graphs revisited: hypergraphs and conjunctive
types for efficient projection algorithms. In: 11th international conference on
conceptual sructures (ICCS). Number 2870 in LNCS, Springer (2003) 195–208

[11] Mugnier, M.L.: Knowledge Representation and Reasonings Based on Graph
Homomorphism. In: 8th International Conference on Conceptual Structures
(ICCS’00). Volume 1867 of LNCS., Springer (2000) 172–192

[12] Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching.
In: Selected Papers from AWCG’92. Volume 754 of LNAI., Springer (1993)

[13] Freuder, E.: A sufficient condition for backtrack-free search. Journal of the ACM
29 (1982) 24–32

[14] Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural decomposition
methods. (1999)

[15] Guinaldo, O., Haemmerlé, O.: Knowledge querying in the conceptual graphs
model: the RAP module. In: Proc. of ICCS. 98. LNCS, (Springer) 287–294


