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Abstract

Viral marketing campaigns seek to recruit the most
influential individuals to cover the largest target audi-
ence. This can be modeled as the well-studied max-
imum coverage problem. There is a related prob-
lem when the recruited nodes are connected. It is
called the maximum connected cover problem. This
problem ensures a strong coordination between the
influential nodes which are the backbone of the mar-
keting campaign. In this work, we are interested on
both of these problems. Most of the related litera-
ture assumes knowledge about the topology of the
network. Even in that case, the problem is known to
be NP-hard. In this work, we propose heuristics to
the maximum connected cover problem and the max-
imum coverage problem with different knowledge lev-
els about the topology of the network. We quantify
the difference between these heuristics and the local
and global greedy algorithms.

1 Introduction

One of the main objectives of viral marketing cam-
paigns is to find the most influential individuals to
cover the largest target audience. This problem can
be modeled as the well-studied maximum coverage

∗Email: preyes@est-econ.uc3m.es
†Email: alonso.silva@alcatel-lucent.com

problem. In the need of coordination through the
marketing campaign, a more relevant objective is
to seek the most influential connected individuals.
Hereby the connectedness will be fundamental since
the advertisement needs to spread quickly through
the network. In this work, we are interested on both
of these problems. Most of the related works on these
topics assume knowledge about the topology of the
network. Even in that case, the problem is known to
be NP-hard. Recently, in [1] the authors propose a
(local) greedy algorithm to the maximum connected
covering problem by learning the topology of the net-
work on-the-fly.

In this work, we present different heuristics to both
of these problems with different levels of knowledge
about the topology of the network. We quantify the
difference between these algorithms. Obviously, dif-
ferent knowledge about the topology of the network
will restrict us to use different heuristics with the
problem at hand.

Works providing heuristics to maximize the impact
of a virus marketing campaign are [2] and [3]. Other
works have been interested on the spreading of in-
formation through cascades on a weighted influence
graph and some internal conviction threshold of the
individuals (see e.g. [4, 5, 6]). Their work is based
on the submodularity of the local spreading and the
bounds on the performance of the greedy algorithms
for submodular functions given in [7]. Our work is
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different since we are not interested on the spreading
of information through cascades, but on a “quick”
spreading: we are interested on a one-hop spread of
information only through neighbors. Closely related
works are [1] and [8], were the authors assume a one-
hop lookahead [1] and two-hops lookaheads [8].
The paper is structured as follows. In Section 2, we

formulate both, the maximum coverage problem and
the maximum connected covering problem. In Sec-
tion 3, we describe the different levels of knowledge
about the topology of the network that we consider in
this work. In Section 4, we present existing heuristics
and we present some new heuristics to these problems
based on the different levels of knowledge of the net-
work. In Section 5, we present the simulations of the
algorithms and finally we conclude in Section 6.

2 Problem Formulation

We consider an influence graph G = (V,E) where
V is the set of vertices and E ⊆ V × V is the set
of edges. Each vertex of the graph represents an in-
dividual and each edge represents a relationship of
mutual influence between them (e.g. friendship over
a social network). An individual i ∈ V has influ-
ence over another individual j ∈ V if and only if
{i, j} ∈ E. We assume that the influence graph G
is an undirected graph with no self-loops. We de-
note by N (i) the set of neighbors of vertex i, i.e.,
N (i) = {j ∈ V : {i, j} ∈ E}, and for a set of vertices
A ⊆ V , we denote by N (A) the set of neighbors of A
asN (A) = {j ∈ V \A : exists i ∈ A such that {i, j} ∈
E}.
We consider that time is slotted, i.e., t ∈ N ∪ {0}.

We denote by R(t) the set of recruited individuals at
time t ≥ 0. In particular, N (R(t)) is the set contain-
ing unrecruited neighbors of R(t).

The algorithms that we present are sequential algo-
rithms which proceed as follows: at time t, with 0 ≤
t ≤ K, the algorithm recruits a node i ∈ V \R(t− 1)
and performs the update R(t) = R(t− 1) ∪ {i}.
The objective of the maximum coverage algorithms

is to maximize the size of the network covering C(t) =
R(t)∪N (R(t)) and in the case of the maximum con-
nected covering problem this objective is subject to

the additional constraint that the set R(t) must be
connected.
The degree d(i) of a node i ∈ V is the number of

neighbors of a node, i.e., d(i) = |N (i)| where |·| is the
cardinality function. The observed degree dobs(i, t)
of a node i ∈ V at time t is the number of recruited
neighbors or neighbors of recruited neighbors of i,
i.e., dobs(i, t) = |{j ∈ R(t) ∪ N (R(t)) : {i, j} ∈ E}|.
The excess degree dexcess(i, t) of a node i ∈ V at time
t is difference between the degree and the observed
degree of node i at time t, i.e., dexcess(i, t) = d(i) −
dobs(i, t).

3 Information Levels

For both of the problems we are dealing with in
this work, we consider different levels of information
about the topology of the network.

1. List of nodes: we consider that the recruiter
knows the list of nodes (we know V ) so there is a
knowledge about the nodes the network has and
there is a possibility to recruit any node within
the network. Once a node has been recruited we
consider that the recruited node gives informa-
tion about who are its neighbors.

2. One-hop lookahead: we consider that the re-
cruiter knows only one node, denoted i, and once
a node is recruited it gives information about
who are its neighbors and who are their mutual
neighbors (between recruited nodes). Actually,
the recruiter may only need to know the quan-
tity of neighbors, observed neighbors and mutual
neighbors (between recruited nodes), in order to
compute the excess degree.

3. Two-hops lookahead: we consider that the re-
cruiter knows only one node, denoted i, and once
a node is recruited it gives information about
who are its neighbors and neighbors of neigh-
bors and who are their neighbors and the mutual
neighbors.

4. List of nodes and two-hops lookahead: we have
knowledge about the list of nodes as in 1) and
two-hops lookahead as in 3).
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5. Full knowledge: we consider that the recruiter
has full knowledge about the topology of the net-
work. It knows the set of nodes V and the set of
edges E.

We notice that in [1] the knowledge level that they
consider is 2) since in their case, they do not have any
information about the network topology and they are
discovering the network while they are recruiting over
the network.

4 Description of Algorithms

In this section, we give a brief description of the algo-
rithms for the different scenarios (levels of informa-
tion) in both problems: the maximum coverage prob-
lem (SCP) and maximum connected covering (MCC)
problem.

4.1 Set Covering Problem (SCP)

In the first scenario, called SCP 1, we consider that
the recruiter knows the list of nodes but doesn’t have
any information about the topology of the graph as in
3 1). Once we recruit a node and only then, we con-
sider that the node gives us information about which
nodes it is connected to. Under these characteris-
tics, we consider Algorithm 1. Given that initially
you don’t have any information about the topology
of the network, Algorithm 1 simply chooses to recruit
a node at random and since then the recruiter knows
to which nodes it is connected to, it can remove those
nodes (since they are already covered) from the un-
covered nodes and then again choose a node from
within the set of remaining uncovered nodes at ran-
dom.
For the probability distribution over a set of nodes

S ⊆ V , we identify each node i ∈ S with a unique
integer from 1 to |S|. We consider a probability dis-
tribution ζ over the set of nodes |S|, i.e., ζ(i) ≥ 0
and

∑
i∈S ζ(i) = 1. For simplicity, we consider the

two following cases:

• The uniform distribution ζ1(i) = 1/|S|,

• The degree distribution ζ2(i) = d(i)/
∑

j∈V d(j).

However, we notice that the probability distribution ζ
is not restricted to these two choices.

Algorithm 1 SCP 1: Random

1: Initialize the list of uncovered nodes U with the
set of all nodes U ← V , the list of recruited nodes
R with the empty set R ← ∅, and the list of
covered nodes C with the empty set C ← ∅,

2: k ← 1,
3: repeat

4: Recruit a node i ∈ U uniformly at random, i.e.,
R← R ∪ {i},

5: Remove node i and its neighbors N (i)
from the list of uncovered nodes, i.e.,
U ← U \ (i ∪N (i))

6: Add node i and its neighbors N (i) to the list
of covered nodes, i.e., C ← C ∪ (i ∪N (i))

7: k ← k + 1,
8: until k > K or U ← ∅

In the second scenario, called SCP 2, we assume
that when a node is recruited it provides a two-
hops lookahead information, i.e., it gives information
about its neighbors and the neighbors of its neigh-
bors as in 3 3). To take advantage of this knowledge,
Algoritm 2 which was originally proposed by Guha
and Khuller [8], proposes to recruit the node from
within a two-hop neighborhood that have the maxi-
mum number of uncovered neighbors (maximize the
excess degree), and then again to choose the node
from within a two-hop neighborhood of the set of
recruited nodes that have the maximum number of
uncovered neighbors.
In the third scenario, called SCP 3, we consider

that the recruiter knows the list of nodes (as in the
first scenario) and that when a node is recruited it
provides a two-hop lookahead information (as in the
second scenario). To take advantage of this knowl-
edge, we propose Algorithm 3 that at every step with
probability δ recruits a node at random from within
the set of uncovered nodes and with probability (1−δ)
recruits the node from within a two-hop neighbor-
hood that have the maximum number of uncovered
neighbors. It is clear that the appeal from this version
of the algorithm is that it is a probabilistic combina-
tion from both previous scenarios.
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Algorithm 2 SCP 2: Two-hops Greedy
Algorithm[8]

1: Initialize the list of uncovered nodes U with the
set of all nodes U ← V , the list of recruited nodes
R with the empty set R ← ∅, and the list of
covered nodes C with the empty set C ← ∅,

2: k ← 1,
3: repeat

4: Recruit a node i ∈ U ∩ [N (R) ∪ N (N (R))]
of maximum excess degree, i.e., R ← R ∪
{i} where i is such that |N (i) \ (R ∪
N (R))| is maximum restricted to the set
U ∩ [N (R) ∪N (N (R))],

5: Remove node i and its neighbors N (i)
from the list of uncovered nodes, i.e.,
U ← U \ (i ∪N (i)),

6: Add node i and its neighbors N (i) to the list
of covered nodes, i.e., C ← C ∪ (i ∪N (i))

7: k ← k + 1
8: until k > K or U ← ∅

For the probability distribution over a set of nodes
S ⊆ V , we consider ζ as in the first scenario. We
consider α to be a variable to be chosen 0 ≤ α ≤ 1.

The fourth scenario, called SCP 4, is the full knowl-
edge scenario as in 3 5 where you know the topology
of the network (the list of nodes, the list of neighbors
of the nodes, the list of neighbors of the neighbors
of the nodes, etc). Algorithm 4 chooses at each step
greedily the node that have the maximum number of
uncovered neighbors from the full set of uncovered
nodes.

4.2 Maximum Connected Coverage
(MCC) problem

In the first scenario, called MCC 1, we consider that
we know a node, denoted node i ∈ V , and we con-
sider that when a node is recruited it gives a one-hop
lookahead as in 3 2). In Algorithm 5, we propose
a random selection over the set of neighbors of the
recruited nodes which are not themselves already re-
cruited, i.e., P = N (R) \ R. We notice that this
scenario is different from a random walk since we are

Algorithm 3 SCP 3: THG + Random α

1: Initialize the list of uncovered nodes U with the
set of all nodes U ← V , the list of recruited nodes
R with the empty set R ← ∅, and the list of
covered nodes C with the empty set C ← ∅,

2: k ← 1,
3: repeat

4: Draw a Bernoulli random variable X with pa-
rameter α

5: if X = 1 then

6: Recruit a node j ∈ U at random (according
to ζ) from the set U , i.e., R← R ∪ {j}

7: Remove node j and its neighbors N (j)
from the list of uncovered nodes, i.e.,
U ← U \ (j ∪N (j))

8: Add node j and its neighborsN (j) to the list
of covered nodes, i.e., C ← C ∪ (j ∪N (j))

9: else

10: Recruit a node i ∈ U ∩ [N (R) ∪ N (N (R))]
of maximum excess degree, i.e., R ← R ∪
{i} where i is such that |N (i) \ (R ∪
N (R))| is maximum restricted to the set
U ∩ [N (R) ∪N (N (R))],

11: Remove node i and its neighbors N (i)
from the list of uncovered nodes, i.e.,
U ← U \ (i ∪N (i))

12: Add node i and its neighbors N (i) to the list
of covered nodes, i.e., C ← C ∪ (i ∪N (i))

13: end if

14: k ← k + 1
15: until k > K or U ← ∅
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Algorithm 4 SCP 4: Greedy Algorithm [7]

1: Initialize the list of uncovered nodes U with the
set of all nodes U ← V , the list of recruited nodes
R with the empty set R ← ∅, and the list of
covered nodes C with the empty set C ← ∅,

2: k ← 1,
3: repeat

4: Recruit a node i ∈ U that maximizes the excess
degree, i.e., R ← R ∪ {i}, where i ∈ U is such
that |N (i) \ (R ∪N (R))| is maximum,

5: Remove node i and its neighbors N (i)
from the list of uncovered nodes, i.e.,
U ← U \ (i ∪N (i)),

6: Add node i and its neighbors N (i) to the list
of covered nodes, i.e., C ← C ∪ (i ∪N (i))

7: k ← k + 1,
8: until k > K or U ← ∅

choosing among the whole set P and not only the
neighbors of the newly recruited node.
In the second scenario, called MCC 2, we also con-

sider that we know a node, denoted node i ∈ V , and
we consider that when a node is recruited it gives
the list of neighbors of the recruited nodes. In Al-
gorithm 6, which was originally proposed by [1], the
algorithm greedily recrutes the node in P which max-
imizes the excess degree.

5 Simulations

We performed simulations of the previously described
algorithms in Erdos-Renyi graphs G(N, pN ) where
N ∈ {50, 100, 150, 200, 250} is the number of nodes
in the graph and pN is the probability of two nodes
being connected. We chose pN = 2 ln(N)/N to en-
sure connectivity. We simulated 30 instances for each
graph size. In order to avoid problems for randomly
choosing the initial node, we set 3 initial nodes (10
instances each) for each algorithm. In summary, each
algorithm was run 3 times in each graph in each in-
stance, starting by 3 different nodes. Therefore, the
figures show the average of the number of recruited
nodes (over all the graph instances with same size)
needed to cover the whole graph. We notice that this

Algorithm 5 MCC 1: Random Neighbor

1: Initialize the list of uncovered nodes U with the
set of all nodes U ← V , the list of recruited nodes
R with the empty set R ← ∅, and the list of
covered nodes R with the empty set R← ∅,

2: Recruit a node i ∈ U at random (according to ζ),
i.e., R← R ∪ {i},

3: Remove node i and its neighbors N (i) from the
list of uncovered nodes, i.e., U ← U \ (i ∪N (i)),

4: Add node i and its neighbors N (i) to the list of
covered nodes, i.e., C ← C ∪ (i ∪N (i)),

5: Initialize the list of candidates to be recruited
with the set of neighbors of i, i.e., P ← N (i),

6: k ← 2
7: repeat

8: Recruit a node j ∈ P uniformly at random
from the set P , i.e., R← R ∪ {j} with j ∈ P ,

9: Remove node j from the list of candidates to
be recruited, i.e., P ← P \ {j},

10: Remove the node j and its neighbors N (j)
from the list of uncovered nodes, i.e.,
U ← U \ (j ∪N (j)),

11: Add node j and its neighbors N (j) to the list
of covered nodes, i.e., C ← C ∪ (j ∪N (j)),

12: Add the unrecruited neighbors of j to
the list of candidates to be recruited, i.e.,
P ← P ∪ (N (j) ∩ U),

13: k ← k + 1
14: until k > K or U ← ∅
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Algorithm 6 MCC 2: Online Myopic MCC [1]

1: Initialize the list of uncovered nodes U with the
set of all nodes U ← V , the list of recruited nodes
R with the empty set R ← ∅, and the list of
covered nodes R with the empty set R← ∅,

2: Recruit node i ∈ U , i.e., R← R ∪ {i},
3: Remove node i and its neighbors N (i) from the

list of uncovered nodes, i.e., U ← U \ (i∪N (i)),
4: Add node i and its neighbors N (i) to the list of

covered nodes, i.e., C ← C ∪ (i ∪N (i)),
5: k ← 2
6: repeat

7: Recruit a node i ∈ U that maximizes the excess
degree, i.e., R ← R ∪ {i}, where i ∈ U is such
that |N (i) \ (R ∪N (R))| is maximum,

8: Activate a node i ∈ U that maximizes the ex-
cess degree, i.e., R = R ∪ {i}, where i ∈ U is
such that |N (R) ∩N (i)| is maximum,

9: Activate one of the nodes i ∈ U of maximum
excess degree, i.e., R = R∪ {i} where i is such
that di − dobsi = maxk∈{1,...,n} dk − dobsk where

dobs is the observed degree.
10: Remove the node i and its neighbors N (i)

from the list of uncovered nodes, i.e.,
U = U \ (i ∪N (i))

11: k ← k + 1
12: until k > K or U = {∅}

corresponds to the case when there is no restriction
over K but only on the number of uncovered nodes.
It is difficult to compare different knowledge lev-

els since for example how can we compare between
having the possibility of recruiting any node in a
network but completely at random compared to be
able to connect only to two hops away nodes but
knowing exactly how many observed neighbors and
neighbors do they have. The first observation that
we can make of Figure 1 is that recruiting nodes
at random SCP 1 performs 56% worst than hav-
ing a two-hops lookahead and a greedy algorithm
SCP 3 (((SCP 1 − SCP 3)/SCP 3) × 100). The sec-
ond observation which we found surprising was that
in Erdos-Renyi graphs the greedy approach works
better than the mixed approach (algorithm SCP 3
which combines the greedy approach and the ran-
dom choice). The reason why we were expecting to
have a different behavior is because the algorithm
may start in a bad initial location and through a
greedy approach it may take a while before finding
good nodes to be recruited. In fact, SCP 3 per-
forms 17% worst than the greedy approach SCP 3
(((SCP 2 − SCP 3)/SCP 3) × 100). We believe that
the performance of SCP 3 may improve by modifying
the parameter α which we took as α = 1/2.
We performed simulations of the previously de-

scribed algorithms also in Barabasi-Albert graphs.
The chosen Barabasi-Albert graphs were undirected
graphs and were generated as follows. We started
with a single vertex. At each time step, we added
one vertex and the new vertex connects two edges to
the old vertices. The probability that an old vertex
is chosen is proportional to its degree.
In Figure 3 (similarly to Figure 1), we notice that

recruiting nodes at random SCP 1 performs 196%
worst than having a two-hops lookahead and a greedy
algorithm SCP 3 (((SCP 1− SCP 3)/SCP 3)× 100).
The mixed approach with combines the greedy ap-
proach and the random choice SCP 2 performs 19%
worst than the greedy approach SCP 3 (((SCP 2 −
SCP 3)/SCP 3)× 100).
Similarly, in Figure 4, we have that to choose uni-

formly at random between uncovered nodes performs
very poorly compared to the greedy one-hop looka-
head algorithm.
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Figure 1: Number of recruited nodes needed vs num-
ber of nodes

Figure 2: Number of recruited nodes needed vs num-
ber of nodes

Figure 3: Number of recruited nodes needed vs num-
ber of nodes

Figure 4: Number of recruited nodes needed vs num-
ber of nodes

6 Conclusions and Future Di-
rections

In this work, we were interested on two different prob-
lems: the maximum coverage problem and the maxi-
mum connected covering problem. The motivation of
our work is viral marketing campaigns on social net-
works. Our perspective was to analyze both problems
from the knowledge we may have of the topology of
the network. We presented some existing and new
heuristics to both of these problems. We quantified
how different levels of information have an effect on
the type of algorithm that we choose and this trans-
lates on a better or worst performance depending on
the knowledge we have on the topology of the net-
work.

There are many interesting future directions to this
work. Just to name a few, one direction is to provide
theoretical bounds to the new heuristics and to con-
sider digraphs instead of undirected graphs. Another
direction is to study how changes on the topology of
the network can affect the problem at hand. More-
over, if there are changes constantly, how to make
the maximum coverage set and maximum connected
covering set to change together with this dynamicity.
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