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Abstract: Numerical simulation of mass transfer in biphase flows is a fundamental tool in various
disciplines. One major issue is related to the thermodynamics of the liquid-vapor mixture. Usually,
convex equations of state are used, where a real sound speed can be defined under the saturation
curve, such as for exemple the Stiffened Gas (SG) equation. Neverthless, the use of this equation
in the gas phase, ban the prediction of real-gas effects, demanding a more complex equation of
state, generally non-convex. The aim of this work is to formulate an innovative algorithm for a
strong coupling between a SG equation and a whatever more complex equation for the gas phase,
using experimental data. The proposed algorithm relies on a bayesian-based method, taking into
account model and data uncertainties.

Key-words: Equations of state, two-phase flows, bayesian-based methods.
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Construction d’'un modéle thermodynamique
fiable et robuste pour les mélanges liquide-vapeur

Résumé : La prédiction numérique des effets de transfert de masse dans
les écoulements diphasiques est un outil fondamental dans plusieurs domaines.
Un des problémes est lié au traitement du mélange liquide-vapeur, notamment
au niveau thermodynamique. Dans la littérature, on préfére en général utiliser
des équations ’convexes’, qui présentent une vitesse du son toujours réelle au-
dessous de la courbe de saturation, comme par exemple, la ’Stiffened Gas (SG)’.
Cependant, son utilisation dans la phase gaz ne garantit pas la prise en compte
des effets de gaz réel, qui requiérent des lois beaucoup plus complexes générale-
ment non-convexes. Cette étude se concentre sur la formulation d’un algorithme
innovant de couplage fort entre un modéle de type SG et une équation d’état
complexe quelconque pour la modélisation de la phase gazeuse, basé sur des
données expérimentales. L’algorithme proposé sera basé sur un cadre bayésien,
permettant la prise en compte d’incertitudes sur le modéle et les données.

Mots-clés : Equation d’état, flux diphasique, méthode bayésienne
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1 Introduction

Modeling two-phase flows is of primary importance for engineering applications.
Two aspects are fundamental: (i) how to model the interface between two fluids
with different thermodynamic properties and (ii) to characterize the mechanisms
occurring at the interface as well as in zones where the volume fractions are not
uniform.

For several multiphase models, such as for example the discrete equation
method (DEM), each phase is compressible and behaves according to a convex
equation of state (EOS). In many works of interface problem, the Stiffened Gas
(SG) EOS was usually used [3, [0]. As explained in Saurel et al. [1I], this EOS
allows an explicit mathematical calculations of important flow relation thanks
to its simple analytical form. Moreover, in mass transfer problem it assures the
positivity of speed of sound in the two-phase region, under the saturation curve.

When complex fluids are considered, such as cryogenic and BZT fluid, molec-
ularly complex and so on, the use of simplex EOS can produce imprecise esti-
mation of the thermodynamic properties, thus deteriorating the accuracy of the
prediction. Increasing the complexity of the model and calibrating the adding
parameters with respect to the available experimental data constitutes a valid
option for saving the good prediction of the model. Nevertheless, it could be
very challenging because of the numerical difficulties for the implementation of
more complex mathematical model and because of the large uncertainties that
generally affected the experimental data.

An effort for developing a more predictive tool for multiphase compressible
flows is underway in Bacchus Team (INRIA-Bordeaux). Within this project,
several advancements have been performed, i.e. considering a more complete
systems of equations including viscosity [2], working on the thermodynamic
modeling of complex fluids [5l [6], and developing stochastic methods for uncer-
tainty quantification in compressible flows [5] [I]. The aim of this paper is to
show how a complex thermodynamics can be handled in a liquid-vapor mixture
in a bayesian framework.

In this paper, two thermodynamic models are considered, i.e. the SG EOS
and the Peng-Robinson (PRSV) EOS. While SG allows preserving the hyperbol-
icity of the system also in spinodal zone, real-gas effects are taken into account
by using the more complex PRSV equation. The higher robustness of the PRSV
equation when coupled with CFD solvers with respect to more complex and po-
tentially more accurate multi-parameter equations of state has been discussed
in [, [7]. In this paper, the PRSV equation is used only to describe the vapor
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behavior, while the SG model is used for describing the liquid-vapor mixture us-
ing experimental data and synthetic data from PRSV equation. In practice, the
coefficients of the SG equation are calibrated for obtaining a saturation curve
closed to the experimental one and to the PRSV saturation curve.

This paper is organized as follows. In section [2] both SG and PRSV models
are described. Section [4] illustrated the calibration of SG with respect to the
experimental data and to PRSV equation for the dodecane and the D6 fluid.

2 Description of thermodynamic models

As we have previously mentioned, we deal with pure fluid and artificial mixture
zone, thus the EOS must be able to describe the flow both in pure fluids and
mixture zones.

In this section, first we describe two EOSs, i.e. the Stiffened Gas (SG) EOS
and the Peng-Robinson (PR) EOS. Then, we build the mixture EOS using first
the SG EOS for each phase and after the PR and the SG for the gas and the
liquid phase, respectively.

2.0.1 Stiffened Gas EOS for pure fluid

The Stiffened Gas EOS is usually used for shock dynamics and its robustness
for simulating two-phase flow with or without mass transfer has been amply
demonstrated [3]. It can be written as follows:

P(p,e) = (v —1)(e — q)p — 7P, (1)
e(p,T)=Tec, + 1;20 +q (2)
h(T) = ~e, T, (3)

where p, p and e are the pressure, the density and the energy, respectively. The
politropic coefficient + is the constant ratio of specific heat capacities v = ¢p/cy,
P, is a constant reference pressure and q is the energy of the fluid at a given
reference state. Moreover, T, ¢, and h are the temperature, the specific heat at
constant volume and the enthalpy, respectively. The speed of sound, defined as

2= (%—1;)5 can be computed as follows:

o P+ P _

= P (v =1, T (4)

where ¢? remains strictly positive (for v > 1). It ensures the hyperbolicity of

the system and the existence of a convex mathematical entropy.

The procedure to build the saturation curve for a liquid-phase mixture is
illustrated in [I1I] and it is based on the imposition of the phase chemical po-
tentials (Gibbs function) equality. The chemical potential formulation for each
phase is defined as follows:

T

GI(P,T) = (v/Cy; — ¢))T — Cy Tt —————
l( 9 ) (71 N/ ql) N H(P"’Poo,l)vlil

+q (5)
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T

_ p— / p— S —
Gg(P,T) = (74Cu 4 Qg)T CygT'In (P + P g)to "

+ 4y, (6)

where ¢ is a constant. The saturation curve is obtained by imposing that G; is
equal to Gy, thus yielding the following equation:

B
1n(p+poo,g):A+f+C1nT+Dln(P+Poo,z), (7)

where,

Cpi— Cpg+ q; -q

A =
Cp,g - C’Uyg

g1 — qq C:Cpg_cp,l D:Cpl_cv,l
Cp,g - ng’ Cp,g - O’U,g’ Cp,g - ng.
(8)
Since the focus in this paper is on the SG parameters to calibrate, the following
ones will be treated in a bayesian framework: Py ;,Cy,1,Cp g, Cuv.1,Co g, a1, Ggs andq;.
According to [I1], it is assumed that parameters P, 4 and ¢ are equal to zero.

B =

2.0.2 Peng-Robinson (PRSV) EOS for pure fluid

The Peng-Robinson-Strijek-Vera (PRSV) cubic equation of state (EoS) is adopted
for this study in order to describe the thermodynamic behavior of real gas:

RTb _ a ~ ©)
v — v? 4+ 2bv — b

where p and v denote respectively the fluid pressure and its specific volume, a
and b are substance-specific parameters related to the fluid critical-point prop-
erties p. and T, and representative of attractive and repulsive molecular forces.
To achieve high accuracy for saturation-pressure estimates of pure fluids, the
temperature-dependent parameter a in Eq. @D is expressed as

p:

a = (0.457235R*T? /p.) - o (T), (10)

while
b= 0.077796RT. /pe. (11)

The correction factor « in Eq. is given by
a(T) = [1+ K (1-T%%)]?, (12)
with
K = 0.378893 4 1.4897153w — 0.17131848w? 4 0.0196554w°. (13)
The parameter w is the fluid acentric factor. The other needed information to

complete the thermodynamic model, namely the ideal-gas isochoric specific heat
of the fluid, is approximated through a power law, i.e.,

coce (1) =1 (2 (1) (14

with n a fluid-dependent parameter.
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3 Bayesian Framework

We propose a methodology for calibrating the SG coefficients based on a Bayesian
setting, that is, probability densities of plausible values of these coefficients
are rebuilt from couples of temperature and pressure of saturation curves. A
Bayesian setting offers a rigorous foundation for inferring model parameters
from data, a natural mechanism for incorporating prior information, and a
quantitative assessment of uncertainty on the inferred results [I0]. The out-
put of Bayesian inference is not a single value for the model parameters, but
a posterior probability distribution that summarizes all available information
about parameters. From this distribution, one can calculate moments, compute
marginal distributions, or make additional predictions by averaging over the
posterior.

Let m denote the vector of SG coefficients m = (Peo 1, Cp.1, Cp g, Co1, Co g, @15 g5 4y)
and F' the mathematical model derived from defined as follows : P =
F(m,T), which yields predictions of the pressure as a function of the tem-
perature and the SG coefficients. In practice, it consists in a nonlinear prob-
lem, which is solved here using a classical Newton-Raphson algorithm. In
the Bayesian setting, the components of m are random variables and we use
Bayes’ rule to define a posterior probability density for the model parame-

ters m, given n observations of temperature/pressure couples {d!,...,d"} =
{(PL,TY),....(P",T™)} :

p(dla ) d”|m)pm(m)

p(ml|d!,....d") = .
(m| ) fp(dl,...,d"|m)pm(m)dm

(15)

Prior probability pm(m) represents the degree of belief about possible values
of m before observing any data ; non-informative uniform priors are here used,
with intervals of plausible values depending on the fluid. Data then enters the
formulation through the likelihood or joint density of the observations given m,
namely p(d',...,d™|m). A common model assumes independent observations
so that independent additive errors account for the deviation between predicted
and observed values of d :

Pl =Fm, T+, j=1,....n. (16)

A typical assumption is that errors are realizations of a Gaussian random vari-
able 77 ~ N(0,0%), o encompassing model and data errors. In that case,
P'lm ~ N(F(m,T7),0), and the likelihood is

p(d',...,d"m) = [[ pas(@|m) = [[ py(P? = F(m,T7),5%),  (17)
j=1 j=1

with p, the Gaussian density probability of A'(0,?). Since in general measure-
ment and model errors are not known with exactness, one considers o as an
hyper-parameter of the Bayesian setting that needs to be inferred, with nonin-
formative uniform a priori. However, one has to take into account the different
scales of pressure, so that ¢ depends on temperature. In practice, data are
assembled five by five, the pressure mean p* is computed for each package, and
one infers e = o* /¥,

Inria



Reliable and robust thermodynamic model 7

Markov Chain Monte Carlo (MCMC) encompasses a broad class of methods
that simulate drawing samples from the normalized posterior [§]:

p(m,eld’,...,d") ocp(d',...,d"|m, )pm (m)pe(e), (18)

thus avoiding complex numerical integrations in high dimensions to form the
posterior distribution. In this work, we use the Metropolis-Hastings algorithm
with single-site updating and Gaussian proposal density to draw samples of
p(m,eld!,... d") with an adaptation of the proposal distribution widths in
the first iterations [12].

4 Results

This section illustrates various results. First, the SG coefficients are calibrated
with respect to the experimental data for the dodecane fluid. Secondly, the
SG is calibrated considering the saturation curve generated by means of PRSV
equation, thus providing a practical and efficient way for coupling PRSV and
SG. Finally, the same procedure is applied for a complex gas, i.e. the D6,
that displays BZT [5] properties close to the saturation curve. In this case, the
calibrated SG features to allow the simulation of a liquid-vapor mixture for a
very complex gas.

Marginal posterior distributions of the SG coefficients for the first case are
reported in Figure |1} while posterior means, coeflicients of variation (standard
deviation - denoted by std in the following - to mean ratio), and 90% confidence
intervals are reported for the three cases in Table [I One can denote that the
reconstruction for all SG coefficients except Py ; are really stable (std/mean <
2%), while the error on P, ; vary between 6% and 15%. This may be explained
by the presence of another solution that is plausible, although less accurate.

Finally, SG saturation curves are plotted in Figure |2| for the different test
cases, using the means of the different coefficients. The curves obtained are
observed to fit very well to the experimental data, and a comparison of the
curve with the one obtained by [I1] for the dodecane is given in the first panel.
Note that the calibrated SG can reproduce very accurately the D6 saturation
curve, providing a practical and efficient way for coupling SG and PRSV for
a very molecularly complex fluid. Ongoing effort consists in a more accurate
analysis of the variation of the thermodynamic properties when changing the
equation and in the implementation of the calibrated SG in a CFD code.
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Figure 2: SG saturation curves for dodecane calibrated with respect to ex-
perimental data (left) and PRSV data (middle). SG saturation curve for D6
calibrated with respect to PRSV data (right).
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EXP PRSV PRSV
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Cp.i 2.932 x 1074 4.926 x 1074 3.917 x 1074
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