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Abstract: In this paper, the analysis of a schistosomiasis infection model that involves human
and intermediate snail hosts as well as an additional mammalian host and a competitor snail species
is studied by constructing Lyapunov functions and using a Krasnoselkii sublinearity trick.
We derive the basic reproduction number R0 for the deterministic model, and establish that the
global dynamics are completely determined by the values of R0. We obtain the global stability of
the disease-free equilibrium E0 when R0 ≤ 1 and we prove the existence and local stability of the
endemic equilibrium E∗ when R0 > 1.

Key-words: Nonlinear dynamical systems, global stability, Lyapunov methods.



Analyse de stabilité d’un modèle d’infection de la
bliharziose avec controle biologique

Résumé : On considère un modèle d’infection de la bilharziose qui prend en compte les hu-
mains et les hôtes intermédiaires d’escargots aussi bien des hôtes mammifères supplémentaires
et une espèce d’escargot résistant . L’analyse de stabilité est étudié en construisant des fonc-
tions de Lyapunov et une manie de Krasnoselskii de sous-linéarité. Nous établirons le taux de
reproduction de base R0 pour le modèle posé et nous montrerons que la dynamique globale est
complétement determinée par R0. Nous obtenons la stabilté globale du point d’équilibre sans
maladie E0 lorsque R0 ≤ 1 et quand R0 > 1 nous prouvons l’éxistence et la stabilité du point
d’équilibre endémique E∗.

Mots-clés : Systèmes dynamiques non-linéaires, stabilité globale, méthodes de Lyapunov
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1 Introduction
Schistosomiasis also known as bilharzia is a parasite-induced disease. The disease is generally
associated with rural poverty. The parasites, schistosomes, have to go through an intermediate
host (snails in most cases) to complete their life cycle: from eggs, to miracidia, to cercaria, finally
to adult worms. Schistosomes have two stages or reproduction-sexual reproduction in humans
and asexual amplification in snails, see F.A Milner and R. Zhao [1].

Control methods for schistosomiasis range from environmental modification to eliminate the
host snails, chemical molluscicides, chemotherapy and more permanent methods such as the
provision of safe water and sanitary facilities.

For many endemic situations, chemotherapy is a major component and is focused on school
age children and other high-risk groups. However, it is acknowledged that the price of a chemical
antischistosomial control is beyond the health budget of many countries.

On effective control which may require relatively little funding is biological control. In par-
ticular, trematode parasites or competitive snails of the intermediate snail hosts have proved to
be effective in controlling schistosomiasis in the Caribbean area, Pointier and Jourdane [2].

Mathematical modelling and analysis of schistosomiasis has drawn many attentions since the
first paper by Macdonald in [3]. Thereafter many others researchers built excellent models and
developed a decent understanding of transmission mechanism of schistosomiasis (see [4, 5, 6]).

Recently, a schistosomiasis infection model described by E.J Allen and H.D Victory [7] are
proposed. This model generalizes in some way, previous mathematical models such as those
described by Anderson and May [9]; Kimbir [10]; Wu and Feng [11].

However, our model allows competition between the intermediate host snails and a resistant
snail species to study the advantages of biological control. In this paper, taking these specific
characteristics into consideration and based on Allen and Victory’s model, see [7], we propose
a mathematical analysis. A stability analysis is also provided to study the epidemiological con-
sequences of control strategies. We show that the DFE is globally asymptotically stable by
constructing a lyapunov functions. The existence of at least one positive solution is shown by a
simple application of fixed point Theorem in cones due by Thieme [32] and its locally asymptot-
ically stability using a Krasnoselkii sub linearity trick.

The paper is organized as follows. In Section 2 we present the model described by E.J
Allen and H.D Victory [7]. Its well-posedness is established and a reduced model is proposed.
In Section 3 the local and global stability of the disease-free equilibrium is studied with the
Lyapounov method. In Section 4 the existence of an endemic equilibria is investigated as well as
its local stability.

Finally, in Section 5, we present some discussions and conclusions.
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4 Diaby & Iggidr & Sène & Sy

2 Model frame work

We consider the model presented in [7]. In their work, four definite mammalian host sub-
populations, three intermediate snail host sub-populations, and a population of resistant com-
petitor snails are considered. Its shall be assumed that the total time interval considered is
sufficiently small so that human births and deaths can be neglected.

Further, it is assumed that infected snails and infected mammals do not recover from schisto-
somiasis as their life span are short in comparison to that for humans. The dynamical quantities
of the model are:

u1(t) = the susceptible (uninfected), see [8], human population size,
u2(t) = the infected human population size,

u3(t) = the susceptible snail host population size,

u4(t) = the population size of the infected snails which are not yet shedding cercariae,

u5(t) = the infected and shedding snail population size (shedding population size),

u6(t) = the competitor snail population size (resistant to infection),

u7(t) = the susceptible mammal population size,

u8(t) = the infected mammal population size.

In addition, the population of snails as well as mammals are assumed to be competitive. Birth
and death rates for the various sub populations will be denoted by bi et di, respectively, for i =
1, 2, ...8. For simplicity the birth rate of different sub-populations of mammals and intermediate
host snails will be assumed to be equal, i.e b3 = b4 = b5 and b8 = b7. The transmission parameters
for the model are:

t15 = transmission rate from infected snails to uninfected humans,
t32 = transmission rate from infected humans to uninfected snails,

t38 = transmission rate from infected mammals to susceptible snail,

t75 = transmission rate from infected snails to susceptible mammals.

Competition parameters are defined for the populations:
c33 is the competition parameter between u3 and u3, u4, u5,
c44 and c55 are the competition parameters between u4 and u5, respectively, and u3, u4, and u5,
c36 is the competition parameter for snails u6 with snails u3,
c46 and c56 are defined analogously,
c64 is the competition parameter for snails u3, u4 and u5 with u6,
c66 is the competition parameter for u6 with u6,
c77 and c88 are the competition parameter for the mammals populations.

Also, r12 is the rate that infected humans recover and r54 denotes the rate that the latent
snail population u4 becomes shedding u5.

The following system of equations, for 0 ≤ t ≤ T where T > 0, relate the various populations:

Inria



Global analysis of a shistosomiasis infection with biological control 5



du1
dt

= −t15 u5 u1 + r12 u2,

du2
dt

= t15 u5 u1 − r12 u2,

du3
dt

= b3 (u3 + u4 + u5)− t32 u2 u3 − d3 u3 − c33 u3(u3 + u4 + u5)

−c36 u3 u6 − t38 u3 u8,

du4
dt

= t32 u2 u3 + t38 u3 u8 − d4 u4 − c44 u4(u3 + u4 + u5)

−c46 u4 u6 − r54 u4,

du5
dt

= r54 u4 − d5 u5 − c55 u5(u3 + u4 + u5)− c56 u5 u6,

du6
dt

= b6 u6 − c64 u6(u3 + u4 + u5)− c66 u6 u6 − d6 u6,

du7
dt

= b7(u7 + u8)− t75 u5 u7 − c77 u7(u7 + u8)− d7 u7,

du8
dt

= t75 u5 u7 − d8u8 − c88 u8(u7 + u8).

(1)

With initial conditions
ui(0) ≥ 0, for all 1 ≤ i ≤ 8. (2)

It is assumed for simplicity that d3 = d4 = d5, c33 = c44 = c55, c77 = c88 and c46 = c56 = c36.
The total human population NH = u1 + u2 is constant since

dNH

dt
= 0.

The given initial conditions make sure that NH(0) ≥ 0. Thus the total population NH(t) remains
positive and bounded for all time t > 0. The dynamics of no resistant snails total population is

dNSi

dt
= (b3 − d3)NSi − c33N2

Si − c36 u6NSi.

It follows that

dNSi

dt
≤ (b3 − d3)NSi − c33N2

Si.

So, using comparison principle, we get

NSi ≤
(b3 − d3)N0

c33N0 + (b3 − d3 − c33N0) exp−(b3 − d3) t
.

Then

lim
t→∞

supNSi ≤
b3 − d3
c33

.

RR n° 8148



6 Diaby & Iggidr & Sène & Sy

The dynamics of the resistant snails total population and the total mammals are respectively

du6
dt

= (b6 − d6)u6 − c66 u6 u6 − c64 u6(u3 + u4 + u5),

dNM

dt
= (b7 − d7)NM − c77N2

M .

It follows that

lim
t→∞

supu6 ≤
b6 − d6
c66

,

lim
t→∞

supNM ≤
b7 − d7
c77

.

Thus the feasible region for the system (1) is

D = {(u1, u2, u3, u4, u5, u6, u7, u8) ∈ R8
+ : NSi ≤

b3 − d3
c33

, NM ≤
b7 − d7
c77

, u6 ≤
b6 − d6
c66

}.

Proposition 2.1 Let (u1, u2, u3, u4, u5, u6, u7, u8) be a solution of the system (1) with initial
conditions (2) and the closed set D. Then D is positively invariant and attracting under the flow
described by (1).

Proof:
It is sufficient to consider the system on the faces of D and to show that for each face, the vector
fields associated to the system points inside D.

If NSi = 0 then
dNSi

dt
= 0. If NSi =

b3 − d3
c33

then
dNSi

dt
≤ 0.

If NM = 0 then
dNM

dt
= 0. If NM =

b7 − d7
c77

then
dNM

dt
≤ 0.

If u6 = 0 then
du6
dt

= 0.

If u6 ≤
b6 − d6
c66

then
du6
dt
≤ −c64

b6 − d6
c66

(u3 + u4 + u5) ≤ 0.

Furthermore, the model (1) is well-posed epidemiologically. Hence, it is sufficient to study
the dynamics of the basic model in D.

2.1 Reduction of the system
We will reduce the stability analysis of (1), to the study of a smaller and simpler system. The
following theorem(see [13] ) will permit us to reduce the stability analysis to a smaller system.

Theorem 2.1 Consider the following C1 system

ẋ = f(x); x ∈ Rn y ∈ Rm,

ẏ = g(x, y);

with a equilibrium point, (x∗, y∗) i.e,
f(x∗) = 0 and g(x∗, y∗) = 0.

(3)

If x∗ is globally asymptotically stable (GAS) in Rn for the system ẋ = f(x), and if y∗ is GAS in
Rm, for the system ẏ = g(x∗, y), then (x∗, y∗) is (locally) asymptotically stable for (3).

Moreover, if all the trajectories of (3) are forward bounded, then (x∗, y∗) is GAS for (3).

Inria



Global analysis of a shistosomiasis infection with biological control 7

We define xi =
ui
NSi

for i = 3, 4, 5. xi =
ui
NM

for i = 7, 8.

Using ẋi =
u̇i
NSi

− ṄSi

NSi
xi =

u̇i
NSi

− (a3 − c33NSi − c36u6)xi, for i = 3, 4, 5.

ẋi =
u̇i
NM

− ṄM

NM
xi =

u̇i
NM

− (b7 − d7 − c77NM )xi, for i = 7, 8 and the fact that
∑
xi = 1.

These new variables satisfy:

du2
dt

= t15(NH − u2)x5NSi − r12u2,

dx4
dt

= (t32u2 + t38NM x8)(1− x4 − x5)− (b3 + r54)x4,

dx5
dt

= r54x4 − b3x5,

dx8
dt

= t75NSi x5(1− x8)− b7x8,

dNSi

dt
=

a3︷ ︸︸ ︷
(b3 − d3) NSi − c33N2

Si − c36u6NSi = X1(NSi, u6),

du6
dt

=

a6︷ ︸︸ ︷
(b6 − d6) u6 − c64u6NSi − c66u6u6 = X2(NSi, u6),

dNM

dt
= (b7 − d7)NM − c77N2

M .

(4)

This system is triangular.

Let us consider the following subsystem:

dNH

dt
= 0,

dNSi

dt
=

a3︷ ︸︸ ︷
(b3 − d3) NSi − c33N2

Si − c36u6NSi = X1(NSi, u6),

du6
dt

=

a6︷ ︸︸ ︷
(b6 − d6) u6 − c64u6NSi − c66u6u6 = X2(NSi, u6),

dNM

dt
= (b7 − d7)NM − c77N2

M .

(5)

The last equation has an equilibrium N∗M =
b7 − d7
c77

which is GAS.

The equilibria of (5) are:
(0, 0) which is unstable: two positive eigenvalues a3 and a6.

E1 =

(
a3
c33

, 0

)
with eigenvalues −a3 and a6 −

c64a3
c33

=
c33a6 − c64a3

c33
.

E2 =

(
0,
a6
c66

)
with eigenvalues −a6 and a3 −

c36a6
c66

=
c66 a3 − c36a6

c66
.

If c33a6 − c64a3 < 0 then E1 is LAS. If c66 a3 − c36a6 < 0 then E2 is LAS.

RR n° 8148



8 Diaby & Iggidr & Sène & Sy

We shall assume that E1 and E2 are unstable which implies that

c33a6 − c64a3 > 0 and c66 a3 − c36a6 > 0. (6)

This implies
c33c66 − c36c64 > 0.

The system (5) has a positive equilibrium E∗:

N∗Si =
c36a6 − c66a3
c36c64 − c33c66

=
c66a3 − c36a6
c33c66 − c36c64

,

u∗6 =
c64a3 − c33a6
c36c64 − c33c66

=
c33a6 − c64a3
c33c66 − c36c64

.

The equilibrium E∗ = (N∗Si, u
∗
6) exists if only if

1. 1st case: c33c66 − c36c64 > 0. In this case the existence of E∗ implies that E∗ is LAS and
the other are unstable.

2. 2nd case: c33c66−c36c64 < 0. In this case E∗ exists if c33a6−c64a3 < 0 and c66a3−c36a6 < 0.
In this case E1 and E2 are LAS but E∗ is unstable.

Therefore we shall assume that
c33c66 − c36c64 > 0. (7)

In this case E∗ is LAS: eigenvalues with negative real part.
Let

V = (NSi −N∗Si logNSi) + d (u6 − u∗6 log u6).

Then
V̇ = (N −N∗Si)(a3 − c33N − c36u6) + d (u6 − u∗6)(a6 − c64N − c66u6).

Using equilibria relations, we obtain:

V̇ = (N −N∗Si)(c33N
∗
Si + c36u

∗
6 − c33N − c36u6) + d (u6 − u∗6)(c64N

∗
Si

+c66u
∗
6 − c64N − c66u6)

= −c33(N −N∗Si)
2 − d c66(u6 − u∗6)2 − c36(N −N∗Si)(u6 − u∗6)

−d c64(N −N∗Si)(u6 − u∗6)

= −c33(N −N∗Si)
2 − d c66(u6 − u∗6)2 − (c36 + d c64)(N −N∗Si)(u6 − u∗6).

We choose d =
c66a

2
3

c33a26
. With this and using (7) we can show

(c36 + d c64)2 − 4 d c33 c66 < 0, (8)

then V̇ is definite negative and hence the equilibrium (N∗Si, u
∗
6, N

∗
M ) is GAS.

Then, under the condition (7), (N∗Si, u
∗
6, N

∗
M ) is GAS.

Inria



Global analysis of a shistosomiasis infection with biological control 9

Remark: It is also possible to prove the GAS of (N∗Si, u
∗
6) by using Dulac criterion with the

function ρ(NSi, u6) =
1

NSi u6
defined on D =]0,

b3 − d3
c33

[×]0,
b6 − d6
c66

[.

We have
∂(ρX1)

∂NSi
+
∂(ρX2)

∂u6
= −

(
c33
u6

+
c66
NSi

)
< 0.

Therefore, on the set D it is sufficient to consider the system:

du2
dt

= t15(NH − u2)x5N
∗
Si − r12u2,

dx4
dt

= (t32u2 + t38N
∗
M x8)(1− x4 − x5)− (b3 + r54)x4,

dx5
dt

= r54x4 − b3x5,

dx8
dt

= t75N
∗
Si x5(1− x8)− b7x8.

(9)

RR n° 8148



10 Diaby & Iggidr & Sène & Sy

3 Disease-free Equilibrium and Stability Analysis

3.1 Main theorem

In this section, we will give an analytic expression for R0, for more details see [14, 15, 16] and
completely answer the stability question of a disease-free equilibrium. As usual ρ(M) is the
spectral radius of a matrix M .

Proposition 3.1 The origin is the DFE of (9) and

R0 = 3

√
r54N

∗
Si (b7 t15 t32NH + r12 t38 t75N

∗
M )

b3 b7 r12 (b3 + r54)
= T

1/3
0 .

Moreover The DFE is LAS if T0 < 1 and is unstable if T0 > 1.

Proof:
It is clear that the DFE is E0 = (0, 0, 0, 0).
The Jacobian at E0 is

J0 =


−r12 0 t15NH N∗Si 0
t32 −(b3 + r54) 0 t38N

∗
M

0 r54 −b3 0
0 0 t75N

∗
Si −b7

 .

J0 is a Metzler matrix and J0 = F + V with F =


0 0 t15NH N∗Si 0
t32 0 0 t38N

∗
M

0 r54 0 0
0 0 t75N

∗
Si 0

 .

We have F > 0 and V is Metzler stable, see [17, 18, 19, 20]. Thanks to Varga’s Theorem in
[22]: s(J0) ≤ 0 if ρ(−F V −1) ≤ 1.

A simple computation gives:

R0 = ρ(−F V −1) = 3

√
r54N

∗
Si (b7 t15 t32NH + r12 t38 t75N

∗
M )

b3 b7 r12 (b3 + r54)
= T

1/3
0 .

Hence, E0 is LAS if T0 < 1 and is unstable if T0 > 1.

3.2 A stability theorem

Theorem 3.1 If T0 ≤ 1 then the DFE is GAS.

Proof:
Consider the candidate Lyapunov function:

V =
t32
r12

u2 + x4 +
b3 + r54
r54

x5 +
t38N

∗
M

b7
x8.

Inria



Global analysis of a shistosomiasis infection with biological control 11

Its derivative along the solutions of (9) satisfies:

V̇ =
t32
r12

t15(NH − u2)x5N
∗
Si − t32u2

+(t32u2 + t38N
∗
M x8)(1− x4 − x5)− (b3 + r54)x4

+
b3 + r54
r54

(r54x4 − b3x5) +
t38N

∗
M

b7
(t75N

∗
Si x5(1− x8)− b7x8)

= −t32u2x5 − t38N∗M x8x5

+x4

(
b3 + r54
r54

r54 − (b3 + r54)− t32u2 − t38N∗M x8

)
+x5

(
t32
r12

N∗Si (NH − u2)− b3 + r54
r54

b3 +
t38 t75N

∗
M

b7
N∗Si (1− x8)

)
= − (x4 + x5) (t32u2 + t38N

∗
M x8)

+x5

(
t32
r12

N∗Si (NH − u2)− b3 + r54
r54

b3 +
t38 t75N

∗
M

b7
N∗Si (1− x8)

)
.

Then

V̇ ≤ − (x4 + x5) (t32u2 + t38N
∗
M x8)

+x5

(
t32
r12

N∗SiNH −
b3 + r54
r54

b3 +
t38 t75N

∗
M

b7
N∗Si

)
= − (x4 + x5) (t32u2 + t38N

∗
M x8)

+x5
b3 + r54
r54

b3

(
r54N

∗
Si

b3 (b3 + r54)

(
t32
r12

NH +
t38 t75N

∗
M

b7

)
− 1

)
= − (x4 + x5) (t32u2 + t38N

∗
M x8)

+x5
b3 + r54
r54

b3

(
r54N

∗
Si (b7 t32NH + r12 t38 t75N

∗
M )

b3 (b3 + r54) b7 r12
− 1

)
.

Hence V̇ ≤ − (x4 + x5) (t32u2 + t38N
∗
M x8) +

b3 + r54
r54

b3 (T0 − 1) x5 ≤ 0 if T0 ≤ 1.

If T0 < 1, then V̇ = 0 implies x5 = x4 = 0, or x5 = x8 = u2 = 0. Thanks to Lasalle
[23, 24, 25] we conclude.

If T0 = 1, then V̇ = 0 implies x5 = x4 = 0, or x8 = u2 = 0. Again thanks to Lasalle
[23, 24, 25] we conclude.

RR n° 8148



12 Diaby & Iggidr & Sène & Sy

4 Endemic Equilibrium and Stability Analysis

4.1 Existence of Endemic Equilibrium

Next, we will find the equilibrium points of system (9). To this end we express u2, x4, x8 in
terms of x5.

Then we use a theorem for the existence and uniqueness of a positive fixed point of a multi-
variable function. We labelled this theorem as follows

Theorem 4.1 (Thieme [32], theorem 2.1) Let F (x) be a continuous, monotone non-decreasing,
strictly sub linear, bounded function which maps the non-negative orthant Rn

+ = [0,∞) into itself.
Let F (0) = 0 and F ′(0) exists and be irreducible. Then F (x) does not have a non-trivial fixed
point on the boundary of Rn

+. Moreover, F (x) has a positive fixed point iff ρ(F ′(0)) > 1. If there
is a positive fixed point, then it is unique.

An equilibrium point is a solution of the simultaneous non-linear equations obtained by setting
the right hand sides of the equation (9) to 0. Now we reformulate the non-linear equations as a
fixed point equation. Solving the third equilibrium-point equation for x5 and substituting into
the first equation, we obtain

x5 =
r54
b3

x4,

t15(NH − u2)x5N
∗
Si − r12u2 = 0,

This implies

u2 =
t15N

∗
SiN

∗
H

r54
b3

x4

r12 + t15N∗Si

r54
b3

x4
.

Solving the equations in (9) at steady state gives

x∗4 =
b3
r54

x∗5, x∗8 =
t75N

∗
Si

t75N∗Si x
∗
5 + b7

x∗5, u∗2 =
t15NHN

∗
Si x

∗
5

t15N∗Si x
∗
5 + r12

. (10)

x4 =
(t32 u2 + t38NM x8)

(b3 + r54) + (t32 u2 + t38NM x8)(1 +
r54
b3

)

the fourth equation gives

x8 =
N∗Si t75

r54
b3

x4

b7 +N∗Si t75
r54
b3

We write this as

U = F (U),

Inria
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where

U =

 u2
x4
x8

 , F =



F1 :=
t15N

∗
SiN

∗
H

r54
b3

x4

r12 + t15N∗Si

r54
b3

x4
≤ NH

F2 :=
(t32 u2 + t38NM x8)

(b3 + r54) + (t32 u2 + t38NM x8)(1 +
r54
b3

)
≤ 1

F3 :=
N∗Si t75

r54
b3

x4

b7 +N∗Si t75
r54
b3

x4
≤ 1


Thus the equilibrium points are fixed points of F given by U = F (U) and this is the formulation
that we use to prove existence and uniqueness of an endemic equilibrium point.

In this case F (U) is continuous, bounded function which maps
Ω = {(u2, x4, x8) : 0 ≤ u2 ≤ NH , 0 ≤ x4 ≤ 1, 0 ≤ x8 ≤ 1} into itself and infinitely differen-

tiable with Jacobian as follows

Je =


0

b3NHNSir12r54t15
(b3r12 +NSir54t15x4) 2

0

b23t32
(b3 + r54) (b3 + t32u2 +NM t38x8) 2

0
b23NM t38

(b3 + r54) (b3 + t32u2 +NM t38x8) 2

0
b3b7NSir54t75

(b3b7 +NSir54t75x4) 2
0


where the off-diagonal elements are non-negative. Thus the function F (U) is monotone non-
decreasing and F (0) = 0. Note that ρ(F ′(0)) = R0 > 1. Thanks to the graph theory, we claim
that F ′(0) is irreducible because the associated graph of the matrix is strongly connected.

Let us now prove that F is strictly sub linear in Ω, i.e., F (r U) > r F (U), for any U ∈ Ω with
U > 0, and r ∈ (0, 1). Some calculations give

r1 F1(U)

F1(r1 U)
= r1

t15N
∗
SiN

∗
H

r54
b3

x4

r12 + t15N∗Si

r54
b3

x4
∗
r12 + t15N

∗
Si

r54
b3

r1 x4

t15N∗SiN
∗
H

r54
b3

r1 x4
(11)

=
r12 + t15N

∗
Si

r54
b3

r x4

r12 + t15N∗Si

r54
b3

x4
< 1

r2 F2(U)

F2(r2 U)
=

r2 (t32 u2 + t38NM x8)

(b3 + r54) + (t32 u2 + t38NM x8)(1 +
r54
b3

)
∗

(b3 + r54) + r2 (t32 u2 + t38NM x8)(1 +
r54
b3

)

r2 (t32 u2 + t38NM x8)

(12)

=
(b3 + r54) + (t32 u2 + t38NM x8)(1 +

r54
b3

)

(b3 + r54) + r (t32 u2 + t38NM x8)(1 +
r54
b3

)
< 1
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14 Diaby & Iggidr & Sène & Sy

r3 F3(U)

F3(r3 U)
=

r3N
∗
Si t75

r54
b3

x4

b7 +N∗Si t75
r54
b3

x4
∗
b7 +N∗Si t75

r54
b3

r3 x4

N∗Si t75
r54
b3

r3 x4
(13)

=
b7 +N∗Si t75

r54
b3

r3 x4

b7 +N∗Si t75
r54
b3

x4
< 1

So the function F (U) is strictly sub linear with r = min (r1, r2, r3). In this way we have proved
the following theorem

Theorem 4.2 If R ≤ 1, the only equilibrium point of the system is the disease-free equilibrium
E0. If R > 1, there also exists a unique endemic equilibrium E∗ in int(Ω) whose coordinates are
given by (10).

4.2 Local Stability of the Endemic Equilibrium

In this section, we shall prove the local stability of the endemic equilibrium when R0 > 1. For
this we shall follow the method given by Hethcote and Thieme, which is based on a Krasnoselkii
technique. A usual way to prove the local asymptotic stability of an equilibrium point x̄0 of the
system of differential equations

x̄′ = f(x̄) (14)

is proving that the linearised equation

Z̄ ′ = Df(x̄0)Z̄ (15)

has no solutions of the form

Z̄(t) = Z̄0 exp(wt) (16)

with Z̄0 ∈ Cn − {0}, w ∈ C and Rew ≥ 0, where C denotes the complex numbers i.e., w Z̄ =
Df(x̄0) Z̄ with Z̄ ∈ Cn − {0}, w ∈ Cn implies Rew < 0.

Substituting a solution of the form (16) in the linearised equation of the endemic equilibrium,
we obtain the following linear equations.

wZ1 = − (t15 x
∗
5N
∗
Si + r12) Z1 + t15 (NH − u∗2) N∗Si Z3

wZ2 = (1− x∗4 − x∗5 ) t32 Z1 − (t32 u
∗
2 + t38NM x∗8) Z2

− (b3 + r54) Z2 − (t32 u
∗
2 + t38NM x∗8) Z3 +NM t38 (1− x4 − x5) Z4

wZ3 = r54 Z2 − b3 Z3

wZ4 = t75NSi (1− x∗8) Z3 − (t75NSi x
∗
5 + b7) Z4

(17)

Solving for Z3 from the third equation of (17), and substituting the result into the second equation
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(and simplifying), give the equivalent system(
1 +

w + t15 x
∗
5N
∗
Si

r12

)
Z1 =

t15 (NH − u∗2) N∗Si

r12
Z3

(1 +G2 (w)) Z2 =
(t32) (1− x∗4 − x∗5)

b3 + r54
Z1 +

(t38NM x∗8) (1− x∗4 − x∗5)

b3 + r54
Z4(

1 +
w

b3

)
Z3 =

r54
b3

Z2(
1 +

t75NSi x
∗
5

b7

)
Z4 =

t75NSi (1− x∗8)

b7
Z3

(18)

where

G2(w) =
w

b3 + r54
+

(t32 u2 +NM t38 x8)

b3 + r54

(
1 +

r54
w + b3

)
Denoting in the same way

G1(w) =
w + t15 x

∗
5N
∗
Si

r12

G3(w) =
w

b3

G4(w) =
w + t75NSi x

∗
5

b7

we obtain the system

[1 +G1(w)] Z1 =
(
H Z̄

)
3

[1 +G2(w)] Z2 =
(
H Z̄

)
1

+
(
H Z̄

)
4

[1 +G3(w)] Z3 =
(
H Z̄

)
2

[1 +G4(w)] Z4 =
(
H Z̄

)
3

(19)

with

H =



0 0
t15 (NH − u∗2) N∗Si

r12
0

t32 (1− x∗4 − x∗5)

b3 + r54
0 0

t38NM (1− x∗4 − x∗5)

b3 + r54
0

r54
b3

0 0

0 0
t75NSi (1− x∗8)

b7
0


Note that the notation H (Z̄)i (with i = 1, ..., 4)) denotes the ith coordinate of the vector H(Z̄).
It should further be noted that the matrix H has non-negative entries, and the equilibrium
E∗ = (u2∗ , x4∗ , x5∗ , x8∗) satisfies E∗ = H E∗. Furthermore, since the coordinates of E∗ are all
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16 Diaby & Iggidr & Sène & Sy

positive, its follows then that if Z̄ is a solution of (19), then it is possible to find a minimal
positive real numbers s, depending on Z̄, such that

‖Z̄‖ ≤ sE∗ (20)

where ‖Z̄‖ =
(
Z̄1, Z̄2, Z̄3, Z̄4

)
with the lexicographic order, and ‖‖ is a norm in C. now we

want to show that Rew < 0. Deny it, we distinguish two cases : w = 0 and w 6= 0. In the
first case, the determinant of the homogeneous linear system (17) in the variable Zi (i = 1, ..., 4)
corresponds to that of the Jacobian of the matrix

−1−G1(0) 0
NSit15 (NH − u∗2)

r12
0

(1− x∗4 − x∗5) t32
b3 + r54

−1−G2(0) 0
(1− x∗4 − x∗5) NM t38

b3 + r54
0

r54
b3

−1−G3(0) 0

0 0
NSit75 (1− x∗8)

b7
−1−G4


which is given by

= (−1−G4(0))
(

(1 +G1(0) +G2(0) +G1(0)G2(0)) (−1−G3(0))

+
NSi r54 t15 t32 (NH − u2) (1− x4 − x5)

b3 r12 (b3 + r54)

)
+

(−1−G1(0)) NM NSi r54 t38 t75 (1− x4 − x5) (1− x8)

b3 b7 (b3 + r54)

Since G3(0) = 0

= (−1−G4(0))

(
−1−G1(0)−G2(0)−G1(0)G2(0) +

t32 (1− x4 − x5) u2∗

x4∗ (b3 + r54)

)

+
(−1−G1(0))NM t38 (1− x4 − x5) x8∗

x4∗ (b3 + r54)

= (−1−G4(0)) (−1−G1(0)−G2(0)−G1(0)G2(0)) + (−1−G4(0))

(
t32 (1− x4 − x5) u2∗

x4∗ (b3 + r54)

)

+
(−1−G1(0))NM t38 (1− x4 − x5) x8∗

x4∗ (b3 + r54)

= (−1−G4(0)) (−1−G1(0)−G2(0)−G1(0)G2(0))

− 1

x4∗

(
t32 (1− x4 − x5) u2∗

(b3 + r54)
(1 +G4(0)) +

NM t38 (1− x4 − x5) x8∗

(b3 + r54)
(1 +G1(0))

)

Denoting α = max{1 +G1(0), 1 +G4(0)}, we have

∆ > 1 +G1(0) +G2(0) +G1(0)G2(0) +G4(0) +G1(0)G4(0) +G2(0)G4(0)

+ G1(0)G2(0)G4(0)− α
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Then if α = 1 +G1, we obtain

∆ > G2 +G1G2 +G4 +G1G4 +G2G4 +G1G2G4 > 0

Else α = 1 +G2, we obtain

∆ > G1 +G2 +G1G2 +G1G4 +G2G4 +G1G2G4 > 0

since G1(0), G2(0), G4(0) are positive. Then, for w = 0, the only solution of the system (19)
is the trivial one which implies that w 6= 0. Assume now that w 6= 0, and Rew ≥ 0. Let
G(w) = min {|1 +Gi(w)| , i = 1, ..., 4}. It is easy to prove that in this case |1 +Gi(w)| > 1 for
all i, and therefore G(w) > 1. Taking norms on both sides of (19), and using the fact that H is
non-negative, we obtain the following inequality:

G(w) ‖Z̄‖ ≤ H ‖Z̄‖. (21)

Using (20) and (21), we get

G(w) ‖Z̄‖ ≤ sH E∗ = sE∗.

which implies

‖Z̄‖ ≤ s

G(w)
E∗ < sE∗.

but this contradicts the minimality of s. Therefore Re w < 0 . In this way we proved the
following theorem.

Theorem 4.3 If R0 > 1, then the positive endemic equilibrium stated E∗ of the system (9) is
locally asymptotically stable on the set D.
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Table 1: Parameter values
corresponding to R0 < 1

Parameters Values
c36 5.11 ∗ 10−8 (case 1− 2)
c44 3.11 ∗ 10−7(case 1− 2)
c55 5.11 ∗ 10−7 (case 1− 2)
c46, 5.11 ∗ 10−7(case 1− 2)
c88 7.00 ∗ 10−8 (case 1− 2)
c77 7.00 ∗ 10−8 (case 1− 2)
c64 25.11 ∗ 10−9 (case 1− 2)
c56 5.11 ∗ 10−7(case 1− 2)
c33 5.11 ∗ 10−7(case 1− 2)
c66 1.50 ∗ 10−8(case 1− 2)
r12 4.47 ∗ 10−3(case 1− 2)
r54 2.50 ∗ 10−6(case 1− 2)
d3 8.86 ∗ 10−3 (case 1− 2)
d4 8.86 ∗ 10−3 (case 1− 2)
d5 1.79 ∗ 10−3 (case 1− 2)
d6 1.00 ∗ 10−2 (case 1− 2)
d7 5.00 ∗ 10−3 (case 1− 2)
d8 5.00 ∗ 10−3 (case 1− 2)
b6 6.60 ∗ 10−2 (case 1− 2)
b3 6.00 ∗ 10−2 (case 1), 6.00 ∗ 10−1 (case 2)
b7 1.20 ∗ 10−2 (case1), 1.20 ∗ 10−5 (case 2)
t15 2.23 ∗ 10−7 (case 1), 2.23 ∗ 10−9 (case 2)
t38 2.0 ∗ 10−7 (case 1), 2.0 ∗ 10−9 (case 2)
t32 1.05 ∗ 10−7 (case 1), 1.05 ∗ 10−9 (case 2)
t75 1.02 ∗ 10−7 (case 1), 1.02 ∗ 10−9 (case 2)

Table 2: Parameter values
for which R0 > 1

Parameters Values
c36 5.11 ∗ 10−8

c44 3.11 ∗ 10−7

c55 5.11 ∗ 10−7

c46 5.11 ∗ 10−7

c88 7.00 ∗ 10−8

c77 7.00 ∗ 10−8

c64 5.11 ∗ 10−7

c56 5.11 ∗ 10−7

c33 5.11 ∗ 10−7

c66 2.50 ∗ 10−7

r12 4.47 ∗ 10−4

r54 2.50 ∗ 10−2

d3 8.86 ∗ 10−3

d4 8.86 ∗ 10−3

d5 1.79 ∗ 10−3

d6 8.00 ∗ 10−3

d7 5.00 ∗ 10−3

d8 5.00 ∗ 10−3

b6 6.60 ∗ 10−2

b3 6.00 ∗ 10−2

b7 1.20 ∗ 10−2

t15 2.23 ∗ 10−7

t38 1.05 ∗ 10−7

t32 1.04 ∗ 10−5

t75 2 ∗ 10−6

5 Numerical studies
To illustrate the various theoretical results contained in the paper, the whole system with the
eight equations is simulated and parameter values using data of Allen and al. and summarize in
the following table.

In the present investigation, simulations were performed to study the effect of applying bi-
ological treatments strategy. Infected humans and snails and Latent snails were compared by
introducing or not competitor snails. Notice, introduction of resistant that out compete the
intermediate host snails can eradicate the infection more rapidly.

In addition, the tables presents with a minor modification the sets of values of the parameters
discussed in Allen and al., which are used in the numerical simulations.
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Figure 1: Trajectories of the model without
resistant snails and parameters values in Table
2 when R0 > 1
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Figure 2: Trajectories of the model with resis-
tant snails conditions and parameters values in
Table 2 when R0 > 1
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Figure 3: Trajectories of the model without
resistant snails and parameters values in Table
2 when R0 > 1
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Figure 4: Trajectories of the model with resis-
tant snails conditions and parameters values in
Table 2 when R0 > 1
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Figure 5: Trajectories of the infected pop-
ulations with different initial conditions
when R0 < 1
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Figure 6: Trajectories of the infected pop-
ulations with different initial conditions
when R0 > 1
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6 Summary and conclusions

In this paper, we have presented a stability analysis of a deterministic model for the transmission
dynamics of a schistosomiasis infection.

Eight subpopulation sizes were modeled: human host susceptible and infected, snail interme-
diate host susceptible, latent, and shedding, resistant competitor snail, mammal host susceptible
and infected. The snails competition is needed to study control to the infection by biological
control.

Mathematical properties of the model are analyzed in terms of the stability of the possible
steady states. The reproductive number R0 is calculated. We proved that the disease-free steady
state E0 is globally asymptotically stable if R0 < 1 and it is unstable if R0 > 1. We proved also
the existence and uniqueness of the endemic equilibrium E∗ in the case where R0 > 1 as well as
its local asymptotic stability.

In a more realistic situation, the speed of a river should affect the transmission dynamics of
schistosomiasis by assuming flush-away of only free-swimming miracidia and cercariae. We are
working on a model with spatial structure (modeling with a ODEs equations coupled with a
shallow water system) that characterizes the density change of parasites following the flush-away
of larvae, see [33].
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