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Abstract

This paper addresses the problem of online planning in Markov decision processes
using a generative model and under a budget constraint. We propose a new algo-
rithm, ASOP, which is based on the construction of a forest of single successor state
planning trees, where each tree corresponds to a random realization of the stochas-
tic environment. The trees are explored using a “safe” optimistic planning strategy
which combines the optimistic principle (in order to explore the most promising
part of the search space first) and a safety principle (which guarantees a certain
amount of uniform exploration). In the decision-making step of the algorithm,
the individual trees are aggregated and an immediate action is recommended. We
provide a finite-sample analysis and discuss the trade-off between the principles of
optimism and safety. We report numerical results on a benchmark problem showing
that ASOP performs as well as state-of-the-art optimistic planning algorithms.

1 Introduction

Adaptive decision making algorithms have been used increasingly in the past years, and have attracted
researchers from many application areas, like artificial intelligence [16], financial engineering [10],
medicine [14] and robotics [15]. Such algorithms have the ability to interact and adapt to their
environment so as to maximize an a priori performance criterion. In this paper we focus on methods
for planning in Markov decision processes (MDPs).

A new generation of algorithms based on look-ahead tree search techniques has lead to a huge
breakthrough in practical performance on planning problems with large state spaces. Techniques
based on planning trees such as Monte Carlo tree search [4, 13], and in particular the UCT algorithm
(UCB applied to Trees, see [12]) have allowed to tackle large scale problems such as the game of Go
[7]. These methods take advantage of the fact that in order to decide on an action at a given state, it is
not necessary to build an estimate of the value function everywhere, and instead focus on searching
in the space of policies, starting from the current state.

We propose a new algorithm, Aggregated Safe Optimistic Planning (ASOP), for planning in MDPs.
Our assumption is that a generative model is available for exploring the effects of actions in simulation
before they are applied to the actual environment [11]. Reflecting time or cost constraints, only a
limited budget of calls to the generative model is available until a decision on an action has to be
made. This class of problems can be referred to as online planning with a generative model. The
intuition behind ASOP is to achieve a good exploration depth (in the look-ahead tree) by planning in
fixed realizations of the MDP, and to achieve the necessary exploration width by aggregating a forest
of planning trees (forming an approximation of the MDP from many realizations). Each planning
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tree is constructed starting in the state for which a decision has to be made, and developed according
to the principle of optimism in the face of uncertainty [13], combined with a safety principle.

We provide a finite-sample analysis of the performance of the action returned by ASOP as a function
of the budget: number of trees and number of node expansions in each tree. We show that ASOP
is consistent in the sense that the returned action converges to the optimal one, when the available
budget tends to infinity. We also give numerical results which demonstrate good performance of
ASOP on a benchmark problem. In particular, we show that it achieves much better performance on
this problem than the OP-MDP algorithm [2] when both algorithms generate the same number of
successor states, despite the fact that OP-MDP uses the knowledge of all successor state probabilities
in the MDP, whereas ASOP only samples the states from the generative model.

The paper is organized as follows: first, we discuss some related work in section 2. In section 3 the
problem addressed in this paper is formalized, before we describe our new algorithm in section 4. A
finite-sample analysis of ASOP is given in section 5. We provide numerical results on the inverted
pendulum benchmark problem in section 6. In section 7, we discuss and conclude this work.

2 Related work

The optimism in the face of uncertainty paradigm has already lead to several successful results
for solving decision making problems. Specifically, it has been applied in the following contexts:
multi-armed bandit problems [1] (which can be seen as single state MDPs), planning algorithms
for deterministic systems and stochastic systems [8, 9, 17], and global optimization of stochastic
functions that are only accessible through sampling. See [13] for a detailed review of the optimistic
principle applied to planning and optimization.

The algorithm presented in this paper is related particularly closely to two recently developed online
planning algorithms for solving MDPs, namely the OPD algorithm [9] for MDPs with deterministic
transitions, and the OP-MDP algorithm [2] which addresses stochastic MDPs where all transition
probabilities are known. A Bayesian adaptation of OP-MDP has also been proposed [6] for planning
in the context where the MDP is unknown.

Our contribution is also related to [5], where random ensembles of state-action independent distur-
bance scenarios are built, the planning problem is solved for each scenario, and a decision is made
based on majority voting. Finally, since ASOP proceeds by sequentially applying the first decision of
a longer plan over a receding horizon, it can also be seen as a Model Predictive Control [3] technique.

3 Formalization

Let (S,A, p, r, γ) be a Markov decision process (MDP), where the set S and A respectively denote
the state space and the finite action space, with |A| > 1, of the MDP. When an action a ∈ A is
selected in state s ∈ S of the MDP, it transitions to a successor state s′ ∈ S(s, a) with probability
p(s′|s, a). We further assume that every successor state set S(s, a) is finite and their cardinality
is bounded by K ∈ N. Associated with the transition is an deterministic instantaneous reward
r(s, a, s′) ∈ [0, 1].

While the transition probabilities may be unknown, it is assumed that a generative model is available,
which, given a state-action pair (s, a), outputs a random successor state s′ ∼ p(·|s, a). The knowledge
of a generative model is a weaker assumption than knowing the transition probabilities. In this paper
we consider the problem of planning under a budget constraint: only a limited number of samples
may be drawn from the generative model.

Let π : S → A denote a deterministic policy. Define the value function of the policy π in a state s as
the discounted sum of expected rewards:

vπ : S → R, vπ : s 7→ E

[
∞∑

t=0

γtr(st, π(st), st+1)
∣
∣s0 = s

]

, (1)

where the constant γ ∈ (0, 1) is called the discount factor. Let π∗ be an optimal policy (i.e. a policy

that maximizes vπ in all states). It is well known that the optimal value function v∗ := vπ
∗

is the
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solution to the Bellman equation

∀s ∈ S : v∗(s) = max
a∈A

∑

s′∈S(s,a)

p(s′|s, a) (r(s, a, s′) + γv∗(s′)) .

Given the action-value function Q∗ : (s, a) 7→
∑

s′∈S(s,a) p(s
′|s, a)(r(s, a, s′) + γv∗(s′)), an

optimal policy can be derived as π∗ : s 7→ argmaxa∈A Q∗(s, a).

4 Algorithm

The idea behind the ASOP algorithm (for “Aggregated Safe Optimistic Planning”) is to use the
generative model to obtain a series of deterministic “realizations” of the stochastic MDP, solve each
of them, and then aggregate all the information gathered in the deterministic MDPs into an empirical
approximation to the original MDP, on the basis of which a decision is made.

We refer to the planning trees used here as single successor state trees (S3-trees), in order to distinguish
them from other planning trees used for the same problem (e.g. the OP-MDP tree, where all possible
successor states are considered). Every node of a S3-tree represents a state s ∈ S, and has at most
one child node per state-action a, representing a successor state s′ ∈ S . The successor state is drawn
using the generative model during the construction of the S3-tree.

The planning tree construction, using the SOP algorithm (for “Safe Optimistic Planning”), is described
in section 4.1. The ASOP algorithm, which integrates building the forest and deciding on an action
by aggregating the information in the forest, is described in section 4.2.

4.1 Safe optimistic planning in S3-trees: the SOP algorithm

SOP is an algorithm for sequentially constructing a S3-tree. It can be seen as a variant of the OPD
algorithm [9] for planning in deterministic MDPs. SOP expands up to two leaves of the planning tree
per iteration. The first leaf (the optimistic one) is a maximizer of an upper bound (called b-value) on
the value function of the (deterministic) realization of the MDP explored in the S3-tree. The b-value
of a node x is defined as

b(x) :=

d(x)−1
∑

i=0

γiri +
γd(x)

1− γ
(2)

where (ri) is the sequence of rewards obtained along the path to x, and d(x) is the depth of the node
(the length of the path from the root to x). Only expanding the optimistic leaf would not be enough
to make ASOP consistent; this is shown in the appendix. Therefore, a second leaf (the safe one),
defined as the shallowest leaf in the current tree, is also expanded in each iteration. A pseudo-code is
given as algorithm 1.

Algorithm 1: SOP

Data: The initial state s0 ∈ S and a budget n ∈ N

Result: A planning tree T
Let T denote a tree consisting only of a leaf, representing s0
Initialize the cost counter c := 0
while c < n do

Form a subset of leaves of T , L, containing a leaf of minimal depth, and a leaf of maximal b-value
(computed according to (2); the two leaves can be identical)
foreach l ∈ L do

Let s denote the state represented by l
foreach a ∈ A do

if c < n then
Use the generative model to draw a successor state s′ ∼ p(·|s, a)
Create an edge in T from l to a new leaf representing s′

c := c+ 1

return T
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4.2 Aggregation of S3-trees: the ASOP algorithm

ASOP consists of three steps. In the first step, it runs parallel instances of SOP to collect information

about the MDP, in the form of a forest of S3-trees. It then computes action-values Q̂∗(s0, a) of
a single “empirical” MDP based on the collected information, in which states are represented by
forests: on a transition, the forest is partitioned into groups by successor states, and the corresponding
frequencies are taken as the transition probabilities. Leaves are interpreted as absorbing states with
zero reward on every action. A pseudo-code for this computation is given as algorithm 2. ASOP then
outputs the action

π̂(s0) ∈ argmax
a∈A

Q̂∗(s0, a).

The optimal policy of the empirical MDP has the property that the empirical lower bound of its value,
computed from the information collected by planning in the individual realizations, is maximal over
the set of all policies. We give a pseudo-code for the ASOP algorithm as algorithm 3.

Algorithm 2: ActionValue

Data: A forest F and an action a, with each tree in F representing the same state s
Result: An empirical lower bound for the value of a in s
Let E denote the edges representing action a at any of the root nodes of F
if E = ∅ then

return 0
else

Let F be the set of trees pointed to by the edges in E
Enumerate the states represented by any tree in F by {s′i : i ∈ I} for some finite I
foreach i ∈ I do

Denote the set of trees in F which represent si by Fi

Let ν̂i := maxa′∈A ActionValue(Fi, a
′)

Let p̂i := |Fi|/|F |.

return
∑

i∈I
p̂i (r(s, a, s

′
i) + γν̂i)

Algorithm 3: ASOP

Data: The initial state s0, a per-tree budget b ∈ N and the forest size m ∈ N

Result: An action to take
for i = 1, . . . ,m do

Ti ← SOP(s0, b)

return argmax
a∈A ActionValue({T1, . . . , Tm}, a)

5 Finite-sample analysis

In this section, we provide a finite-sample analysis of ASOP in terms of the number of planning trees
m and per-tree budget n. An immediate consequence of this analysis is that ASOP is consistent: the
action returned by ASOP converges to the optimal action when both n and m tend to infinity.

Our loss measure is the “simple” regret, corresponding to the expected value of first playing the action
π̂(s0) returned by the algorithm at the initial state s0 and acting optimally from then on, compared to
acting optimally from the beginning:

Rn,m(s0) = Q∗(s0, π
∗(s0))−Q∗(s0, π̂(s0)).

First, let us use the “safe” part of SOP to show that each S3-tree is fully explored up to a certain depth
d when given a sufficiently large per-tree budget n.

Lemma 1. For any d ∈ N, once a budget of n ≥ 2|A| |A|d+1−1
|A|−1 has been spent by SOP on an S3-tree,

the state-actions of all nodes up and including those at depth d have all been sampled exactly once.
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Proof. A complete |A|-ary tree contains |A|l nodes in level l, so it contains
∑d

l=0 |A|l = |A|d+1−1
|A|−1

nodes up to and including level d. In each of these nodes, |A| actions need to be explored. We
complete the proof by noticing that SOP spends at least half of its budget on shallowest leaves.

Let vπω and vπω,n denote the value functions for a policy π in the infinite S3-tree defined by a random
realization ω and the finite S3-tree constructed by SOP for a budget of n in the same realization ω,
respectively. From Lemma 1 we deduce that if the per-tree budget is at least

n ≥ 2
|A|

|A| − 1
[ǫ(1− γ)]

−
log |A|

log(1/γ) . (3)

we obtain |vπω(s0)− vπω,n(s0)| ≤
∣
∣
∑∞

i=d+1 γ
iri

∣
∣ ≤ γd+1

1−γ ≤ ǫ for any policy π.

ASOP aggregates the trees and computes the optimal policy π̂ of the resulting empirical MDP
whose transition probabilities are defined by the frequencies (over the m S3-trees) of transitions
from state-action to successor states. Therefore, π̂ is actually a policy maximizing the function
π 7→ 1

m

∑m
i=1 v

π
ωi,n(s0).

If the number m of S3-trees and the per-tree budget n are large, we therefore expect the optimal
policy π̂ of the empirical MDP to be close to the optimal policy π∗ of the true MDP. This is the result
stated in the following theorem.

Theorem 1. For any δ ∈ (0, 1) and ǫ ∈ (0, 1), if the number of S3-trees is at least

m ≥
8

ǫ2(1− γ)2

(

log |A|
K

K − 1

[ ǫ

4
(1− γ)

]− log K
log(1/γ)

+ log(4/δ)

)

(4)

and the per-tree budget is at least

n ≥ 2
|A|

|A| − 1

[ ǫ

4
(1− γ)

]−
log |A|

log(1/γ)

, (5)

then P (Rm,n(s0) < ǫ) ≥ 1− δ.

Proof. Let δ ∈ (0, 1), and ǫ ∈ (0, 1) and fix realizations {ω1, . . . , ωm} of the stochastic MDP, for
some m satisfying (4). Each realization ωi corresponds to an infinite S3-tree. Let n denote some
per-tree budget satisfying (5).

Analogously to (3), we know from Lemma 1 that given our choice of n, SOP constructs trees which

are completely explored up to depth d := ⌊ log(ǫ(1−γ)/4)
log γ ⌋, fulfilling γd+1

1−γ ≤ ǫ
4 .

Consider the following truncated value functions: let νπd (s0) denote the sum of expected discounted
rewards obtained in the original MDP when following policy π for d steps and then receiving reward
zero from there on, and let νπωi,d

(s0) denote the analogous quantity in the MDP corresponding to
realization ωi.

Define, for all policies π, the quantities v̂πm,n := 1
m

∑m
i=1 v

π
ωi,n(s0) and ν̂πm,d := 1

m

∑m
i=1 ν

π
ωi,d

(s0).

Since the trees are complete up to level d and the rewards are non-negative, we deduce that we have
0 ≤ vπωi,n − νπωi,d

≤ ǫ
4 for each i and each policy π, thus the same will be true for the averages:

0 ≤ v̂πm,n − ν̂πm,d ≤ ǫ
4 ∀π. (6)

Notice that νπd (s0) = Eω[ν
π
ω,d(s0)]. From the Chernoff-Hoeffding inequality, we have that for any

fixed policy π (since the truncated values lie in [0, 1
1−γ ]),

P
(
|ν̂πm,d − νπd (s0)| ≥

ǫ
4

)
≤ 2e−mǫ2(1−γ)2/8.

Now we need a uniform bound over the set of all possible policies. The number of distinct policies is

|A| · |A|K · · · · · |A|K
d

(at each level l, there are at most Kl states that can be reached by following a
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policy at previous levels, so there are |A|K
l

different choices that policies can make at level l). Thus

since m ≥ 8
ǫ2(1−γ)2

[
Kd+1

K−1 log |A|+ log( 4δ )
]

we have

P

(

max
π

|ν̂πm,d − νπd (s0)| ≥
ǫ
4

)

≤ δ
2 . (7)

The action returned by ASOP is π̂(s0), where π̂ := argmaxπ v̂
π
m,n.

Finally, it follows that with probability at least 1− δ:

Rn(s0) = Q∗(s0, π
∗(s0))−Q∗(s0, π̂(s0)) ≤ v∗(s0)− vπ̂(s0)

= v∗(s0)− v̂π
∗

m,n + v̂π
∗

m,n − v̂π̂m,n
︸ ︷︷ ︸

≤0, by definition of π̂

+ v̂π̂m,n − ν̂π̂m,d
︸ ︷︷ ︸

≤ǫ/4, by (6)

+ ν̂π̂m,d − νπ̂d (s0)
︸ ︷︷ ︸

≤ǫ/4, by (7)

+ νπ̂d (s0)− vπ̂(s0)
︸ ︷︷ ︸

≤0, by truncation

≤ vπ
∗

(s0)− νπ
∗

d (s0)
︸ ︷︷ ︸

≤ǫ/4, by truncation

+ νπ
∗

d (s0)− ν̂π
∗

m,d
︸ ︷︷ ︸

≤ǫ/4, by (7)

+ ν̂π
∗

m,d − v̂π
∗

m,n
︸ ︷︷ ︸

≤0, by (6)

+ ǫ
2 ≤ ǫ

Remark 1. The total budget (nm) required to return an ǫ-optimal action with high probability is

thus of order ǫ−2−
log(K|A|)
log(1/γ) . Notice that this rate is poorer (by a ǫ−2 factor) than the rate obtained

for uniform planning in [2]; this is a direct consequence of the fact that we are using a generative
model only whereas a full model of the transition probabilities is assumed in [2].

Remark 2. Notice that we do not use the optimistic properties of the algorithm in the analysis. The
analysis only uses the “safe” part of the SOP planning, i.e. the fact that one sample out of two are
devoted to expanding the shallowest nodes. An analysis of the benefit of the optimistic part of the
algorithm, similar to the analyses carried out in [9, 2] would be much more involved and is deferred
to a future work. However the impact of the optimistic part of the algorithm is essential in practice,
as shown in the numerical results.

Remark 3. Since there is a finite number of actions, by denoting ∆ > 0 the optimality gap between
the best and the second-best optimal action values, we have that the optimal arm is identified (in high

probability) (i.e. the simple regret is 0) after a total budget of order ∆−2−
log(K|A|)
log(1/γ) .

6 Numerical results

In this section, we compare the performance of ASOP to OP-MDP [2], UCT [12], and FSSS [17]. We
use the (noisy) inverted pendulum benchmark problem from [2], which consists of swinging up and
stabilizing a weight attached to an actuated link that rotates in a vertical plane. Since the available
power is too low to push the pendulum up in a single rotation from the initial state, the pendulum has
to be swung back and forth to gather energy, prior to being pushed up and stabilized.

The inverted pendulum is described by the state variables (α, α̇) ∈ [−π, π] × [−15, 15] and the
differential equation α̈ = (mgl sin(α)− bα̇−K(Kα̇+ u)/R) /J, where J = 1.91 · 10−4 kg · m2,
m = 0.055 kg, g = 9.81 m/s2, l = 0.042 m, b = 3 · 10−6 Nm · s/rad, K = 0.0536 Nm/A, and
R = 9.5 Ω. The state variable α̇ is constrained to [−15, 15] by saturation. The discrete time problem
is obtained by mapping actions from A = {−3V, 0V, 3V} to segments of a piecewise control signal
u, each 0.05s in duration, and then numerically integrating the differential equation on the constant
segments using RK4. The actions are applied stochastically: with probability 0.6, the intended
voltage is applied in the control signal, whereas with probability 0.4, the smaller voltage 0.7a is
applied. The goal is to stabilize the pendulum in the unstable equilibrium s∗ = (0, 0) (pointing up, at
rest) when starting from state (−π, 0) (pointing down, at rest). This goal is expressed by the penalty
function (s, a, s′) 7→ −5α′2 − 0.1α̇′2 − a2, where s′ = (α′, α̇′). The reward function r is obtained
by scaling and translating the values of the penalty function so that it maps to the interval [0, 1], with
r(s, 0, s∗) = 1. The discount factor is set to γ = 0.95.

The algorithms are compared for several budgets. In the cases of ASOP, UCT, and FSSS, the budget
is in terms of calls to the generative model. OP-MDP does not use a generative model. Instead, every
possible successor state is incorporated into the planning tree together with its precise probability
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Figure 1: Comparison of ASOP to OP-MDP, UCT, and FSSS on the inverted pendulum benchmark
problem, showing the sum of discounted rewards for simulations of 50 time steps.

mass, and each of these states is counted against the budget. As the benchmark problem is stochastic,
and internal randomization (for the generative model) is used in all algorithms except OP-MDP, the
performance is averaged over 50 repetitions. The algorithm parameters have been selected manually
to achieve good performance. For ASOP, we show results for forest sizes of two and three. For UCT,
the Chernoff-Hoeffding term multiplier is set to 0.2 (the results are not very sensitive in the value,
therefore only one result is shown). For FSSS, we use one to three samples per state-action. For
both UCT and FSSS, a rollout depth of seven is used. OP-MDP does not have any parameters. The
results are shown in figure 1. We observe that on this problem, ASOP performs much better than
OP-MDP for every value of the budget, and also performs well in comparison to the other sampling
based methods, UCT and FSSS.

Figure 2 shows the impact of optimistic planning on the performance of our aggregation method. For
forest sizes of both one and three, optimistic planning leads to considerably increased performance.
Notice that while good results can already be achieved with a single planning tree, the results can
in this case deteriorate with increasing budget. This may be caused by overfitting: as the planning
tree grows and becomes deeper, the planning relies on more and more transitions to occur, which
may not be the case in the actual system. This can also happen in FSSS, however it has less impact,
presumably because the planning depth is limited to a small value.

7 Conclusion

We introduced ASOP, a novel algorithm with finite-sample performance guarantees, for solving
online planning problems using a generative model of the MDP under a budget constraint. The
algorithm works by constructing a forest of single successor state trees (S3-trees), each corresponding
to a random realization of the MDP transitions. Each S3-tree is constructed by SOP, which combines
“safe” and optimistic planning. An empirical MDP is defined based on the forest, and the first action
of the optimal policy of this empirical MDP is returned. In short, ASOP targets structured problems
(where the value function possesses some smoothness property around the optimal policy, in a sense
defined e.g. in [13]) by using the optimistic principle to focus rapidly on the most promising area
of the search space, and it can find a reasonable solution in unstructured problems, since some of
the budget is allocated for uniform exploration. ASOP shows good performance on the inverted
pendulum benchmark problem. Finally, the algorithm is also appealing in that the numerically heavy
part of constructing the S3-trees, in which the generative model is used, is parallelized.
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Figure 2: Comparison of different planning strategies (on the same problem as in figure 1). The
“Safe” strategy is to use uniform planning in the individual trees, the “Optimistic” strategy is to use
OPD. ASOP corresponds to the “Safe+Optimistic” strategy.
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Appendix: Counterexample to consistency when using purely optimistic planning in S3-trees

Consider the MDP in figure 3 with k zero reward transitions in the middle branch, where γ ∈ (0, 1)
and k ∈ N are chosen such that 1

2 > γk > 1
3 (e.g. γ = 0.95 and k = 14). The trees are constructed

iteratively, and every iteration consists of exploring a leaf of maximal b-value, where exploring a
leaf means introducing a single successor state per action at the selected leaf. The state-action values

are: Q∗(x, a) = 1
3

1
1−γ + 2

3
γk

1−γ > 1
3

1
1−γ + 2

3
1
3

1
1−γ = 5

9
1

1−γ and Q∗(x, b) = 1
2

1
1−γ . There are two

possible outcomes when sampling the action a, which occur with probabilities 1
3 and 2

3 , respectively:
Outcome I: The upper branch of action a is sampled. In this case, the contribution to the forest is an
arbitrarily long reward 1 path for action a, and a finite reward 1

2 path for action b.

Outcome II: The lower branch of action a is sampled. Because γk

1−γ < 1
2

1
1−γ , the lower branch will

be explored only up to k times, as its b-value is then lower than the value (and therefore any b-value)
of action b. The contribution of this case to the forest is a finite reward 0 path for action a and an
arbitrary long (depending on the budget) reward 1

2 path for action b.
For an increasing exploration budget per tree and an increasing number of trees, the approximate
action values of action a and b obtained by aggregation converge to 1

3
1

1−γ and 1
2

1
1−γ , respectively.

Therefore, the decision rule will select action b for a sufficiently large budget, even though a is the
optimal action. This leads to simple regret of R(x) = Q∗(x, a)−Q∗(x, b) > 1

18
1

1−γ .

s0
a

b
1

2
1

2

. . .
1

2

1

2

1

2

. . .

11
3

1 . . . 1 1 1 . . . (I)

0
2
3 0

. . .
0 1 1

. . . (II)

Figure 3: The middle branch (II) of this MDP is never explored deep enough if only the node with
the largest b-value is sampled in each iteration. Transition probabilities are given in gray where not
equal to one.
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