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Abstract—Relay channels have been extensively studied in the
literature since the seminal paper by Cover and El Gamal.
Nevertheless, characterizing the capacity of relay channels still
presents open issues. While numerous works addressed this prob-
lem with constant powers or targeted the sum-rate optimization,
computing the capacity in the case of a global power constraint
was less studied. In this paper, we introduce the concept of
virtual nodes to derive analytical expressions of the relay channel
capacity as a function of the total power. This transformation
leads to simple closed-form expressions of the upper bound and
decode-and-forward (DF) lower bound on the capacity of the
full- and half-duplex relay channels. The half-duplex study is
separated into low and high signal-to-noise ratio (SNR) cases. The
impact of these approximations is evaluated and found to achieve
a large part of the maximal capacity in the worst case where
the equivalent received SNR is neither low nor high, typically
between 0-10dB.

I. INTRODUCTION

In the recent years, relay channels and protocols have seen

an increase of interest, due to their ability to combat multipath

fading in wireless networks through cooperative diversity

[1] and provide performance gains while homogeneizing the

global network resource consumption [2]. Relay channels have

been extensively studied in the litterature, through Van Der

Meulen’s early work and the comprehensive characterization

of both the upper bound of the capacity region as well as

several lower bounds by Cover and El Gamal (see [3] and

references therein). An extensive survey by Kramer, Gatspar

and Gupta for full duplex relay channels and more complex

network situations can be found in [4].

While the study of full-duplex channels is simpler and gives

insights into the behavior of cooperating protocols, it is not

fully comprehensive for wireless channels since wireless nodes

cannot send and receive data at the same time. We consider in

this paper a time-slotted approach to the half-duplex problem,

where nodes share their total network time between listening

and transmitting phases. This particular relay channel and

associated bounds have been studied in [5].

The general form of the relay channel supposes that the

signal sent by the source and the relay may be correlated and

add coherently. While non-coherent relay channels do provide

performance benefits, the coherent addition of signals leads

to a significant increase in their performance. This coherency

does require that both nodes cooperate in the creation of their

respective codebooks, and that they are able to transmit in

a beamformed manner so that the signals add seamlessly at

the destination. While few systems and protocols are able

to achieve this degree of cooperation, their theoretical study

is further complexified by the need to consider the correct

amount of correlation between signals in the analysis on top

of the transmission power of each node.

Power allocation in relay channels is thus a complex task.

In [6], [7] the authors consider individual power constraints

on nodes in a full-duplex relay channel and extract exact

closed-form expressions for both the cutset upper bound and

the DF lower bound. If the individual power constraint is

relaxed into a global power constraint, the solution to the

problem takes a different form. In [8], Host-Madsen and Zhang

express the ergodic bounds on the capacity of the full and

half duplex relay channel through an iterative water-filling

algorithm. Liang et al. further this study by applying a max-

min rule derived from detection rules in hypothesis testing to

the general power allocation problem, and are thus able to

provide insights into the analytical forms of the solution as

well as iterative algorithms with high convergence speed [9].

Ng and Goldsmith give a closed-form expression of the DF

lower bound for relay channels where the relay node is

colocated with either the source or the destination in [10].

This last paper also investigates the impact of channel side

information on the capacity of the relay channel.

In this paper, we focus our interest on both the cutset upper-

bound of the capacity, and the DF lower bound. These two

bounds do not meet in general, which means that the exact

capacity of the relay channel is still uncertain. The DF lower

bound is still of great interest, because it is the performance

limit of cooperation protocols where the relay node performs

a complete decoding of the signal received from the source,

and as such is directly usable on common hardware. Our

contributions in this paper are as follow:

• We consider a global power constraint on the network,

rather than a local power constraint on each node. This

constraint allows for a fair comparison between coop-

eration protocols as far as power is concerned. It also

has practical applications when we aim at minimizing

the power radiated – or consumed – by the network as a

whole, rather than individually by each node. We show

that with such a constraint, the general coherent relay

channel capacity can be expressed as the capacity of an

equivalent non-coherent relay channel, where a virtual

relay node handles the coherent cooperation between the



source and the original relay. Thanks to this formulation

the coherent relay channel is assimilated to a non coherent

relay channel for which bounds expressions are more

tractable.

• Based on this transformation, we express a very simple

closed form expression for the upper bound and DF

lower bound of the capacity of the full-duplex relay

channel under a global power constraint, along with

the corresponding resource allocations. This expression

generalizes the results in [10] where the relay is either

near the source or the destination.

• The virtual node transformation can apply to half-duplex

relay channels, simplifying the mathematical optimization

problem by one degree of freedom. In order to obtain

results similar in form to the full-duplex case, we use a

fixed time-slot hypothesis along with classical approxi-

mations of the log function at low and high SNR. The

proposed bounds are tight for low SNR below 0dB, and

for high SNR above 10dB.

II. FULL-DUPLEX RELAY CHANNEL

The relay channel is a network model composed of three

nodes ; an information source, a destination, and a relay node

whose only purpose is to help the source in its transmission

and thus has no information of its own. For each node i, we

associate random variables representing the complex symbols

sent and received, respectively labeled as Xi and Yi. In the

full-duplex mode, we suppose that nodes are able to send and

receive data at the same time.

We operate under a classical Gaussian model, where the

source and relay transmit their complex symbols using an

average power Pi. Under this model, the complex symbols

received by the relay and the destination are expressed as:

Y2 = h2X1 + Z ′ (1)

Y3 = h1X1 + h3X2 + Z (2)

The signal is corrupted by the channel between the nodes

through a static attenuation and a Gaussian noise Z ′ and

Z of power density N , independent for each receiver. We

define the normalized transmitted power as P̄i = Pi/N . The

relay channel in our model has no individual node power

requirement, but rather a total consumed power constraint

P̄1+P̄2 = P̄tot. This relay channel is represented on Fig.1 with

the attenuation coefficients of the channel. To simplify the sub-

sequent equations in this paper, we denote the squared module

2+

1 + 3

N (0, N)

N (0, N)

h2 h3

h1

Fig. 1: Full-duplex gaussian relay channel.

of the attenuation coefficient between nodes as gj = |hj |
2. All

capacity results are in nats. For this model, the capacity upper

bound and DF lower bound are given respectively by [3]:

C ≤ max
ρ∈[0,1]

P̄1,P̄2:P̄1+P̄2=P̄tot

min
{

log
(

1 + (g1 + g2)(1− ρ2)P̄1

)

,

log

(

1 + g1P̄1 + g3P2 + 2ρ

√

g1g3P̄1P̄2

)}

(3)

C ≥ max
ρ∈[0,1]

P̄1,P̄2:P̄1+P̄2=P̄tot

min
{

log
(

1 + g2(1− ρ2)P̄1

)

,

log

(

1 + g1P̄1 + g3P̄2 + 2ρ

√

g1g3P̄1P̄2

)}

(4)

Both equations are almost identical, differing only in the

missing g1 coefficient in the decode-and-forward bound. We

can also note the presence of the coherency variable ρ. For

non-coherent channels, ρ is set to 0, greatly simplifying the

analysis of both bounds. In the general case however we have

to optimize over the value of ρ to obtain the tightest bounds.

To simplify the analysis, we note P̄1 = P̄1,1 + P̄1,2 and

identify P̄1,1 = (1− ρ2)P̄1. We can thus write (3) as:

C ≤ max
P̄1,1,P̄1,2,P̄2:

P̄1,1+P̄1,2+P̄2=P̄tot

min
{

log
(

1 + (g1 + g2)P̄1,1

)

,

log

(

1 + g1P̄1,1 +

(

√

g1P̄1,2 +

√

g3P̄2

)2
)}

(5)

The correlated signals takes the form of a MISO channel

(Multiple Input Single Output), from a “virtual node” combin-

ing the cooperative part of the signal from the source and the

signal from the relay. If we introduce a new power variable

P̄eq for the power allocated to this virtual node, the optimal

power allocation (P̄ ∗

1,2, P̄
∗

2 ) is known to be the [11]:

P̄ ∗

1,2 =
g1

g1 + g3
P̄eq P̄ ∗

2 =
g3

g1 + g3
P̄eq (6)

Injecting (6) into (5) we obtain an expression similar to

the upper bound to the capacity of an equivalent non-coherent

channel (by considering ρ = 0 in (7)). By identification, the

cooperation between the original source and relay is captured

in a virtual relay, transmitting on a channel whose gain is

(g1 + g3) (Fig.2). In this equivalent channel, the source and

the virtual relay do not send correlated information since the

correlated part is already integrated in the virtual relay.

C ≤ max
P̄1,1,P̄eq

P̄1,1+P̄eq=P̄tot

min
{

log
(

1 + g1P̄1,1 + (g1 + g3)P̄eq

)

log
(

1 + (g1 + g2)P̄1,1

)}

(7)

The power allocation problem is thus much simpler to solve.

The following proposition gives an exact expression for the

bounds on the capacity for the full-duplex relay channel:

Proposition 1. The upper bound on the capacity for the

coherent full-duplex relay channel under a total power P̄tot to
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Fig. 2: Equivalent virtual relay model for the full-duplex relay

channel. The virtual relay channel towards the destination is

an equivalent MISO channel, whose path gains are computed

from the gains on the original channel.

be distributed between the source and relay node is expressed

as:

C ≤ log

(

1 +
(g1 + g2)ĝ3
g2 + ĝ3

P̄tot

)

(8)

We now suppose g2 ≥ g1. The decode-and-forward lower

bound in that case is expressed as:

C ≥ log

(

1 +
g2ĝ3

g2 + g3
P̄tot

)

(9)

Proof: In Eq.(7), by rewriting P̄eq = P̄tot − P̄1,1, we

can see that the two terms of the min function evolve in

opposite direction with regard to P1,1. The maximum is thus

attained when both terms are equal, which directly translates

into g2P̄1,1 = ĝ3P̄eq. Under the constraint P1,1 + P̄eq = P̄tot

we thus have the following optimal power allocation:

P̄ ∗

1,1 =
ĝ3

g2 + ĝ3
P̄tot P̄ ∗

eq =
g2

g2 + ĝ3
P̄tot (10)

Plugging these values into (7) gives (8). The decode-and-

forward lower bound’s proofs follows a similar procedure, and

the optimal power allocation is in that case:

P̄ ∗

1,1 =
ĝ3

g2 + g3
P̄tot P̄ ∗

eq =
g2 − g1
g2 + g3

P̄tot (11)

The power allocation for the decode and forward bound is only

valid if g2 ≥ g1. This particularity is expected from the general

behavior of decode and forward schemes, who perform well

when the source-relay channel is of higher quality than the

source-destination channel [4], [8]. In both cases, the optimal

(P̄ ∗

1,2, P̄
∗

2 ) are given by (6).

Remark. – All the results in this paper are also valid for

non-coherent relay channels under a global power constraint,

by changing ĝ3 into g3 in both the power allocations and the

capacity results.

III. HALF-DUPLEX RELAY CHANNEL

In wireless channels, nodes are usually unable to receive

and transmit at the same time. Full-duplex results are thus

insightful for theoretical studies, but do not provide realistic

performance evaluations. In the case of the relay channel, this

means that we have basically a cooperation in two phases ;

the relay will first listen to the source for the first part of the

transmission and then transmit its cooperative signal. The total

network time is thus shared between these two phases.

In the general case, it is possible to allocate arbitrarily a

time share t1 to phase one and t2 to phase two, such that

t1 + t2 = 1. In the first phase, the source node transmits

alone using power P1, and in our model we allow the source

to transmit at P ′

1 6= P1 in the second phase. Using results

from [5] for coherent half-duplex relays and the virtual source

transformation from the preceding section, we can write the

upper and DF lower bounds as follow, with P̄ ′

1,1 + P̄ ′

1,2 = P̄ ′

1

and P̄eq = P̄ ′

1,2 + P̄2:

C ≤min
{

t1 log
(

1 + (g1 + g2)P̄1

)

+ t2 log
(

1 + g1P̄
′

1,1

)

,

t1 log
(

1 + g1P̄1

)

+ t2 log
(

1 + g1P̄
′

1,1 + ĝ3P̄eq

)}

(12)

C ≥min
{

t1 log
(

1 + g2P̄1

)

+ t2 log
(

1 + g1P̄
′

1,1

)

,

t1 log
(

1 + g1P̄1

)

+ t2 log
(

1 + g1P̄
′

1,1 + ĝ3P̄eq

)}

(13)

The optimization is over (P̄1, P̄
′

1,1, P̄eq) verifying the global

mean power constraint t1P̄1 + t2(P̄
′

1,1 + P̄eq) = P̄tot. Even

with the virtual relay model this optimization problem is

extremely hard to solve analytically on both the power and

time variables. This problem can directly be expressed as

a convex optimization problem and thus efficiently solved,

by considering the half-duplex case as an energy distribution

problem under a total energy constraint, rather than a power

distribution problem. This transformation is described in [12]

and will be used as the comparison for our power allocation

in the remainder of the section.

In order to obtain closed-form results, we first restrict

ourselves to the case t1 = t2 = 1/2. This approach matches

practical protocols where an equal time share is assigned to

each network phase, but is likely to induce some degradation in

the capacity region. On Fig.3, we quantify this degradation by

considering the relative performance as the ratio of the capac-

ity attained with the constraint versus the unconstrained case.

We can see that the added constraint has little to no impact on

low and high values of P̄tot. The degradation at medium SNR

is mild when the relative coefficients of the source-destination

and relay-destination are close and increases in the case of

strong assymetry in the links – the cross-dotted curve on Fig.3.

Under this constraint, it is possible to derive the optimal

values of (P̄ ∗

1 , P̄
′
∗

1,1, P̄
∗

eq) as fourth order polynomial roots,

which is still far from practical. To further ease the manip-

ulation of the sum of logarithm functions in half-duplex relay

channels, we split the problem in two approaches and use

the usual approximations log(1 + x) ≈ x as x → 0 and

log(1 + x) ≈ log(x) as x → ∞. Using these simplifications,

we can enunciate the following result:

Proposition 2. The upper bound on the capacity of the general

half-duplex relay channel is closely approximated for high

values of P̄tot by:

C ≤
1

2

(

log
(

1 + g1P̄tot

)

+ log

(

1 +
ĝ3(g1 + g2)

g2 + ĝ3
P̄tot

))

(14)



10−2 10−1 100 101 102 103 104 105 106
0.9

0.92

0.94

0.96

0.98

1

P̄tot (dB)

R
el

at
iv

e
p
er

fo
rm

an
ce

g1 = 0.2, g2 = 1, ĝ3 = 0.8
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Fig. 3: Performance loss induced by introducing the constraint

t1 = t2 = 1/2 in the general half-duplex relay optimization

problem.

The upper bound on the capacity of the general half-duplex

relay channel is closely approximated for low values of Ptot

by:

C ≤
1

2
log

(

1 + 2
ĝ3(g1 + g2)

g2 + g3
P̄tot

)

(15)

In the high SNR case, the optimal power allocation is as

follow, from (12):

P̄1 = P̄tot P̄ ′

1,1 =
ĝ3

g2 + ĝ3
P̄tot P̄eq =

g2
g2 + ĝ3

P̄tot (16)

In the low SNR case:

P̄1 = 2
ĝ3

g2 + ĝ3
P̄tot P̄ ′

1,1 = 0 P̄eq = 2
g2

g2 + ĝ3
P̄tot (17)

Proof: For high values of P̄tot, we have to solve the

following optimization problem:

min.
R,P̄1,P̄

′

1,1
,P̄eq

−R

s.c. 2R ≤ log
(

(g1 + g2)P̄1

)

+ log
(

g1P̄
′

1,1

)

2R ≤ log
(

g1P̄1

)

+ log
(

g1P̄
′

1,1 + ĝ3P̄eq

)

2P̄tot = P̄1 + P̄ ′

1,1 + P̄eq

We associate the Lagrangian multipliers λ1 and λ2 to the

inequality constraints, and µ to the equality constraint.The

partial derivatives of the Lagrangian function L w.r.t. the

optimization variables are:

∂L

∂R
= 1− 2λ1 − 2λ2

∂L

∂P̄1
= −

1

2P̄1
+ µ

∂L

∂P̄ ′

1,1

= −
λ1

P̄ ′

1,1

−
λ2g1

g1P̄ ′

1,1 + ĝ3P̄eq
+ µ

∂L

∂P̄eq
= −

λ2ĝ3
g1P̄ ′

1,1 + ĝ3P̄eq
+ µ (18)

We study this problem under the Karush-Kuhn-Tucker (KKT)

conditions, allowing us to derive analytical results on the

optimal set of power allocations [13]. From these we can

directly see that λ2 = 0 =⇒ µ = 0, which violates the

KKT conditions. Furthermore, having λ1 = 0 leads to the

condition g3 = 0, a degenerate case. At the optimum, we thus

have λ1 6= 0 and λ2 6= 0 which means that both inequalities

are verified with equality, leading to a new relation between

the power variables. We are left with a 4 equation system with

4 unknowns to solve, as described below:

2λ2ĝ3P̄1 = g1P̄
′

1,1 + ĝ3P̄eq (19)

λ2g3P̄
′

1,1 = (
1

2
− λ2)

(

g1P̄
′

1,1 + ĝ3P̄eq

)

(20)

(g1 + g2)P̄
′

1,1 = g1P̄
′

1,1 + ĝ3P̄eq (21)

P̄1 + P̄ ′

1,1 + P̄eq = 2P̄tot (22)

Combining the first two equations w.r.t. the λ2 term leads to

the relation P̄1 = P̄ ′

1,1+ P̄eq. Along with the power constraint

and the remaining equation, we can thus deduce the power

allocation from (16).

At low values of P̄tot, we proceed in a similar way and

we are left with the following equation and the total power

constraint:

(g1 + g2)P̄1 + g1P̄
′

1,1 = g1P̄1 + g1P̄
′

1,1 + ĝ3P̄eq (23)

This equation simplifies into ĝ3P̄eq = g2P̄1, which does not

lead to constraints on P̄ ′

1,1. The optimal power allocation thus

reduces to (17). Injecting the power allocations into (12) gives

(14) and (15).

On Fig.4, we plot the relative performance of both high and

low SNR approximations, and the t1 = 1/2 constraint, w.r.t.

the general problem. We can see that both are well-behaved

in their respective range, and degrades rapidly in the medium

SNR range. The lowest performance point position will shift

depending on the channels considered ; channels with a low

coefficient will lead the low SNR approximation to be valid

for higher values of P̄tot, while the high SNR approximation

behaves in the opposite way. If we set an acceptable relative

performance of 95%, there is a 10 dB range at medium SNR

where our proposition crosses the threshold. Depending on the

application, the tradeoff may be acceptable with regard to the

computation simplicity of the power allocations. Increasing

the performances in that range would require much more

complicated methods of resolutions, be it root finding on high

order polynomials or complete convex optimization problems.

Since both problems share a similar analytical form, ex-

tending these results to the decode-and-forward lower bound

is straightforward. The capacity bounds and power allocations

are described in Prop.3, and the relative performance is plotted

in Fig.5. As seen on Fig.4 and Fig.5, the suboptimality of the

choice t = 1/2 and the high/low SNR approximations in the

half-duplex case lead to the same relative loss in performance

in both the upper bound (Prop.2) and the lower bound (Prop.3).
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Fig. 4: Relative performance of the power allocation in propo-

sition 2 w.r.t. the general optimization problem. Values for g1,

g2 and ĝ3 are the same as the ones in Fig.3.

Proposition 3. We suppose g2 ≥ g1. The DF lower bound on

the capacity of the general half-duplex relay channel is closely

approximated at high SNR by:

C ≤
1

2

(

log
(

1 + g1P̄tot

)

+ log

(

1 +
g2ĝ3

g2 + g3
P̄tot

))

(24)

The DF lower bound on the capacity is closely approximated

at low SNR by:

C ≤
1

2
log

(

1 + 2
g2ĝ3

g2 + g3
P̄tot

)

(25)

In the high SNR case, the optimal power allocation is as

follow, from (13):

P̄1 = P̄tot P̄ ′

1,1 =
ĝ3

g2 + g3
P̄tot P̄eq =

g2 − g1
g2 + g3

P̄tot (26)

In the low SNR case:

P̄1 = 2
ĝ3

g2 + g3
P̄tot P̄ ′

1,1 = 0 P̄eq = 2
g2 − g1
g2 + g3

P̄tot (27)

IV. CONCLUSION

In this paper, we described a network model transformation,

allowing us to treat coherent relay channels analytically as

non-coherent ones. Using this transformation, we were able

to derive a closed-form expression for bounds on the capacity

of the full-duplex relay channel along with the associated

power allocation. Half-duplex relay channels are harder to

analyze, due to the presence of sums of logarithms in their ca-

pacity expressions. Applying successive approximations leads

to closed-form expressions similar to the full-duplex case,

although the proposed power allocations induce a performance

degradation at medium SNR.

The virtual relay transformation presented in this paper

is an interesting way of quickly simplifying the analysis of

coherent communication networks operating under a global

power constraint. We expect in further contribution to be
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Fig. 5: Relative performance of the power allocation in propo-

sition 3 w.r.t. the general optimization problem for the decode-

and-forward lower bound on the capacity. Values for g1, g2
and ĝ3 are the same as the ones in Fig.3.

able to present such an approach on more complex network

models, such as the cooperative multiple-access channel. Links

between this approach and superposition coding should also be

investigated, since both use a power-splitting paradigm. The

proposed power allocations also suppose perfect channel side

information (CSI). It would thus be interesting to study the

resiliency of these results under imperfect CSI.
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