
HAL Id: hal-00923926
https://hal.inria.fr/hal-00923926

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tradeoff exploration between reliability, power
consumption, and execution time for embedded systems

Ismail Assayad, Alain Girault, Hamoudi Kalla

To cite this version:
Ismail Assayad, Alain Girault, Hamoudi Kalla. Tradeoff exploration between reliability, power con-
sumption, and execution time for embedded systems. Software Tools for Technology Transfer (STTT),
Springer, 2013, 15 (3), pp.229-245. �10.1007/s10009-012-0263-9�. �hal-00923926�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49697646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00923926
https://hal.archives-ouvertes.fr

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Tradeoff exploration between reliability, power

consumption, and execution time for embedded systems

The TSH tricriteria scheduling heuristic

Ismail Assayad · Alain Girault ·

Hamoudi Kalla

Abstract For autonomous critical real-time embedded systems (e.g., satellite), guar-

anteeing a very high level of reliability is as important as keeping the power consump-

tion as low as possible. We propose an off-line scheduling heuristic which, from a given

software application graph and a given multiprocessor architecture (homogeneous and

fully connected), produces a static multiprocessor schedule that optimizes three cri-

teria: its length (crucial for real-time systems), its reliability (crucial for dependable

systems), and its power consumption (crucial for autonomous systems). Our tricriteria

scheduling heuristic, called TSH, uses the active replication of the operations and the

data-dependencies to increase the reliability, and uses dynamic voltage and frequency

scaling to lower the power consumption. We demonstrate the soundness of TSH. We

also provide extensive simulation results to show how TSH behaves in practice: Firstly,

we run TSH on a single instance to provide the whole Pareto front in 3D; Secondly, we

compare TSH versus the ECS heuristic (Energy-Conscious Scheduling) from the litera-

ture; And thirdly, we compare TSH versus an optimal Mixed Linear Integer Program.

Keywords Embedded systems, multicriteria optimization, reliability, power con-

sumption, DVFS, multiprocessor scheduling, Pareto front.

1 Introduction

1.1 Motivations

Autonomous critical real-time embedded applications are commonly found in embed-

ded devices such as satellite systems. Because they are real-time systems, their execu-

tion time must be as low as possible to guarantee that the system interacts with its

environment in a timely way. Because they are critical, their reliability must be as close

as 1 as possible, typically above 1 − 10−9. And because they are autonomous, their

A short version of this article has been published in the proceedings of the SAFECOMP’11
International Conference, September 2011, Napoli, Italy.

Ismail Assayad
ENSEM (RTSE team), University Hassan II, Casablanca, Morocco.

Alain Girault
INRIA and Grenoble University (POP ART team and LIG lab), Grenoble, France.

Hamoudi Kalla
University of Batna (LaSTIC lab, REDS team), Batna, Algeria.

2

power consumption must be as low as possible. The main problem when addressing

these issues is that they are antagonistic. Intuitively, lowering the probability of failure

requires some form of redundancy, meaning more computing load. This is antagonistic

to achieving the lowest possible execution time. In the same manner, lowering the power

consumption is usually achieved by lowering the voltage and frequency operating point

of the processors, which means that the same software function will take more time to

execute. Finally, lowering the voltage and frequency operating point also has an impact

of the failure rate of processors, because lower voltage leads to smaller critical energy,

hence the system becomes sensitive to lower energy particles. As a result, the failure

probability increases. These three antogonisms make the problem very challenging.

In order to offer the best compromises between these three measures, we present an

off-line scheduling heuristic that, from a given software application graph and a given

multiprocessor architecture, produces a static multiprocessor schedule that optimizes

three criteria: its schedule length (crucial for real-time systems), its reliability (crucial

for dependable systems), and its power consumption (crucial for autonomous systems).

We target homogeneous distributed architecture, such as multicore processors. Our

tricriteria scheduling heuristic uses the active replication of the operations and the

data-dependencies to increase the reliability, and uses dynamic voltage and frequency

scaling (DVFS) to lower the power consumption.

1.2 Multicriteria optimization

Let us address the issues raised by multicriteria optimization. Figure 1 illustrates the

particular case of two criteria, Z1 and Z2, that must be minimized. For the clarity of

the presentation, we stick here to two criteria but this discussion extends naturally to

any number of criteria. In Figure 1, each point x1 to x7 represents a solution, that is, a

different tradeoff between the two criteria. The points x1, x2, x3, x4, and x5 are called

Pareto optima [28]. Among those solutions, the points x2, x3, and x4 are called strong

Pareto optima (no other point is strictly better on all criteria) while the points x1 and

x5 are called weak Pareto optima (no other point is better on all criteria, possibly not

strictly). The set of all Pareto optima is called the Pareto front.

First criterion Z1

x4

x6

x7

Z1(x
6)

x5

Second criterion Z2

x3
x1x2

Z2(x
6)

Fig. 1 Pareto front for a bicriteria minimization problem.

It is fundamental to understand that no solution among the points x2, x3, and x4

(the strong Pareto optima) can be said to be the best one. Indeed, those three solutions

are non-comparable, so choosing among them can only be done by the user, depending

on the precise requirements of his/her application. But such a user-dependent choice

can only be made if we are able to compute the whole Pareto front. If we compute

only a single solution, then obviously no choice is possible. This is why we advocate

producing, for a given problem instance, the whole Pareto front rather than a single

3

solution. Since we have three criteria, it will be a surface in the 3D space (execution

time,reliability,power consumption).

Now, several approaches exist to tackle bicriteria optimization problems (these

methods extend naturally to multicriteria) [28]:

1. Aggregation of the two criteria into a single one, so as to transform the problem

into a classical single criterion optimization one.

2. Hierarchization of the criteria, which allows the total ordering of the criteria,

and then the solving of the problem by optimizing one criterion at a time.

3. Interaction with the user, in order to guide the search for a Pareto optimum.

4. Transformation of one criterion into a constraint, which allows the solving of the

problem by optimizing the other criterion under the constraint of the first one.

Any multicriteria optimization method that aggregates the criteria (for instance

with a linear combination of all the criteria) can only produce one point of the Pareto

front, leaving no choice to the user between several tradeoffs. Of course, such a method

could be run several times (for instance by changing the coefficients of the linear com-

bination), but there is no way to control what part of the Pareto front will be produced

by doing so and the Pareto front is likely to be far from complete.

Similarly, any multicriteria optimization method that hierarchizes the criteria can

only produce one point of the Pareto front. For instance, in the case of Figure 1, we

could first minimize Z1 and obtain the subset {x4, x5} of solutions, and then minimize

Z2 among the solutions in {x4, x5}, thereby obtaining the point x4. Alternatively, we

could first minimize Z2 and then Z1, thereby obtaining the point x2. In both cases,

only one point of the Pareto front is obtained.

Finally, we do not want to consider the third class of methods (interaction with the

user) because it too would produce a single point of the Pareto front, and also because

we want to provide a stand alone multicriteria optimization method.

Contrary to the three first classes of methods, the transformation approach allows

one to produce the whole Pareto front, for instance by choosing to take the Z1 criterion

as a constraint, by fixing its maximum value, by minimizing Z2 under the constraint

that Z1 remains below this value, and by iterating this process with different maximum

values of Z1 so as to produce each time a new point of the Pareto front. This is why

the proposed method follows this approach.

1.3 Contributions and outline

The main contribution of this paper is TSH, the first tricriteria scheduling heuristic

able to produce, starting from an application algorithm graph and an architecture

graph, a Pareto front in the space (schedule length,reliability,power consumption), and

taking into account the impact of voltage on the failure probability. Thanks to the

use of active replication, TSH is able to provide any required level of reliability. TSH

is an extension of our previous bicriteria (schedule length,reliability) heuristic called

BSH [12]. The tricriteria extension presented in this paper is necessary because of the

crucial impact of the voltage on the failure probability.

We first present in Section 2 an overview of TSH. Then, in Section 3 we introduce

the models that we used, regarding the target architecture, the software application

that must be scheduled on it, the execution characteristics of the software elements

onto the processing elements, the failure hypothesis, and the power consumption. TSH

itself is presented in details in Section 4. In particular, we prove the soundness of TSH

by demonstrating that the produced schedules always meet the desired constraint on

4

the reliability and on the power consumption. Then, in Section 5, we define a mixed

integer linear programming model (MILP) for our scheduling problem, in order to

compute the optimal Pareto front. Section 6 presents our simulation results, including

the comparison with the Energy-Conscious Scheduling heuristic (ECS [18]), and with

the optimal Pareto front in the case of small problem instances. Finally, we review the

related work in Section 7 and we provide concluding remarks in Section 8.

2 Principle of the method and overview

The approach we have chosen to produce the whole Pareto front involves (i) transform-

ing all the criteria except one into as many constraints, then (ii) minimizing the last

remaining criterion under those constraints, and (iii) iterating this process with new

values of the constraints.

Figure 2 illustrates the particular case of two criteria Z1 and Z2. To obtain the

Pareto front, Z1 is transformed into a constraint, with its first value set to K1
1 = +∞.

The first run involves minimizing Z2 under the constraint Z1 < +∞, which produces

the Pareto point x1. For the second run, the constraint is set to the value of x1, that is

K2
1 = Z1(x

1): we therefore minimize Z2 under the constraint Z1 < K2
1 , which produces

the Pareto point x2, and so on. This process converges provided that the number of

Pareto optima is bounded. Otherwise it suffices to slice the interval [0, +∞) into a

finite number of contiguous sub-intervals of the form [Ki+1
1 , Ki

1], resulting in one point

for each such interval. That way, the grain of the Pareto front can be improved by

reducing the size of the intervals, at the cost of more iterations of the method. Note

that each point obtained in this way is not necessarily a point of the Pareto front since

it may be dominated by other points.

K1
1 = +∞

x4

x2x3

x5

K4
1 K3

1

Z2

x1

K2
1

Z1

Fig. 2 Transformation method to produce the Pareto front.

Now, the application algorithm graphs we are dealing with are large (tens to hun-

dreds of operations, each operation being a software block), thereby making infeasible

exact scheduling methods, or even approximated methods with backtracking, such

as branch-and-bound. We therefore chose to use list scheduling heuristics, first intro-

duced in [15], and which have demonstrated their good performances for scheduling

large graphs [19]. We propose in this paper a tricriteria list scheduling heuristic, called

TSH, adapted from [12]. TSH improves on [12] by working with three criteria, the

schedule length, the reliability, and the power consumption.

Using list scheduling to minimize a criterion Z2 under the constraint that another

criterion Z1 remains below some threshold Ki
1 (as in Figure 2), requires that Z1 be an

invariant measure, not a varying one. For instance, the energy is a strictly increasing

function of the schedule, in the mathematical sense: if S′ is a prefix schedule of S,

5

then the energy consumed by S is strictly greater than the energy consumed by S′.

Hence, the energy is not an invariant measure; more precisely it is additive. Figure 3(a)

illustrates this fact. The operations are scheduled in the order 1, 2, and so on. Up to

the operation number 6, the energy criterion is satisfied: ∀1 ≤ i ≤ 6, E(S(i)) ≤ Eobj ,

where S(i) is the partial schedule at iteration (i). But there is no way to prevent

S(7) from failing to satisfy the criterion, because whatever the operation scheduled at

iteration (7), E(S(7)) > Eobj . And with list scheduling, it is not possible to backtrack.

number

E(S)

0

Eobj

1 2 3 4 5 6 7 . . .

operation

replication

4

1

2

3

R(S)

0
1 2 3 4 5 6 7 . . .

1

Robj

operation
number

level

(a) (b)
Fig. 3 (a) Why the consumed energy is not an invariant measure; (b) Why the reliability is
not an invariant measure and illustration of the funnel effect on the replication level of the
operations.

As a consequence, using the energy as a constraint (i.e., Z1 = E) and the schedule

length as a criterion to be minimized (i.e., Z2 = L) is bound to fail. Indeed, the fact

that all the scheduling decisions made at the stage of any intermediary schedule S′

meet the constraint E(S′) < K cannot guarantee that the final schedule S will meet

the constraint E(S) < K. In contrast, the power consumption is an invariant measure

(being the energy divided by the time), and this is why we take the power consumption

as a criterion instead of the energy consumption (see Section 3.5).

The reliability too is not an invariant measure, because the contribution of each

scheduled operation i is a probability in [0, 1], which is multiplied to the reliability of

the partial schedule computed so far, R(S(i−1)). The consequence is a “so far so good”

situation, which results in a “funnel” effect on the replication level of the operations.

This is illustrated by Figure 3(b): up to operation 4, the replication level is 1 because

this choice minimizes the increase in the schedule length, and the reliability objective

is satisfied: R(Si) > Robj for i ≤ 4. But at this point, it is not possible to schedule

operation 5 with no replication, and at the same time satisfy the reliability objective.

However, replicating this operation on all the processors of the target architecture (say

4 for the sake of the example) results in a probability very close to 1, therefore allowing

the reliability to decrease only very slightly (Figure 3(b) shows an horizontal line for

R(S) after the fifth operation, but actually it decreases very slightly). This is why we

take instead, as a criterion, the global system failure rate per time unit (GSFR), first

defined in [12]. By construction, the GSFR is an invariant measure of the schedule’s

reliability (see Section 4.1).

For these reasons, each run of our tricriteria scheduling heuristic TSH minimizes

the schedule length under the double constraint that the power consumption and the

GSFR remain below some thresholds, noted respectively Pobj and Λobj . By running

TSH with decreasing values of Pobj and Λobj , starting with (+∞, +∞), we are able

6

to produce the Pareto front in the 3D space (length,GSFR,power). This Pareto front

shows the existing tradeoffs between the three criteria, allowing the user to choose the

solution that best meets his/her application needs. Finally, our method for producing

a Pareto front could work with any other scheduling heuristic minimizing the schedule

length under the constraints of both the reliability and the power.

3 Models

3.1 Application algorithm graph

Embedded real-time systems are reactive, and therefore consist of some algorithm exe-

cuted periodically, triggered by a periodic execution clock. We follow the periodic task

model of [17], shown in Figure 4(b). Our model is therefore that of a synchronous ap-

plication algorithm graph Alg , which is repeated infinitely in order to take into account

the reactivity of the modeled system, that is, its reaction to external stimuli produced

by its environment. In other words, the body of the periodic loop of Figure 4(b) is

captured by the Alg graph.

I1

I2 G

O1

I3

C

A

F

B

D

E O2

(a)

Initialize
for each period T do

Read Inputs
Compute
Update Outputs

end for each

(b)

Fig. 4 (a) An example of algorithm graph Alg : I1, I2, and I3 are input operations, O1 and O2

are output operations, A–G are regular operations; (b) Program model of a periodic real-time
task.

Alg is an acyclic oriented graph (X ,D) (See Figure 4(a)). Its nodes (the set X)

are software blocks called operations. Each arc of Alg (the set D) is a data-dependency

between two operations. If X ⊲ Y is a data-dependency, then X is a predecessor of Y ,

while Y is a successor of X. The set of predecessors of X is noted pred(X) while its

set of successors is noted succ(X). X is also called the source of the data-dependency

X ⊲ Y , and Y is its destination.

Operations with no predecessor are called input operations (I1, I2, and I3 in Fig-

ure 4(a)); they capture the “Read Inputs” phase of the periodic execution loop, each

one being a call to a sensor driver. Operations with no successor are called output

operations (O1 and O2); they capture the “Update Outputs” phase, each one being

a call to an actuator driver. The other operations (A to G) capture the “Compute”

phase and have no side effect.

3.2 Architecture model

We assume that the architecture is an homogeneous and fully connected multi-processor

one. It is represented by an architecture graph Arc, which is a non-oriented bipartite

graph (P,L,A) whose set of nodes is P∪L and whose set of edges is A (see Figure 5).

P is the set of processors and L is the set of communication links. A processor is

composed of a computing unit, to execute operations, and one or more communication

units, to send or receive data to/from communication links. Typically, communication

units are DMAs, which present the advantage of sending data in parallel with the

7

processor. A point-to-point communication link is composed of a sequential memory

that allows it to transmit data from one processor to another. Each edge of Arc (the

set A) always connects one processor and one communication link. Here we assume

that the Arc graph is complete, that is, there exists a communication link between any

two processors.

P4

P1 L12 P2

L23

L13

P3
L34

L24

L14

Fig. 5 An example of a distributed memory architecture graph Arc with four processors,
P1 to P4, and six communication links, L12 to L34.

3.3 Execution characteristics

Along with the algorithm graph Alg and the architecture graph Arc, we are also given a

function Exenom : (X×P)∪(D×L) → R
+ giving the nominal worst-case execution time

(WCET) of each operation onto each processor and the worst-case communication time

(WCCT) of each data-dependency onto each communication link. An intra-processor

communication takes no time to execute. Since the architecture is homogeneous, the

WCET of a given operation is identical on all processors (similarly for the WCCT of

a given data-dependency). We call Exenom the nominal WCET because we will see in

Section 3.5 that the actual WCET varies according to the voltage / frequency operating

point of the processor.

The WCET analysis is the topic of much work [29]. Knowing the execution char-

acteristics is not a critical assumption since WCET analysis has been applied with

success to real-life processors actually used in embedded systems, with branch predic-

tion, caches, and pipelines. In particular, it has been applied to one of the most critical

embedded system that exists, the Airbus A380 avionics software [6,27] running on the

Motorola MPC755 processor [10,26].

3.4 Static schedules

The graphs Alg and Arc are the specification of the system. Its implementation involves

finding a multiprocessor schedule of Alg onto Arc. This consists of four functions: the

two spatial allocation functions ΩO and ΩL give respectively, for each operation of

and each data-dependency of Alg , the subset of processors and of communication links

of Arc that will execute it; and the two temporal allocation functions ΘO and ΘL

give respectively the starting date of each operation and each data-dependency on its

processor or its communication link:

ΩO : X → 2P and ΘO : X × P → R
+

ΩL : D → 2L and ΘL : D × L → R
+

In this work we only deal with static schedules, for which the functions ΘO and

ΘL are static, and our schedules are computed off-line; i.e., the start time of each

operation (resp. each data-dependency) on its processor (resp. its communication link)

8

is statically known. A static schedule is without replication if for each operation X

and each data-dependency D, we have |ΩO(X)| = 1 and |ΩL(D)| = 1. In contrast,

a schedule is with (active) replication if for some operation X or data-dependency D,

we have |ΩO(X)| ≥ 2 or |ΩL(D)| ≥ 2. The number |ΩO(X)| (resp. |ΩL(D)|) is called

the replication factor of X (resp. of D). A schedule is partial if not all the operations

and data-dependencies of Alg have been scheduled, but all the operations that are

scheduled are such that all their predecessors are also scheduled. Finally, the length

of a schedule is the max of the termination times of the last operation scheduled on

each of the processors of Arc (in the literature, it is also called the makespan). For a

schedule S, we note it L(S):

L(S) = max
P∈P

„

max
X:P∈ΩO(X)

ΘO(X, P) + Exenom(X, P)

«

(1)

In the sequel, we will write X ∈ P instead of X : P ∈ ΩO(X) for the sake of

simplicity. We will also number the processors from 1 to |P| and use their number in

index, for instance pj (and similarly for the communication links).

3.5 Voltage, frequency, and power consumption

The maximum supply voltage is noted Vmax and the corresponding highest operating

frequency is noted fmax. The WCET of any given operation is computed with the

processor operating at fmax and Vmax (and similarly for the WCCT of the data-

dependencies). Because the circuit delay is almost linearly related to 1/V [5], there is a

linear relationship between the supply voltage V and the operating frequency f . From

now on, we will assume that the operating frequencies are normalized, that is, fmax = 1

and any other frequency f is in the interval (0, 1). Accordingly, we define in Eq (2) a

new function Exe that gives the execution time of the operation or data-dependency

X placed onto the hardware component C, be it a processor or a communication link,

which is running at frequency f . In other words, f is taken as a scaling factor:

Exe(X, C, f) = Exenom(X, C)/f (2)

The power consumption P of a single operation or data-dependency placed on a

single hardware component is computed according to the classical model found for

instance in [21,30]:

P = Ps + h(Pind + Pd) Pd = CefV 2f (3)

where Ps is the static power (power to maintain basic circuits and to keep the clock

running), h is equal to 1 when the circuit is active and 0 when it is inactive, Pind is

the frequency independent active power (the power portion that is independent of the

voltage and the frequency; it becomes 0 when the system is put to sleep, but the

cost of doing so is very expensive [9]), Pd is the frequency dependent active power (the

processor dynamic power and any power that depends on the voltage or the frequency),

Cef is the switch capacitance, V is the supply voltage, and f is the operating frequency.

Cef is assumed to be constant for all operations; this is a simplifying assumption since

one would normally need to take into account the actual switching activity of each

operation to compute accurately the consumed energy. However, such an accurate

computation is infeasible for the application sizes we consider here.

For processors, this model is widely accepted for average size applications, where

Cef can be assumed to be constant for the whole application [30]. For communication

9

links on a multicore platform, this model is also relevant, as communication links are

specialized processing elements [21]. Of course, the coefficients in Eq (3) should be

distinct for processors and communication links. We use the following notations:

coefficient processors links

frequency independent active power P p
ind

P ℓ
ind

switch capacitance Cp
ef

Cℓ
ef

Since the architecture is homogeneous, each processor (resp. communication link)

has an identical value P p
ind

(resp. P ℓ
ind) and similarly an identical value Cp

ef
(resp. Cℓ

ef).

In contrast, since the voltage and frequency varies, each processor pj has (potentially)

a distinct value P j
d
. We do not apply to the communication links so their voltage and

frequency remains constant, respectively equal to Vℓ and fℓ.

For a multiprocessor schedule S, we cannot apply directly Eq (3) because each

processor is potentially operating at a different V and f , which vary over time. Instead,

we must compute the total energy E(S) consumed by S, and then divide by the schedule

length L(S):

P (S) = E(S)/L(S) (4)

We compute E(S) with Eq (5) below, by summing the contribution of each pro-

cessor and of each communication link:

E(S) =

|P|
X

j=1

0

@P p
ind

·L(S) +
X

oi∈pj

P j
d
Exe(oi, pj , fi,j)

1

A

+

|L|
X

k=1

0

@P ℓ
ind ·L(S) +

X

di∈ℓk

P k
d Exe(di, ℓk, fℓ)

1

A (5)

The first sum over |P| accounts for the processors while the second sum over |L|

accounts for the communication links. Whether a processor is active or idle, it always

consumes at least P p
ind

watts, hence the first term P p
ind

·L(S). The second term sums the

contributions of all the operations oi executed by processor pj : when the processor is

executing oi at the voltage Vi,j and the frequency fi,j , the additional energy consumed

is the product of the active power P j
d

by oi’s execution time. The description is similar

for the communication links. E(S) can be rewritten as Eq (6):

E(S) = |P|·P p
ind

·L(S) + Cp
ef

|P|
X

j=1

0

@

X

oi∈pj

V 2
i,j fi,j Exe(oi, pj , fi,j)

1

A

+ |L|·P ℓ
ind ·L(S) + Cℓ

ef

|L|
X

k=1

0

@

X

di∈ℓk

V 2
ℓ fℓ Exe(di, ℓk, fℓ)

1

A (6)

3.6 Failure hypothesis

Both processors and communication links can fail, and they are fail-silent (a behavior

that can be achieved at a reasonable cost [3]). Classically, we adopt the failure model

of Shatz and Wang [25]: failures are transient and the maximal duration of a failure is

such that it affects only the current operation executing onto the faulty processor, and

not the subsequent operations (same for the communication links); this is the “hot”

10

failure model. The occurrence of failures on a processor (same for a communication

link) follows a Poisson law with a constant parameter λ, called its failure rate per time

unit. Modern fail-silent processors can have a failure rate around 10−6/hr [3].

Failures are transient. Those are the most common failures in modern embedded

systems, all the more when processor voltage is lowered to reduce the energy consump-

tion, because even very low energy particles are likely to create a critical charge leading

to a transient failure [30]. Besides, failure occurrences are assumed to be statistically

independent events. For hardware faults, this hypothesis is reasonable, but this would

not be the case for software faults [16].

The reliability of a system is defined as the probability that it operates correctly

during a given time interval [1]. According to our model, the reliability of the proces-

sor P (resp. the communication link L) during the duration d is R = e−λd. Conversely,

the probability of failure of the processor P (resp. the communication link L) during

the duration d is F = 1 − R = 1 − e−λd. Hence, the reliability of the operation or

data-dependency X placed onto the hardware component C (be it a processor or a

communication link) is:

R(X, C) = e−λC Exe(X,C,f) (7)

From now on, the function R will either be used with two variables as in Eq (7), or

with only one variable to denote the reliability of a schedule (or a part of a schedule).

Since the architecture is homogeneous, the failure rate per time unit is identical for

each processor (noted λp) and similarly for each communication link (noted λℓ).

0

L
(V3, f3)

L12

Y

P2

(Cp
ef ,P

p
ind)

P1

(Cp
ef ,P

p
ind) (Cℓ

ef ,P
ℓ
ind)

X ⊲ Y

X
(V1, f1)

Z
(V2, f2)

ti
m

e

Fig. 6 A simple schedule of length L.

Figure 6 shows a simple schedule S where operations X and Z are placed onto P1,

operation Y onto processor P2, and the data-dependency X ⊲ Y is placed onto the

link L12. We detail below the contribution of each hardware component to the con-

sumed energy according to Eq (6):

– On P1: E(P1) = P p
ind

·L + Cp
ef

“

V 2
1 f1 Exe(X, P1, f1) + V 2

2 f2 Exe(Z, P1, f2)
”

.

– On P2: E(P2) = P p
ind

·L + Cp
ef

V 2
3 f3 Exe(Y, P2, f3).

– On L12: E(L12) = P ℓ
ind ·L + Cℓ

ef V 2
ℓ fℓ Exe(X ⊲ Y, L12, fℓ).

3.7 Summary of the assumptions

1. The algorithm graph Alg is a single clocked synchronous data flow graph. This is

reasonable for automatic control software found in numerous embedded systems.

Such systems are commonly called “periodic sampled systems”.

2. The distributed memory architecture Arc is homogeneous and fully connected. This

is reasonable since more and more embedded processors are many-core ones.

11

3. The switch capacitances Cp
ef

and Cℓ
ef are constant, respectively for all processors

and all operations, and for all communication links and all data dependencies. This

is a simplification since the switch capacitance depends on the operations actually

executed by the processor. However, for the size of applications we consider, taking

an average constant value is reasonable.

4. Hardware elements are fail-silent. Fail silence can be achieved at a reasonable cost,

for instance with a dual lock-step processor [3].

5. Failures are transient and their duration is such that it affects only the current

operation executing onto the faulty processor, and not the subsequent operations

(same for the communication links). Single event upsets (SEUs), which are the

most common failures affecting hardware elements, fall in this category.

6. Failure occurrences are statistically independent events. For hardware faults, this

hypothesis is reasonable, but this would not be the case for software faults [16].

7. The occurrence of failures on a hardware element follows a Poisson law with a

constant parameter λ. Over the life, λ changes according to a “bathtub” curve,

with a “flat” portion in the middle. Thanks to this flat portion, a constant λ can

be reasonably assumed for the processors usually deployed in safety critical systems.

4 The tricriteria scheduling algorithm TSH

4.1 Global system failure rate (GSFR)

As we have demonstrated in Section 2, we must use the global system failure rate

(GSFR) instead of the system’s reliability as a criterion. The GSFR is the failure

rate per time unit of the obtained multiprocessor schedule, seen as if it were a single

operation scheduled onto a single processor [12]. The GSFR of a static schedule S,

noted Λ(S), is computed by Eq (8):

Λ(S) =
− log R(S)

U(S)
(8)

Eq (8) uses the reliability R(S), which, in the case of a static schedule S with-

out replication, is simply the product of the reliability of each operation and data

dependency of S (by definition of the reliability, Section 3.6):

R(S) =
Y

(oi,pj)∈S

R(oi, pj) ·
Y

(di,ℓk)∈S

R(di, ℓk) (9)

Eq (8) also uses the total processor utilization U(S) instead of the schedule

length L(S), so that the GSFR can be computed compositionally:

U(S) =
X

(oi,pj)∈S

Exe(oi, pj , fi,j) +
X

(di,ℓk)∈S

Exe(di, ℓk, fℓ) (10)

Thanks to Eqs (8), (9), and (10), the GSFR is invariant : for any schedules S1 and

S2 such that S = S1 ◦ S2, where “◦” is the concatenation of schedules, if Λ(S1) ≤ K

and Λ(S2) ≤ K, then Λ(S) ≤ K (Proposition 5.1 in [12]).

Finally, it is very easy to translate a reliability objective Robj into a GSFR objec-

tive Λobj : one just needs to apply the formula Λobj = − log Robj/D, where D is the

mission duration. This shows how to use the GSFR criterion in practice.

12

4.2 Decreasing the power consumption

Two operation parameters of a chip can be modified to lower the power consumption:

the frequency and the voltage. We assume that each processor can be operated with a

finite set of supply voltages, noted V. We thus have V = {V0, V1, . . . , Vmax}. To each

supply voltage V corresponds an operating frequency f . We choose not to modify the

operating frequency and the supply voltage of the communication links.

We assume that the cache size is adapted to the application, therefore ensuring

that the execution time of an application is linearly related to the frequency [22] (i.e.,

the execution time is doubled when frequency is halved).

To lower the energy consumption of a chip, we use Dynamic Voltage and Frequency

Scaling (DVFS), which lowers the voltage and increases proportionally the cycle period.

However, DVFS has an impact of the failure rate [30]. Indeed, lower voltage leads to

smaller critical energy, hence the system becomes sensitive to lower energy particles.

As a result, the fault probability increases both due to the longer execution time and

to the lower energy: the voltage-dependent failure rate λ(f) is:

λ(f) = λ0 ·10
b(1−f)
1−fmin (11)

where λ0 is the nominal failure rate per time unit, b > 0 is a constant, f is the frequency

scaling factor, and fmin is the lowest operating frequency. At fmin and Vmin, the failure

rate is maximal: λmax = λ(fmin) = λ0 ·10b.

We apply DVFS to the processors and we assume that the voltage switch time

can be neglected compared to the WCET of the operations. To take into account the

voltage in the schedule, we modify the spatial allocation function ΩO to give the supply

voltage of the processor for each operation: ΩO : X → Q, where Q is the domain of

the sets of pairs 〈p, v〉 ∈ P × V.

To compute the number of elements in Q, we count the number of sets of pairs 〈p, v〉

for each element of 2P except the empty set. Each element E ∈ 2P accounts for |V||E|

elements in Q. Take for example P = {p1, p2, p3, p4} and V = {v1, v2, v3}. Each of the

4 singletons of 2P accounts for 31 = 3 elements, each of the 6 doubletons accounts for

32 = 9 elements, each of the 4 triplets accounts for 33 = 27 elements, and finally the

only quadruplet accounts for 34 = 81 elements. The total is therefore 255 = 44 − 1

elements. For instance, {〈p1, v2〉, 〈p3, v3〉, 〈p4, v1〉} is a triplet of Q, meaning that the

concerned operation o is replicated three times, namely on p1 at voltage v2, on p3

at voltage v3, and on p4 at voltage v1. In the general case, it can be shown that

|Q| = (|V| + 1)|P| − 1.

4.3 Decreasing the GSFR

According to Eq (8), decreasing the GSFR is equivalent to increasing the reliability.

Several techniques can be used to increase the reliability of a system. Their common

point is to include some form of redundancy (this is because the target architecture Arc,

with the failure rates of its components, is fixed) [11]. We have chosen the active repli-

cation of the operations and the data-dependencies, which consists in executing several

copies of a same operation onto as many distinct processors (resp. data-dependencies

onto communication links). Adding more replicas increases the reliability, but also, in

general, the schedule length: in this sense, we say that the two criteria, length and

reliability, are antagonistic.

To compute the GSFR of a static schedule with replication, we use Reliability

Block-Diagrams (RBD) [2,20]. An RBD is an acyclic oriented graph (N, E), where

13

each node of N is a block representing an element of the system, and each arc of E is

a causality link between two blocks. Two particular connection points are its source S

and its destination D. An RBD is operational if and only if there exists at least one

operational path from S to D. A path is operational if and only if all the blocks in this

path are operational. The probability that a block be operational is its reliability. By

construction, the probability that an RBD be operational is thus the reliability of the

system it represents.

In our case, the system is the multiprocessor static schedule, possibly partial, of

Alg onto Arc. Each block represents an operation X placed onto a processor Pi or a

data-dependency X ⊲Y placed onto a communication link Lj . The reliability of a block

is therefore computed according to Eq (7).

Computing the reliability in this way requires the occurrences of the failures to

be statistically independent events. Without this hypothesis, the fact that some blocks

belong to several paths from S to D makes the reliability computation infeasible. At

each iteration of the scheduling heuristic, we compute the RBD of the partial schedule

obtained so far, then we compute the reliability based on this RBD, and finally we

compute the GSFR of the partial schedule with Eq (8).

Finally, computing the reliability of an RBD with replications is, in general, expo-

nential in the size of the schedule. To avoid this problem, we insert routing operations

so that the RBD of any partial schedule is always serial-parallel (i.e., a sequence of

parallel macro-blocks), hence making the GSFR computation linear [12]. The idea is

that, for each data dependency X ⊲ Y such that it has been decided to replicate X

k times and Y ℓ times, a routing operation R will collect all the data sent by the k

replicas of X and send it to the ℓ replicas of Y (see Figure 7).

R

Y ℓ

X1

Xk

Y 1

...
...

Fig. 7 A routing operation between k replicas of X and ℓ replicas of Y .

This scheme, known as “replication for reliability” [13], has a drawback in terms

of schedule length, because the routing operation R cannot complete before it has

received the data sent by all the replicas of X. However, it has been shown in [12]

that, on average, the overhead of inserting routing operations on the schedule length

is less than 4%.

4.4 Principle of the scheduling heuristic TSH

To obtain the Pareto front in the space (length,GSFR,power), we predefine a virtual

grid in the objective plane (GSFR,power), and for each cell of the grid we solve one

different single objective problem constrained to this cell, by using the scheduling

heuristic TSH presented below. The single objective is the schedule length that TSH

aims at minimizing.

TSH is a ready list scheduling heuristic. It takes as input an algorithm graph Alg , a

homogeneous architecture graph Arc, the function Exe giving the WCETs and WCCTs,

and two constraints Λobj and Pobj . It produces as output a static multiprocessor sched-

ule S of Alg onto Arc, such that the GSFR of S is smaller than Λobj , the power con-

sumption is smaller than Pobj , and such that its length is as small as possible. TSH uses

14

active replication of operations to meet the Λobj constraint, dynamic voltage scaling to

meet the Pobj constraint, and the power-efficient schedule pressure as a cost function

to minimize the schedule length.

Besides, TSH inserts routing operations to make sure that the RBD of any partial

schedule is serial-parallel (otherwise, computing the reliability is exponential in the size

of the schedule – see Section 4.3).

TSH works with two lists of operations of Alg : the ready operations O
(n)
ready

and

the previously scheduled operations O
(n)
sched

. The superscript (n) denotes the current

iteration of the scheduling algorithm. One operation is scheduled at each iteration (n).

Initially, O
(0)
sched

is empty while O
(0)
ready

contains the input operations of Alg , i.e., all

the operations without any predecessor. At any iteration (n), all the operations in

O
(n)
ready

are such that all their predecessors are in O
(n)
sched

. For the ease of notation,

we sometimes write P (n) for P
`

S(n)´

, and similarly for the schedule length L, the

energy E, or the GSFR Λ.

4.5 power-efficient schedule pressure

The power-efficient schedule pressure is a variant of the schedule pressure cost func-

tion [14], which tries to minimize the length of the critical path of the algorithm graph

by exploiting the scheduling margin of each operation. The schedule pressure σ is com-

puted for each ready operation oi and each processor pj by Eq (12):

σ(n)(oi, pj) = ETS(n)(oi, pj) + LTE(n)(oi) − CPL(n) (12)

where CPL(n) is the critical path length of the partial schedule at step (n) composed

of the already scheduled operations, ETS(n)(oi, pj) is the earliest time at which the

operation oi can start its execution on the processor pj , and LTE(n)(oi) is the latest

start time from end of oi, defined to be the length of the longest path from oi to Alg ’s

output operations; this path contains the “future” operations of oi. When computing

LTE(n)(oi), since the future operations of oi are not scheduled yet, we do not know

their actual voltage, and therefore neither what their execution time will be (this will

only be known when these future operations will be actually scheduled). Hence, for

each future operation, we compute its average WCET for all existing supply voltages.

Eq (13) generalizes the schedule pressure to a set of processors:

σ(n)(oi,Pk) = ETS(n)(oi,Pk) + LTE(n)(oi) − CPL(n) (13)

ETS(n)(oi,Pk) = max
pj∈Pk

ETS(n)(oi, pj)

Then, we consider the schedule length as a criterion to be minimized, and the

energy increase and the GSFR as two constraints to be met: for each ready operation

oi ∈ O
(n)
ready

, the power-efficient schedule pressure of Eq (14) computes the best subset

Q
(n)
best

(oi) of pairs 〈processor, voltage〉 to execute oi:

Q
(n)
best

(oi) = Qj such that:

σ(n)(oi,Qj) = min
Qk∈Q

σ(n)(oi,Qk) |
`

E(n+1) − E(n)´

≤ Pobj

`

L(n+1) − L(n)´

∧ ΛB(oi,Qk) ≤ Λobj

ff

(14)

15

where Q is the set of all subsets of pairs 〈p, v〉 such that p ∈ P and v ∈ V (see Sec-

tion 4.2), ΛB(oi,Qk) is the GSFR of the parallel macro-block that contains the replicas

of oi on all the processors of Qk
1, and

`

E(n+1) − E(n)´

is the energy increase due to

the scheduling of oi on all the processors of Qk at their respective voltages, where

E(n+1) and E(n) are computed by Eq (6), E(n) begin the energy before scheduling oi

and E(n+1) after. Finally, when computing ΛB(oi,Qk), the failure rate of each pro-

cessor is computed by Eq (11) according to its voltage in Qk. Finally, the constraint

on the energy consumption
`

E(n+1) −E(n)´

≤ Pobj

`

L(n+1) −L(n)´

is equivalent to a

constraint on the power consumption,
`

E(n+1) − E(n)´

/
`

L(n+1) − L(n)´

≤ Pobj , but

without the potential division by zero.

The local constraint on the current macro-block of the RBD, ΛB(oi,Qk) ≤ Λobj ,

guarantees that the global constraint on the schedule at iteration (n + 1), Λ(n+1) ≤

Λobj , is met. This will be formally established by Proposition 1 (see Section 4.7).

Similarly, we would like the local constraint on the energy increase due to oi,
`

E(n+1) − E(n)´

≤ Pobj

`

L(n+1) − L(n)´

, to guarantee that the global constraint at

iteration (n+1) on the full schedule P (n+1) ≤ Pobj is met. Unfortunately, we can show

a counter example for this.

Consider the case when the operation oi scheduled at iteration (n) does not increase

the schedule length, because it fits in a slack at the end of the previous schedule:

L(n+1) = L(n). In contrast, the total energy always increases strictly because of oi:
`

E(n+1) − E(n)´

> 0. It follows that, whatever the choice of processors, voltage, and

frequency for oi, it is impossible to schedule it such that the energy increase constraint
`

E(n+1) − E(n)´

≤ Pobj

`

L(n+1) − L(n)´

be met.

4.6 Over-estimation of the energy consumption

To prevent this and to guarantee the invariance property of P , we over-estimate the

power consumption, by computing the consumed energy as if all the ending slacks were

“filled” by an operation executed at (fover, Vover). We choose the largest frequency and

voltage (fover, Vover) such that:

`

E(n+1) − E(n)´

≤ Pobj

`

L(n+1) − L(n)´

(15)

We start with (fmax, Vmax). If the Condition (15) is not met, then we select the

next highest operating frequency, and so on until Condition (15) is met. Thanks to

this over-estimation, even if the next scheduled operation fits in a slack and does not

increase the length, we are sure that it will not increase the power-consumption either.

This is illustrated in Figure 8.

Formally, we now compute the total energy consumed by the schedule S with

Eq (16) instead of Eq (6). We call E+ the over-estimated energy consumption:

E+(S) = |P|·P p
ind

·L(S) + Cp
ef

|P|
X

j=1

0

@

X

oi∈pj

V 2
i,j fi,j Exe(oi, pj , fi,j) + V 2

over

`

L(S)−Mj

´

1

A

+ |L|·P ℓ
ind ·L(S) + Cℓ

ef

|L|
X

k=1

0

@

X

di∈ℓk

V 2
ℓ fℓ Exe(di, ℓk, fℓ)

1

A (16)

1 Because ΛB(oi,Qk) is not the GSFR of the partial schedule S(n+1) but only of the macro-
block of oi, it does not bear the superscript (n + 1).

16

where, L(S) − Mj is the slack available at the end of processor pj , for all processor

pj ∈ P, Mj = maxoi∈pj

`

st(oi, pj) + Exe(oi, pj , fi,j)
´

is the completion time of the

last operation scheduled on pj , and for all operation oi scheduled on pj , st(oi, pj) is

the start time of oi on pj . Compared to Eq (6), we see that the over-estimating term

V 2
over

`

L(S) − Mj

´

has been added.

(Cp
ef ,P

p
ind)

L

0

P
in

d
P

in
dP

in
d

P
in

d
P

in
d

(Cℓ
ef ,P

ℓ
ind)

P2

P
d

P
d

P
d

X ⊲ Y

ti
m

e

Y
(V3, f3)

X
{

(V1, f1)

Z

(V2, f2) over-estimation

Pover

P1

(Cp
ef ,P

p
ind)

L12

Fig. 8 Over-estimation of the energy consumption.

Accordingly, we now compute the power-efficient schedule pressure with Eq (17)

instead of Eq (14):

Q
(n)
best

(oi) = Qj such that:

σ(n)(oi,Qj) = min
Qk∈Q

σ(n)(oi,Qk) |
`

E
(n+1)
+ − E

(n)
+

´

≤ Pobj

`

L(n+1) − L(n)´

∧ ΛB(oi,Qk) ≤ Λobj

ff

(17)

Once we have computed, for each ready operation oi of O
(n)
ready

, the best subset of

pairs 〈processor, voltage〉 to execute oi, with the power-efficient schedule pressure of

Eq (17), we compute the most urgent of these operations with Eq (18):

ourg = oi ∈ O
(n)
ready

s.t. σ(n)`

oi,Q
(n)
best

(oi)
´

= max
oj∈O

(n)
ready

σ(n)`

oj ,Q
(n)
best

(oj)
´

ff

(18)

Finally, we schedule this most urgent operation ourg on the processors of the set

Q
(n)
best

(ourg), and we end the current iteration (n) by updating the lists of scheduled

and ready operations. Firstly, the newly scheduled operation ourg is added to the list

of scheduled operations: O
(n+1)
sched

:= O
(n)
sched

∪ {ourg}. Secondly, ourg is removed from

the list of ready operations, which is also augmented with all the successors of ourg

that happen to have all their predecessors in the new list of scheduled operations:

O
(n+1)
ready

:= O
(n)
ready

− {ourg} ∪ {o′ ∈ succ(ourg) | pred(o′) ⊆ O
(n+1)
sched

}.

4.7 Soundness of TSH

The soundness of TSH is is based on two propositions. The first one establishes that

the schedules produced by TSH meet their GSFR constraint. Its proof can be found

in [12]:

Proposition 1 Let S be a multiprocessor schedule of Alg onto Arc. If each operation

o of Alg has been scheduled according to Eqs (17) and (18) such that the reliability is

computed with Eq (8), then the GSFR Λ(S) is less than Λobj .

17

The second proposition establishes that the schedules produced by TSH meet their

power consumption constraint:

Proposition 2 Let S be a multiprocessor schedule of Alg onto Arc. If each opera-

tion o of Alg has been scheduled according to Eqs (17) and (18) such that the energy

consumption is computed with Eq (16), then the total power consumption P (S) is less

than Pobj .

Proof First, we observe that, for any non empty schedule S, P (S) ≤ Pobj is equivalent

to E(S) ≤ Pobj L(S). Moreover, since E(S) ≤ E+(S), it is sufficient to prove the

inequality of Eq (19):

E+(S) ≤ Pobj L(S) (19)

We prove Eq (19) by induction on the scheduling iteration (n). The induction hypoth-

esis [H] is on the energy consumed by the partial schedule S(n):

E
(n)
+ ≤ Pobj L(n) [H]

[H] is satisfied for the initial empty schedule S(0) because E
(0)
+ = 0 and L(0) = 0. Let

ourg be the operation chosen by Eq (18) at iteration (n) to be scheduled on all the

processors of the set Q
(n)
best

(ourg). According to Eq (17), we have:

`

E
(n+1)
+ − E

(n)
+

´

≤ Pobj

`

L(n+1) − L(n)´

⇐⇒ E
(n+1)
+ ≤ E

(n)
+ + Pobj

`

L(n+1) − L(n)´

Thanks to [H], we thus have:

E
(n+1)
+ ≤ Pobj L(n) + Pobj

`

L(n+1) − L(n)´

⇐⇒ E
(n+1)
+ ≤ Pobj L(n+1)

As a conclusion, [H] holds for the schedule S(n+1). ✷

4.8 The TSH algorithm

The TSH scheduling heuristic is shown in Figure 9. Initially, O
(0)
sched

is empty and

O
(0)
ready

is the list of operations without any predecessors. At the end of each itera-

tion (n), these lists are updated according to the data-dependencies of Alg .

At each iteration (n), one operation oi of the list O
(n)
ready

is selected to be scheduled.

For this, we select at the micro-steps ➀ and ➁ , for each ready operation oi, the best

subset of processors Q
(n)
best

(oi) to replicate and schedule oi, such that the GSFR of the

resulting partial schedule is less than Λobj and the power consumption is less than Pobj ;

at this point, each processor is selected with a voltage. Then, among those best pairs

〈oi,Q
(n)
best

(oi)〉, we select at the micro-step ➂ the one having the biggest power-efficient

schedule pressure value, i.e., the most urgent pair 〈ourg ,Q
(n)
best

(ourg)〉.

In Section 6, we will present a complete set of simulation results, first involving

TSH alone, then comparing TSH with a multicriteria heuristic from the literature, and

finally comparing TSH with an optimal Mixed Linear Integer Program.

18

Algorithm TSH:

input: Alg , Arc, Exe, Λobj , and Pobj ;
output: a multi-processor static schedule of Alg on Arc that minimizes the length and satisfies
Λobj and Pobj , or a failure message;
begin

Compute the set Q of all subsets of pairs 〈processor, voltage〉;

O
(0)
ready

:= {operations without predecessors};

O
(0)
sched

:= ∅;
n := 0;

while (O
(n)
ready

6= ∅) do

➀ For each ready operation oi ∈ O
(n)
ready

, compute σ(n)(oi,Qk) for each Qk ∈ Q.

➁ For each ready operation oi, select the best subset Q
(n)
best

(oi) ∈ Q such that:

σ(n)(oi,Qj) = min
Qk∈Q

σ(n)(oi,Qk) |
`

E
(n+1)
+ − E

(n)
+

´

≤ Pobj

`

L(n+1) − L(n)
´

∧ ΛB(oi,Qk) ≤ Λobj

ff

➂ Select the most urgent ready operation ourg among all oi of O
(n)
ready

such that:

σ(n)
`

ourg ,Q
(n)
best

(ourg)
´

= max
oj∈O

(n)
ready

σ(n)
`

oj ,Q
(n)
best

(oj)
´

ff

➃ Schedule each replica of ourg on each processor of Q
(n)
best

(ourg) and at the voltage specified

in Q
(n)
best

(ourg);

➄ if (Q(n+1)(ourg) = ∅) then

return “fail to satisfy the constraints”; exit;
/* the user can modify Λobj or Pobj and re-run TSH */

➅ Update the lists of ready and scheduled operations:

O
(n+1)
sched

:= O
(n)
sched

∪ {ourg};

O
(n+1)
ready

:= O
(n)
ready

− {ourg} ∪ {o′ ∈ succ(ourg) | pred(o′) ⊆ O
(n+1)
sched

};

➆ n := n + 1;

end while

end

Fig. 9 The TSH tricriteria scheduling heuristic.

5 Mixed Integer Linear Programming approach

In this section, we define a mixed integer linear programming model (MILP) for our

scheduling problem. Our goal is to compare the optimal results obtained by our MILP

program with those achieved by TSH on small Alg graphs. Comparisons will be shown

in Section 6.4.

For each operation ti of Alg , let sik ∈ R
+ be the starting execution time of its k-th

replica:

∀i, sik ≥ 0 (20)

Let pik ∈ N be the processor index where the k-th replica of operation ti is to be

executed. The value 0 indicates that no processor is selected:

∀i, pik ∈ {0, . . . , |P|} (21)

19

Let xikℓ be 1 if the k-th replica of operation ti is assigned to processor number ℓ,

and 0 otherwise:

∀i, ∀k, ∀ℓ, xikℓ ∈ {0, 1} (22)

∀i, ∀k,
X

ℓ

xikℓ = 1 (23)

The constraints (24) link the mapping variables x with the processors indices p:

∀i, ∀k, pik =
X

ℓ

ℓ xikℓ (24)

Let xikℓm be 1 if the k-th replica of operation ti is assigned to processor number ℓ

and runs with frequency m, and 0 otherwise:

∀i, ∀k, ∀ℓ, ∀m, xikℓm ∈ {0, 1} (25)

∀i, ∀k, ∀ℓ,
X

m

xikℓm = xikℓ (26)

We can then define W as the schedule length of Alg on Arc (the makespan):

∀i, ∀k, sik +
X

k,ℓ,m

xikℓm Exe(ti, Pℓ, fm) ≤ W (27)

Let U be the total utilization of the processors of Arc:

U =
X

i,k

X

ℓ,m

Exe(tik, Pℓ, fm) (28)

The two global objectives Λobj and Robj are related by the reliability formula:

Λobj U = − log(Robj) (29)

In order to model the non-overlapping of operations and to reflect the fact that the

multiprocessor schedule must enforce the precedence of the Alg graph, we define two

sets of binary variables σikjk′ and εikjk′ such that:

– for each i, j, σikjk′ is equal to 1 if the k-th replica of operation ti ends before the

k′-th replica of operation tj starts, and 0 otherwise:

∀i, ∀j, ∀k, ∀k′, σikjk′ ∈ {0, 1} (30)

– for each i, j, εikjk′ is equal to 1 if the index of the processor of the replica of

operation ti is strictly less that the processor index of the replica of operation tj ,

and 0 otherwise:

∀i, ∀j, ∀k, ∀k′, εikjk′ ∈ {0, 1} (31)

20

These two variables σ and ε must satisfy the following constraints:

∀i 6= j, ∀k, ∀k′, sjk′ − sik −
X

ℓ,m

xikℓm Exe(ti, Pℓ, fm) − U σikjk′ + U ≥ 0 (32)

∀i 6= j, ∀k, ∀k′, pjk′ − pik − 1 − |P| εikjk′ + |P| ≥ 0 (33)

∀i 6= j, ∀k, ∀k′, σikjk′ + σjk′ik + εikjk′ + εjk′ik ≥ 1 (34)

∀i 6= j, ∀k, ∀k′, σikjk′ + σjk′ik ≤ 1 (35)

∀i 6= j, ∀k, ∀k′, εikjk′ + εjk′ik ≤ 1 (36)

∀i ∈ pred(j), σikjk′ = 1 (37)

We define the time order on operations in terms of the σ variables in (32), and similarly

we define the processors indices order on operations in terms of the ε variables in (33)

where |P| is the number of processors in Arc. By (34), we ensure that operations do not

overlap on a processor. By (35), we ensure that an operation cannot be scheduled both

before and after another operation. Similarly, by (36), an operation cannot be placed

both on a higher and on a lower processor index than another operation. Finally,

(37) enforces the task precedence constraints.

Let YiK be a binary variable equal to 1 if the replication level for operation ti is K,

with 1 ≤ K ≤ Rmax, and 0 otherwise. Here, Rmax is the maximal allowed replication

level for the operations:

∀i,
X

K

YiK = 1 (38)

∀i,
X

k≤Rmax−1

X

ℓ

xikℓ =
X

K≤Rmax

K YiK (39)

We constrain the power and the reliability of Alg on Arc in (40) and (41) respec-

tively. Here, RBiK is the reliability of the operation i when replicated exactly K times

on processors identified by the set L composed of K processor indices, with frequencies

identified by the set M composed of K frequency values:

X

i

X

k,ℓ,m

xikℓm Exe(tik, Pℓ, fm) f3
m ≤ Pobj W (40)

X

i

X

K

YiK

X

L,M

“

(πk≤K xikL(k)M(k)) log(RBiK)
”

≥ log(Robj) (41)

Based on these definitions, the formulation of the MILP is to minimize the execution

length W under the constraints specified by Eqs (20) to (41). This formulation is a

bilinear programming where the bilinearities arise because of the reliability constraints.

We have linearized this model by simply introducing a new set of variables which replace

the bilinear terms.

In Section 6.4, we compare, on a given instance, the schedules obtained with this

MILP and with TSH.

6 Simulation results

6.1 Examples of Pareto fronts produced by TSH

The aim of our first simulations is to produce Pareto fronts. Figures 10 and 11 show the

Pareto fronts produced by TSH for a randomly generated Alg graph of 30 operations,

and a fully connected and homogeneous Arc graph of respectively 3 and 4 processors;

21

we have used the same random graph generator as in [12]. The nominal failure rate

per time unit (i.e., the λ0 of Eq (11)) of all the processors is λp = 10−5; the nominal

failure rate per time unit of all the links is λℓ = 5.10−4; the set of supply voltages is

V = {0.25, 0.50, 0.75, 1.0} (scaling factor).

The virtual grid of the Pareto front is defined such that both high and small

values of Pobj and Λobj are covered within a reasonable grid size. Hence, the values

of Pobj and Λobj , from the less to the most constrained, are selected from two sets of

values: Pobj ∈ {3.0, 2.8, 2.6, . . . 1.0} and Λobj ∈ {8.10−1, 4.10−1, 8.10−2, . . . 4.10−14}.

TSH being a heuristic, changing the parameters of this grid could change locally some

points of the Pareto front, but not its overall shape.

Fig. 10 Pareto front generated for an instance with 30 operations and 3 processors.

Figures 10 and 11 connect the set of non-dominated Pareto optima (the surface

obtained in this way is only depicted for a better visual understanding; by no means

do we assume that points interpolated in this way are themselves Pareto optima, only

the computed dots are). The figures show an increase of the schedule length for points

with decreasing power consumptions and/or failure rates. The “cuts” observed at the

top and the left of the plots are due to low power constraints and/or low failure rates

constraints.

Figures 10 and 11 exposes to the designer a choice of several tradeoffs between

the execution time, the power consumption, and the reliability level. For instance, in

Figure 11, we see that, to obtain a GSFR of 10−10 with a power consumption of 1.5 V ,

then we must accept a schedule three times longer than if we impose no constraint on

the GSFR nor the power. We also see that, by providing a 4 processor architecture

(Figure 11), we can obtain schedules with a shorter execution length than with only 3

processors, even though we impose identical constraints to the GSFR and the power

22

(Figure 10): with 4 processors the schedule length is in the range [66, 374] time units,

while with 3 processors it is in the range [88, 437] time units.

Fig. 11 Pareto front generated for an instance with 30 operations and 4 processors.

6.2 Impact of the power consumption and of the GSFR on the length

Figure 12(a) shows how the schedule length varies in function of the required power

consumption, with Λobj set to 10−5. This curve is averaged over 30 randomly generated

Alg graphs. We can see that the average schedule length increases when the constraint

Pobj on the power consumption decreases. This was expected since the two criteria,

schedule length and power consumption, are antagonistic.

(a) (b)

Fig. 12 (a) Average schedule length in function of the power; (b) In function of the GSFR.

23

Figure 12(b) shows how the schedule length varies in function of the required GSFR,

with Pobj set to 2.5 watt. Again, this curve is averaged over 30 randomly generated

Alg graphs. We can see that the average schedule length increases when the constraint

Λobj on the GSFR decreases. Again, this is expected because the two criteria, schedule

length and GSFR, are antagonistic.

6.3 Comparison with ECS

We have compared the performance of TSH with the algorithm proposed in [18], called

ECS (Energy-Conscious Scheduling heuristic). ECS is a bicriteria scheduling heuristic

that takes as input a DAG of tasks and a set of p fully connected, heterogeneous, DVFS

enabled, processors. The power consumption model is the same as ours, but the energy

consumed by an application does not take into account the energy consumed by the

inter-tasks data-dependencies on the communication links. The cost function used by

ECS sums two terms, one for the energy and one for the schedule length (aggregation

method). Since ECS is not tricriteria, we proceed as follows:

1. We first invoke ECS on a given instance (an Alg graph and an Arc graph). We

then compute the overall reliability RECS , the total energy EECS , the schedule

length LECS , and the total utilization UECS of the schedule produced by ECS.

2. We use these values to compute the objectives required to run TSH: Λobj =

− log(RECS)/UECS and Pobj = EECS/LECS . And finally. we invoke TSH with

these values of the objectives.

We have plotted in Figures 13, 14, and 15, respectively the average schedule length,

the average energy consumption, and the average reliability of the schedules computed

by ECS and by TSH. The values have been averaged over 50 randomly generated Alg of

size N varying between 10 and 100 operations. The Arc graph has P = 6 processors,

and the nominal failure rate per time unit of all the processors is λp = 10−5; the

nominal failure rate per time unit of all the links is λℓ = 5.10−4.

10 20 30 40 50 60 70 80 90 100

1500

3000

4500

6000

Operations

A
ve

ra
ge

 s
ch

ed
ul

e
le

ng
th

ECS
TSH

Fig. 13 Average schedule length generated by ECS and TSH.

24

10 20 30 40 50 60 70 80 90 100

53

106

159

211

264

317

370

Operations

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

ECS
TSH

Fig. 14 Average energy consumption generated by ECS and TSH.

10 20 30 40 50 60 70 80 90 100

0.55

0.70

0.85

1.00

Operations

A
ve

ra
ge

 r
el

ia
bi

lit
y

ECS
TSH

Fig. 15 Average reliability generated by ECS and TSH.

Our experimental results (Figures 13, 14 and 15) show that TSH performs system-

atically better than ECS. This is a very good result.

6.4 MILP and TSH simulation results

For the evaluation of MILP approach, we used an algorithm graph Alg of 5 operations

and an architecture graph Arc consisting of 3 fully connected processors. The execution

times of the operations were assigned randomly within 10 to 30 time units. In this

simulation, we assumed that the communication links were reliable.

The nominal failure rate per time unit of the processors is λp = 10−5. The set

of processor frequencies is set to {0.25, 0.5, 0.75, 1}. The decreasing values of Pobj and

Λobj are selected from two sets of values: Pobj ∈ {3.0, 2.8, 2.6, . . . 1.0} and Λobj ∈

{8.10−1, 4.10−1, 8.10−2, . . . 4.10−9}.

We have used the CLPEX ILOG solver [7], version 11.2, on an Intel Core-2 Duo

CPU E7500 2.93GHz computer with 2 GB of RAM. Even with an Alg graph of 7

operations, a run of MILP can take more than 40 hours without finding the optimal

value. This is why we have limited the Alg graph to 5 operations and the Arc graph

to 3 processors. The processing time of TSH is, as expected, much shorter than that

25

of the MILP: in the order of one second for TSH versus between a few seconds and 40

minutes for the MILP.

Fig. 16 Pareto fronts generated by the MILP and by TSH for an Alg graph of 5 operations
scheduled onto an Arc graph of 3 processors.

The Pareto fronts generated by MILP and TSH are shown in Figure 16, where the

colored surface corresponds to MILP results while the uncolored one corresponds to

TSH. For small values of Pobj and Λobj (i.e., when the multicriteria problem is highly

constrained), the TSH surface is significantly above the MILP one. For large values

of Pobj and Λobj (i.e., when the multicriteria problem is not so constrained), the two

surfaces are almost glued one to the other. The average overhead of the schedule length

achieved by TSH versus the length achieved by the MILP is only 15.6 % (the exact

approximation ratio is 1.1563051). This shows that TSH performs very well compared

to the optimal result obtained by the MILP.

7 Related work

Many solutions exist in the literature to optimize the schedule length and the en-

ergy consumption (e.g., [23]), or to optimize the schedule length and the reliabil-

ity (e.g., [8,13,4]), but very few tackle the problem of optimizing the three criteria

(length,reliability,energy). The closest to our work are [30,24].

Zhu et al. have studied the impact of the supply voltage on the failure rate [30], in

a passive redundancy framework (primary backup approach). They use DVFS to lower

the energy consumption and they study the tradeoff between the energy consumption

and the “performability” (defined as the probability of finishing the application cor-

rectly within its deadline in the presence of faults). A lower frequency implies a higher

execution time and therefore less slack time for scheduling backup replicas, meaning a

lower performability. However, their input problem is not a multiprocessor scheduling

one since they study the system as a single monolithic operation executed on a sin-

gle processor. Thanks to this simpler setting, they are able to provide an analytical

solution based on the probability of failure, the WCET, the voltage, and the frequency.

26

Pop et al. have addressed the (length,reliability,energy) tricriteria optimization

problem on an heterogeneous architecture [24]. Both length and reliability are taken as

a constraint, respectively with a given upper and lower bound. These two criteria are

not invariant measures, and we have demonstrated in Section 2 that such a method can-

not always guarantee that the constraints are met. Indeed, their experimental results

show that the reliability decreases with the number of processors, therefore making it

impossible to meet an arbitrary reliability constraint. Secondly, they assume that the

user will specify the number of processor failures to be tolerated in order to satisfy the

desired reliability constraint. Thirdly, they assume that all the communications take

place through a reliable bus. For these three reasons, it is not possible to compare TSH

with their method.

8 Conclusion

We have presented a new off-line tricriteria scheduling heuristic, called TSH, which

takes as input an application graph (a DAG of operations) and a multiprocessor ar-

chitecture (homogeneous and fully connected), and produces a static multiprocessor

schedule that optimizes three criteria: its length, its global system failure rate (GSFR),

and its power consumption. TSH uses the active replication of the operations and the

data-dependencies to increase the reliability, and uses dynamic voltage and frequency

scaling to lower the power consumption.

Since the three criteria of this optimization problem are antagonistic with each

other, there is no best solution in general. This is why we use the notion of Pareto

optima. To address this issue, both the power and the GSFR are taken as constraints,

and TSH attempts to minimize the schedule length while satisfying these constraints.

By running TSH with several values of these constraints, we are able to produce a set

of non-dominated Pareto solutions, the Pareto front, which is a surface in the 3D space

(length,GSFR,power). This surface exposes the existing tradeoffs between the three

antagonistic criteria, allowing the user to choose the solution that best meets his/her

application needs.

Transforming two criteria into constraints and minimizing the third criterion is a

natural approach in order to produce Pareto fronts. However, some care must be taken

when doing so. As we have demonstrated, each criterion that is transformed into a

constraint must be an invariant measure of the schedule, not a varying one. For this

reason, the two constraints imposed to TSH are the power consumption (instead of the

energy consumption) and the global system failure rate (instead of the reliability).

TSH is an extension of our previous bicriteria (length,reliability) heuristic BSH [12].

Studying the three criteria together makes sense because of the impact of the voltage

on the failure probability. Indeed, lower voltage leads to smaller critical energy, hence

the system becomes sensitive to lower energy particles. As a result, the fault probability

increases both due to the longer execution time and to the lower energy.

To the best of our knowledge, this is the first reported method that allows the user

to produce the Pareto front in the 3D space (length,GSFR,power). This advance comes

at the price of several assumptions: the architecture is assumed to be homogeneous

and fully connected, the processors are assumed to be fail-silent and their failures are

assumed to be statistically independent, the power switching time is neglected, and the

failure model is assumed to be exponential. In the future, we shall work on relaxing

those assumptions.

27

References
1. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans. Dependable Secure Comput., 1(1):11–33,
January 2004.

2. H.S. Balaban. Some effects of redundancy on system reliability. In National Symposium
on Reliability and Quality Control, pages 385–402, Washington (DC), USA, January 1960.

3. M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, S. Pezzini, and A. Sangiovanni-Vincentelli.
Fault-tolerant platforms for automotive safety-critical applications. In International Con-
ference on Compilers, Architectures and Synthesis for Embedded Systems, CASES’03, San
Jose (CA), USA, November 2003. ACM, New-York.

4. A. Benoit, F. Dufossé, A. Girault, and Y. Robert. Reliability and performance optimiza-
tion of pipelined real-time systems. In International Conference on Parallel Processing,
ICPP’10, pages 150–159, San Diego (CA), USA, September 2010.

5. T.D. Burd and R.W. Brodersen. Energy efficient CMOS micro-processor design. In
Hawaii International Conference on System Sciences, HICSS’95, Honolulu (HI), USA,
1995. IEEE, Los Alamitos.

6. A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch
prediction. Real-Time Syst., 18(2/3):249–274, 2000.

7. IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/, 2010.
8. A. Dogan and F. Özgüner. Matching and scheduling algorithms for minimizing execution

time and failure probability of applications in heterogeneous computing. IEEE Trans.
Parallel and Distributed Systems, 13(3):308–323, March 2002.

9. E. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. In Workshop
on Power-Aware Computing Systems, WPACS’02, pages 179–196, Cambridge (MA), USA,
February 2002.

10. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-life
processor. In International Workshop on Embedded Software, EMSOFT’01, volume 2211
of LNCS, Tahoe City (CA), USA, October 2001. Springer-Verlag.

11. F. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous envi-
ronments. ACM Computing Surveys, 31(1):1–26, March 1999.

12. A. Girault and H. Kalla. A novel bicriteria scheduling heuristics providing a guaran-
teed global system failure rate. IEEE Trans. Dependable Secure Comput., 6(4):241–254,
December 2009.

13. A. Girault, E. Saule, and D. Trystram. Reliability versus performance for critical appli-
cations. J. of Parallel and Distributed Computing, 69(3):326–336, March 2009.

14. T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping for real-time em-
bedded heterogeneous multiprocessors. In International Workshop on Hardware/Software
Co-Design, CODES’99, Rome, Italy, May 1999. ACM, New-York.

15. T.C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9, 1961.
16. J.C. Knight and N.G. Leveson. An experimental evaluation of the assumption of indepen-

dence in multi-version programming. IEEE Trans. Software Engin., 12(1):96–109, 1986.
17. H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications.

Kluwer Academic Pub., Hingham, MA, 1997.
18. Y.C. Lee and A.Y. Zomaya. Minimizing energy consumption for precedence-constrained

applications using dynamic voltage scaling. In IEEE/ACM International Symposium on
Cluster Computing and the Grid, SCCG’09, 2009.

19. J.Y-T. Leung, editor. Handbook of Scheduling. Algorithms: Models, and Performance
Analysis. Chapman & Hall/CRC Press, 2004.

20. D. Lloyd and M. Lipow. Reliability: Management, Methods, and Mathematics, chapter 9.
Prentice-Hall, 1962.

21. J. Luo, L.-S. Peh, and N. Jha. Simultaneous dynamic voltage scaling of processors and
communication links in real-time distributed embedded systems. In Design Automation
and Test in Europe Conference, DATE’03, pages 1150–1151, Munich, Germany, March
2003.

22. R. Melhem, D. Mossé, and E.N. Elnozahy. The interplay of power management and fault
recovery in real-time systems. IEEE Trans. Comput., 53(2):217–231, 2004.

23. T. Pering, T.D. Burd, and R.W. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In International Symposium on Low Power Electronics and
Design, ISLPED’98, pages 76–81, Monterey (CA), USA, August 1998. ACM, New-York.

28

24. P. Pop, K. Poulsen, and V. Izosimov. Scheduling and voltage scaling for energy/reliability
trade-offs in fault-tolerant time-triggered embedded systems. In International Confer-
ence on Hardware-Software Codesign and System Synthesis, CODES+ISSS’07, Salzburg,
Austria, October 2007. ACM, New-York.

25. S.M. Shatz and J.-P. Wang. Models and algorithms for reliability-oriented task-allocation
in redundant distributed-computer systems. IEEE Trans. Reliability, 38(1):16–26, April
1989.

26. J. Souyris, E.L. Pavec, G. Himbert, V. Jégu, G. Borios, and R. Heckmann. Computing
the worst case execution time of an avionics program by abstract interpretation. In In-
ternational Workshop on Worst-case Execution Time, WCET’05, pages 21–24, Mallorca,
Spain, July 2005.

27. H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by separate
cache and path analyses. Real-Time Syst., 18(2/3):157–179, May 2000.

28. V. T’kindt and J.-C. Billaut. Multicriteria Scheduling: Theory, Models and Algorithms.
Springer-Verlag, 2006.

29. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström. The determination of worst-case execution times — overview of the methods and
survey of tools. ACM Trans. Embedd. Comput. Syst., 7(3), April 2008.

30. D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on reliability in
real-time embedded systems. In International Conference on Computer Aided Design,
ICCAD’04, pages 35–40, San Jose (CA), USA, November 2004.

