
HAL Id: hal-00909096
https://hal.inria.fr/hal-00909096v2

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Options for Denormal Representation in Logarithmic
Arithmetic

Mark G. Arnold, Sylvain Collange

To cite this version:
Mark G. Arnold, Sylvain Collange. Options for Denormal Representation in Logarithmic Arithmetic.
[Research Report] RR-8412, Inria. 2014, pp.27. �hal-00909096v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49697449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00909096v2
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
4

1
2

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8412
December 2013

Project-Teams ALF

Options for Denormal

Representation in

Logarithmic Arithmetic

Mark G. Arnold, Sylvain Collange

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Options for Denormal Representation in

Logarithmic Arithmetic

Mark G. Arnold∗, Sylvain Collange†

Project-Teams ALF

Research Report n° 8412 — December 2013 — 24 pages

∗ XLNS Research, PO Box 605 Laramie WY 82070 USA, markgarnold@xlnsresearch.com
† INRIA, Centre de recherche Rennes - Bretagne Atlantique, Rennes, France, sylvain.collange@inria.fr

Abstract: Economical hardware often uses a FiXed-point Number System (FXNS), whose constant abso-

lute precision is acceptable for many signal-processing algorithms. The almost-constant relative precision

of the more expensive Floating-Point (FP) number system simplifies design, for example, by eliminating

worries about FXNS overflow because the range of FP is much larger than FXNS for the same word-

size; however, primitive FP introduces another problem: underflow. The conventional Signed Logarithmic

Number System (SLNS) offers similar range and precision as FP with much better performance (in terms

of power, speed and area) for multiplication, division, powers and roots. Moderate-precision addition in

SLNS uses table lookup with properties similar to FP (including underflow). This paper proposes three

variations of a new number system, respectively called the Denormal LNS (DLNS), Denormal Mitchell

LNS (DMLNS) and Denormal Offset Mitchell LNS (DOMLNS), which are all hybrids of the properties

of FXNS and SLNS. The inspiration for D(OM)LNS comes from the denormal (aka subnormal) numbers

found in IEEE-754 (that provide better, gradual underflow) and the µ-law often used for speech encoding;

the novel DLNS circuit here allows arithmetic to be performed directly on such encoded data. The proposed

approach allows customizing the range in which gradual underflow occurs. A wide gradual underflow range

acts like FXNS; a narrow one acts like SLNS. The DLNS approach is most affordable for applications in-

volving addition, subtraction and multiplication by constants, such as the Fast Fourier Transform (FFT).

Our first DLNS implementation leverages existing SLNS basic blocks. Synthesis shows the novel circuit

primarily consists of traditional SLNS addition and subtraction tables, with additional datapaths that al-

low the novel ALU to act on conventional SLNS as well as DLNS and mixed data, for a worst-case area

overhead of 26%. Unlike SLNS, this DLNS implementation is still costly for general (non-constant) mul-

tiplication, division and roots. To overcome this difficulty, this paper proposes the other variations called

Denormal Mitchell LNS (DMLNS) and Denormal Offset Mitchell LNS (DOMLNS), in which the well-

known Mitchell’s method makes the cost of general multiplication, division and roots closer to that of

SLNS. Taylor-series computations suggest subnormal values in DMLNS and DOMLNS also behave simi-

larly to those in the IEEE-754 FP standard. Synthesis shows that DMLNS and DOMLNS respectively have

average area overheads of 25% and 17% compared to an equivalent SLNS 5-operation unit.

Key-words: Computer Arithmetic, Logarithmic Number Systems (LNS), underflow, denormal, subnormal

Options pour des représentations dénormalisées en arithmétique

logarithmique

Résumé : Les circuits intégrés économiques utilisent souvent des systèmes de numération en virgule

fixe, dont la précision absolue constante est acceptable pour de nombreux algorithmes de traitement du

signal. La précision relative quasi-constante du système virgule flottante, plus coûteux, simplifie la con-

ception, en éliminant notamment le risque de débordement par le haut, la dynamique du flottant étant bien

plus grande qu’en virgule fixe. Cependant, le flottant primitif induit un autre problème : le débordement

par le bas (underflow). Le système logarithmique conventionnel (SLNS) offre une dynamique et une

précision similaire au flottant, pour des performances bien meilleures (en termes de consommation,

vitesse et surface) pour la multiplication, la division, les puissances et les racines. L’addition en précision

moyenne en SLNS est basées sur des accès à des tables, avec des propriétés similaires au flottant (in-

cluant le débordement par le bas). Cet article propose trois variations autour d’un nouveau système de

représentation des nombres, respectivement appelées Denormal LNS (DLNS), Denormal Mitchell LNS

(DMLNS) et Denormal Offset Mitchell LNS (DOMLNS), qui sont toutes des hybrides des propriétés de

la virgule fixe et du SLNS. L’inspiration de D(OM)LNS vient des nombre dénormaux (ou sous-normaux)

de la norme IEEE-754, qui fournissent un débordement par le bas graduel, et le codage µ-law utilisé

dans la transmission de la voix. Le nouveau circuit DLNS proposé permet de calculer directement sur les

données codées. L’approche proposée permet d’ajuster l’intervalle dans lequel le débordement progressif

intervient. Une plage large se comporte comme la virgule fixe, une étroite comme le SLNS. L’approche

DLNS est la plus économique pour les applications impliquant des additions, soustractions et multipli-

cations par des constantes, telles que les transformées de Fourier rapides (FFT). Notre première mise en

œuvre s’appuie sur les blocs de base existant d SLNS. Des synthèses montrent que le nouveau circuit

est constitué principalement des tables d’additions SLNS traditionnelles, avec des chemins de données

supplémentaires qui permettent à la nouvelle unité d’opérer sur des données SLNS, DLNS ou mixtes,

pour un surcoût en surface de 26% dans le pire cas. Contrairement au SLNS, cette réalisation de DLNS

reste coûteuse pour la multiplication générique, la division et les racines. Pour surmonter cette difficulté,

cet article propose les variations DMLNS et DOMLNS, pour lesquelles la méthode de Mitchell rapproche

le coût des multiplications génériques, divisions et racines de leurs équivalents en SLNS. Des calculs sur

des séries de Taylor suggèrent que les valeurs sous-normales en DMLNS et DOMLNS se comportent

également de manière similaires à celles de la norme IEEE-754. Des synthèses montrent que DMLNS

et DOMLNS offrent des surcoûts respectifs de 25% et 17% par rapport à une unité SLNS à 5 opérations

équivalente.

Mots-clés : Arithmétique, Système logarithmique (LNS), underflow, dénormal, sous-normal

4 Mark G. Arnold, Sylvain Collange

1 Introduction

Designers of application-specific systems often have knowledge about their numeric requirements, which

can be satisfied with more economical arithmetic circuits than found in general-purpose systems. This

has given rise to a variety of special-purpose number systems, that have certain advantages in application-

specific systems. For example, designers may know that most numbers processed by the application fall

within a certain range; neglecting an occasional small number that underflows this range gives only a

small error acceptable to the application. This paper considers a new number system, which combines

features of several well-known number systems, to give application-specific designers new options for

dealing with such situations, particularly in applications like signal-processing.

In computer arithmetic, a representation (denoted in uppercase: X) is a finite vector of bits that

represents a numeric value in a particular number system. The value (lowercase x) is a real number that

may be approximated by X . There is a particular real, x̄, that X represents exactly. Other values of x
in the neighborhood of x̄ use the same representation. The resulting error can be measured in bits of

absolute error (1), or in bits of relative error (2):

ea = log2 |x− x̄| (1)

er = log2

(
∣

∣

∣

∣

x− x̄

x̄

∣

∣

∣

∣

)

= log2 |1− x/x̄|. (2)

The simplest number system of this kind is the fixed-point number system, in which X consists of a

signed integer XF that is scaled by 2F to provide a constant F bits of absolute precision:

x̄ = XF · 2−F . (3)

Many problems perform better when the relative precision is held constant. Binary floating-point

number systems provide nearly constant relative precision by providing

x̄ = (−1)XSXM2XE (4)

where X is subdivided into three parts: the sign (XS ∈ {0, 1}), the fixed-point mantissa (1 ≤ XM < 2)

and the integer exponent XE = ⌊log2 |x|⌋). The choice of these fields impacts the quality of the floating-

point system. Using hidden-bit normalization, there can be an assumed 1 in XM = 1 + XF · 2−F .

Because of the finite size of X , there are upper and lower bounds on the exponent, L ≤ XE < U , which

determines the dynamic range, 2L ≤ x̄ < 2U .

To overcome incompatibility caused by different manufacturer’s arbitrary choices for XM and XE ,

a formal standard for binary floating-point, IEEE-754 [15], was adopted quickly in the 1980s by all

manufacturers, and was revised in 2008 [16]. IEEE-754 uses single (32-bit X , F = 23, L = −126 and

U = 128) and double (64-bit X , F = 52, L = −1022 and U = 1024) precision, named Binary32 and

Binary64, respectively, in the 2008 standard, with hidden-bit normalization. IEEE 754 actually encodes

XE with a biased exponent, but that is irrelevant for the discussion of what values can be represented.

One of the features introduced in IEEE 754, which was controversial at the time, is gradual underflow,

sometimes called subnormals or denormals. Prior to IEEE 754, most floating point systems left a gap

between the smallest representable positive number, 2L, and zero. There would be a similar gap on the

negative side. To fill this gap, IEEE 754 defines a special case (signaled here by XE = L − 1) where

an unnormalized XM = XF · 2−F has the same meaning as a fixed point value between zero and 2L, in

other words:

x̄ = (−1)XSXM2L−1 (5)

when XE = L− 1. The value +0.0 is then not a unique case, but rather just the nonnegative subnormal

with the smallest absolute value, defined by XM = 0 and XS = 0. IEEE 754 requires a distinct

representation of −0.0, similarly defined as the subnormal with XM = 0 and XS = 1.

Inria

Options for Denormal Representation in Logarithmic Arithmetic 5

In 1975, Swartzlander and Alexopoulos [27] proposed the Signed Logarithm Number System (SLNS),

which represents the magnitude of values with their base-b logarithms and a concatenated sign bit. SLNS

represents a real number, x, using a sign bit, XS , and a finite approximation to the logarithm of the

absolute value, XL = Q(2F · logb |x|)/2F , where F is the precision and Q is a quantization function

whose output (defining a particular rounding mode) is an integer that fits within the finite word. A given

SLNS representation, defined by XS and XL, maps into the exact value

x̄ = (−1)XS · bXL . (6)

With the typical choice of b = 2 and a symmetrical range of exponents (L ≈ −U), the dynamic range

(including non-denormal underflow) is similar to floating point, since L ≤ XL < U . SLNS keeps this

logarithmic representation during all computation (including addition). When precision requirements are

low to moderate and multiplication is more frequent than addition, SLNS is more cost effective than

floating point. The simplest definition of SLNS excludes representing an exact zero; a special bit may be

included to allow for this at some extra hardware cost.

An isomorphic definition of SLNS [23] uses integer powers of the smallest value greater than 1.0 that

is exactly representable, β = b2
−F

. With either definition, the relative spacing between SLNS points is

β, and with faithful rounding [3] when |x| is larger than |x̄|, |x/x̄| ≤ β. The relative precision is 1 − β
and from (2), the number of bits of relative precision will be the constant log2(1− β) ≈ F .

Multiplication and division are straightforward in SLNS. Since the values are already represented as

logarithms, a simple addition or subtraction computes the product or quotient, together with an exclusive

OR to find the sign. Although it makes multiplication and division easy, SLNS makes addition and sub-

traction more difficult than fixed point. The manual algorithm for logarithmic addition was first described

by Leonelli and popularized by Gauss in the early nineteenth century [14]. Swartzlander et al. [27, 26] and

others [19, 12] reconsidered these algorithms and found them quite attractive in light of the technology

available for digital signal processing in the 1970s. Beyond simple table lookup, several implementations

[21, 8, 7, 6] have provided SLNS arithmetic with increased performance and reduced implementation

cost. In particular SLNS appears to offer reduced power consumption in many applications [25, 23]. Suc-

cessful applications have included massive scientific simulation [24], Hidden-Markov Models (HMM)

[28], and music synthesis [20]. The European Logarithmic Microprocessor (ELM) [9] provides dual

SLNS ALUs that implement the Gauss/Leonelli algorithm in 0.18 µm 125MHz hardware. More recently,

advances in FPGA [13] and cotransformation [17] implementations of SLNS allow higher-precision ap-

plications to be affordable. Logarithmic arithmetic has generalizations in the complex numbers [4] and

quaternions [5].

The Gauss/Leonelli addition algorithm requires computing one of the two following functions. When

the signs of the numbers to be added are the same, the hardware computes

sb(z) = logb(1 + bz).

For all possible z, 0 < sb(z). For z > 0, sb(z) ≥ z. It is not necessary for the hardware to deal with both

positive and negative z since

sb(z) = sb(−z) + z. (7)

When the signs of the numbers are different, the hardware computes

db(z) = logb
∣

∣1− bz
∣

∣. (8)

For z ≥ logb(2), 0 ≤ db(z) < z. Analogously to sb,

db(z) = db(−z) + z. (9)

RR n° 8412

6 Mark G. Arnold, Sylvain Collange

There is a point, E0 ≈ F , known as the essential zero, for z < −E0 where sb(z) < 2−F and db(z) <
2−F , in other words, the quantized values are zero. From (7) and (9), there is a similar essential-identity

property (sb(z) ≈ db(z) ≈ z) for z > E0.

Given x̄ represented as XS and XL, and ȳ represented as YS and YL, there are two cases for SLNS

addition. If XS = YS ,

x̄+ ȳ = (−1)RS ·
(

bXL + bYL

)

= (−1)RS ·
(

bXL · (1 + bYL/bXL)
)

= (−1)RS · bRL ,

where the actual computation performed by the hardware is

RL = XL + sb(YL −XL). (10)

If XS 6= YS , the hardware does a similar computation,

TL = XL + db(YL −XL). (11)

(The variables P ... T will be reserved for results in this paper.) The sign of the result (RS or TS) is

simply the sign of the larger of the input arguments.

An earlier attempt to incorporate denormals into SLNS [2] is quite different than what is proposed in

this paper. Arnold et al. [2] treat denormals specially and use over a dozen cases to consider operands

and results of different magnitudes. In contrast, the novel representation proposed here may accomplish

similar gradual underflow using simple algorithms that do not explicitly refer to the magnitude of the

operands or results. The simple algorithms proposed here will be much more efficient than those of [2]

in a software-based gradual-underflow implementation (for instance, on the the ELM [9, 17], a micro-

processor that provides hardware for SLNS-without-denormals). Furthermore, while [2] only applies

to denormals patterned after IEEE-754, the novel approach in this paper suggests a range of denormal

representations (from one similar to IEEE-754 to a fully-denormal one similar to the µ-law for speech

encoding [30]). This paper is an extended version of [47].

Section 2 describes the novel DLNS representation and gives options for how DLNS-to-DLNS addi-

tion may be performed (and noting that other general DLNS-by-DLNS, like multiplication, are expen-

sive). Section 3 considers simplifications possible when not all operands are given in DLNS. Section 4

presents a simple model for DLNS error, and observes this model roughly predicts the errors we observe

with actual DLNS arithmetic in simulation of a typical application, the Fast Fourier Transform (FFT).

This section also reports DLNS may reduce bit-level switching activity (and therefore power consump-

tion) for the FFT. Section 5 presents synthesis results for the preferred DLNS circuit. Section 6 presents

two alternative implementation called Denormal Mitchell LNS (DMLNS) and Denormal Offset Mitchell

LNS (DOMLNS) that lower the cost of general multiplication. Section 7 presents conclusions.

2 DLNS-to-DLNS Operations

The Denormal Logarithmic Number System (DLNS) uses a compression function, f , and a decompres-

sion function, f−1, to convert into and out of SLNS. The value, x, represented by a denormal representa-

tion, (XS , XD), is the value represented by its decompression into SLNS, (XS , f
−1(XD)):

x̄ = (−1)XS ·
(

bf
−1(XD)

)

. (12)

There is some lattitude in the definition of this pair of functions, but whatever their definition, they must

be (as close as possible to) exact inverses of each other, f(f−1(x)) = x. This paper will consider three

Inria

Options for Denormal Representation in Logarithmic Arithmetic 7

different ways to define this pair of functions. In this section, we will consider how to define this pair

of functions so that the same kind of hardware function unit that computes SLNS can also be used for

all DLNS operations. The approach in this section simplifies nicely for some cases (described in Section

3), but is expensive for others (such as DLNS-by-DLNS multiplication and division). In section 6, we

consider alternative definitions for this pair of functions, which do not allow for that kind of simplification,

but whose hardware cost is much lower (closer to the classical SLNS advantage of cheap multiplication

and division).

For the moment we will define

f(x) = sb(x− J) + J, (13)

f−1(x) = db(x− J) + J, (14)

which allows (12) to be restated as:

x̄ = (−1)XS ·
(

bXD − bJ
)

, (15)

where J ≤ XD < U and J ≤ 0 is an integer constant for implementation convenience. Notice that,

unlike simple SLNS, DLNS does not need a special bit to represent zero exactly, but rather uses XD =
J . DLNS has some similarity to redundant LNS [1] and multi-dimensional LNS [22] that involve a

definition with addition/subtraction of two exponentials; however unlike those systems, in DLNS one

of the exponentials is a constant. The choice of the constant J in (15) is arbitrary; a large negative J
restricts the denormal behavior to values close to zero (analogous to IEEE-754); J near 0 makes DLNS

like FXNS.

Compared to the symmetrical SLNS representation, where L ≤ XL < U , DLNS (with the choice

of J = 0 in (15)) typically requires one fewer bit than SLNS. DLNS does this at the cost of reducing

the relative precision for values near zero. In effect, values near zero are represented with F -bit absolute

precision (similar to FXNS); values far from zero are represented with F -bit relative precision (similar to

FP and conventional SLNS).

This section describes cases when all the inputs and outputs are in pure-DLNS format. The next

section will consider how the cases simplify when some of the inputs are not in pure-DLNS format. In

this section, we consider a dyadic DLNS-to-DLNS operation opD with two operands, (XS , XD) and

(YS , YD), that produces a result (RS , RD). Conceptually, the approach is to convert XD and YD into

XL = f−1(XD) and YL = f−1(YD) and then perform

RD = f(opL(XL, YL)), (16)

where opL is the equivalent SLNS operation, for example opL(XL, YL) = XL + YL for multiplication.

With (13) and (14) the cost of DLNS-by-DLNS multiplication or division is rather expensive: two db and

one sb units; however, the next subsections illustrate how the cost of DLNS-to-DLNS addition may be

simplified.

2.1 DLNS-to-DLNS Addition

The problem of DLNS addition is to find the closest representation to

x̄+ ȳ = (−1)XS ·
(

bXD − bJ
)

+ (−1)YS ·
(

bYD − bJ
)

.

Just as with conventional SLNS, the hardware has to deal with two cases, a) when the signs of x̄ and ȳ
are the same, and b) when the signs are different (in other words, XS = YS and XS 6= YS).

RR n° 8412

8 Mark G. Arnold, Sylvain Collange

2.2 Same Signs

Suppose x̄ and ȳ have the same sign. The sign of the result, RS = XS = YS , will be the same, which

allows the sign to be factored out of the computation of the magnitude of the result. There are two

alternative ways to derive the computation that the DLNS hardware performs. The first of these performs

the addition first, and then converts this back to the DLNS format:

x̄+ ȳ = (−1)RS ·
(

((bXD + bYD)− bJ)− bJ
)

= (−1)RS ·
(

(bXD (1 + bYD/bXD)− bJ)− bJ
)

= (−1)RS ·
(

(blogb
(bXD (1+bYD/bXD)) − bJ)− bJ

)

= (−1)RS ·
(

(bXD+sb(YD−XD) − bJ)− bJ
)

= (−1)RS ·
(

bRD − bJ
)

where the actual computation performed by the hardware in this case,

RD = logb(b
XD+sb(YD−XD) − bJ)

= J + db(XD + sb(YD −XD)− J),
(17)

uses both sb and db. The commutativity of addition allows interchanging XD and YD and we can make

the argument to db positive. If XD > E0 + J ≈ F + J , we know (since sb is always positive) that

XD + sb(YD −XD)−J > E0 and that the db is an essential identity. In that case, this leaves RD = J +
XD+sb(YD−XD)−J = XD+sb(YD−XD), in other words, the standard SLNS addition algorithm. Just

like IEEE-754 (or the messy LNS algorithms in [2] inspired by it), the simple algorithm (17) maintains

constant relative precision, except for gradual underflow of “tiny” numbers. The distinction here is that

the definition of “tiny” is user configurable with the choice of F and J .

The alternative approach (still for the case when the signs of x̄ and ȳ are the same) converts one of

the representations to SLNS before performing the addition:

x̄+ ȳ = (−1)RS ·
(

(bXD − bJ) + (bYD − bJ)
)

= (−1)RS ·
(

(bXD + (bYD − bJ))− bJ
)

= (−1)RS ·
(

bR
′

D − bJ
)

where the actual computation performed by the hardware in this case is

R′

D = logb((b
XD + (bYD − bJ))

= XD + sb(J + db(YD − J)−XD).
(18)

(18) also uses both sb and db, although in the opposite order from (17). The argument to db is positive,

unless YD = J (which represents ȳ = 0.0). Since db has a singularity, the hardware that computes (18)

must return R′

D = XD in that case. By similar reasoning as with the other alternative, if YD > E0+J ≈
F+J , (18) reduces to the standard SLNS addition algorithm. Given that in DLNS, XD ≥ J and YD ≥ J ,

the two alternatives produce the same result in all cases, RD = R′

D, assuming that sb and db could be

computed precisely.

2.3 Different Signs

The other case for DLNS addition we must consider is when x̄ and ȳ have different signs. The sign of the

result, TS , will be the sign of the larger value, which we will assume is x̄, i.e., TS = XS and YS will be

Inria

Options for Denormal Representation in Logarithmic Arithmetic 9

the opposite of TS . Again, there are two ways to derive the computation carried out by the hardware. We

could perform the addition of opposite signs (i.e., subtraction of absolute values) first, and then convert

this back to the DLNS format:

x̄+ ȳ = (−1)TS ·
(

(bXD − bJ)− (bYD − bJ)
)

= (−1)TS ·
(

(bXD − bYD + bJ)− bJ
)

= (−1)TS ·
((

bXD

∣

∣

∣

∣

1− bYD

bXD

∣

∣

∣

∣

+ bJ
)

− bJ
)

= (−1)TS ·
((

blogb(bXD |1−bYD−XD |) + bJ
)

− bJ
)

= (−1)TS ·
(

(bXD+db(YD−XD) + bJ)− bJ
)

= (−1)TS ·
(

bTD − bJ
)

where the actual computation performed by the hardware in this case is

TD = logb(b
XD+db(YD−XD) + bJ)

= J + sb(XD + db(YD −XD)− J).
(19)

If XD > E0 + J ≈ F + J , (19) reduces to the standard SLNS algorithm for absolute subtraction.

The other alternative for differing signs is:

x̄+ ȳ = (−1)TS ·
(

(bXD − bJ)− (bYD − bJ)
)

= (−1)TS ·
(∣

∣(bXD + bJ)− bYD

∣

∣− bJ
)

= (−1)TS ·
(

bYD

∣

∣

∣

∣

1− b(J+sb(XD−J))

bYD

∣

∣

∣

∣

− bJ
)

= (−1)TS ·
(

bT
′

D − bJ
)

where the actual computation performed by the hardware in this case,

T ′

D = YD + db(J + sb(XD − J)− YD), (20)

is similar to R′

D, except the roles of XD and YD as well as sb and db have interchanged. Assuming that sb
and db could be computed precisely, TD = T ′

D. From the above, there are four alternative combinations

(RD/TD, RD/T ′

D, R′

D/TD or R′

D/T ′

D) of hardware possible.

3 Mixed DLNS Operations

It is apparent from the previous section that DLNS addition involves conversion of one number (either

one of the operands or the result) from DLNS format to the conventional SLNS representation. If one of

the operands is already available in SLNS format, the operations may simplify.

3.1 DLNS plus SLNS Add

Suppose that rather than to start with two given DLNS inputs (XD and YD), the addition hardware inputs

are XD and YL, the latter being the conventional SLNS representation of ȳ. The desired result is then

RR n° 8412

10 Mark G. Arnold, Sylvain Collange

simpler for the XS = YS case,

x̄+ ȳ = (−1)RS ·
(

(bXD − bJ) + bYL

)

= (−1)RS ·
(

bXD + bYL

)

− bJ

= (−1)RS ·
(

bR
′

D − bJ
)

,

as is the actual computation performed by the hardware,

R′′

D = logb(b
XD + bYL) = XD + sb(YL −XD). (21)

More importantly, this (DLNS+SLNS yields DLNS) case is identical to what would have happened for

the conventional (SLNS+SLNS yields SLNS) case.

In a similar way, when XS 6= YS , the hardware computation for the DLNS+SLNS yields DLNS case

is:

T ′′

D = XD + db(YL −XD). (22)

This also identical to what would have happened for the conventional (SLNS+SLNS yields SLNS) case

when XS 6= YS .

3.2 DLNS by SLNS Multiply

Multiplication of two DLNS values is a difficult operation involving conversion of both operands; it is

better if one of the operands can already be in SLNS format. In many signal-processing systems, the

multiplier is either constant or is reused many times (and may be brought into a register). As with SLNS,

the sign of the product is simply the exclusive OR or the input sign bits. Assuming WL is the SLNS

multiplier, and YD is the DLNS multiplicand,

|w̄ · ȳ| = bWL

(

bYD − bJ
)

= bWLbJ+db(YD−J) + bJ − bJ

=
(

bWL+J+db(YD−J) + bJ
)

− bJ

= bPD − bJ

where the hardware computation,

PD = J + sb(WL + db(YD − J)) (23)

seems similar to the computations required for DLNS+DLNS yields DLNS cases described in Section 2.

3.3 A combined DLNS/SLNS ALU

The similarity of (23) to the computations in Section 2 suggests that a single ALU design could have

the ability to perform pure-DLNS addition/subtraction, DLNS-by-SLNS multiplication, as well as pure-

SLNS addition/subtraction. Trying to combine all of these into a single circuit will suggest that some of

the alternatives described in Section 2 are less efficient than others. For example, when merging R and

T ′ into a single circuit, it is not possible to implement (23) easily with that circuit. The R/T and R′/T ′

combinations have an undesirable structure (sb and db units whose inputs and outputs are connected to

multiplexors with the complication that one input of each input multiplexor is connected to the output

multiplexor). This statically appears to be a feedback path requiring a register, although dynamically it

resolves to be combinatorial logic (rather like the behavior of an end-around-carry adder). While these

Inria

Options for Denormal Representation in Logarithmic Arithmetic 11

R/T or R′/T ′ circuit combinations could work, the false path will complicate use of synthesis tools. This

leaves the preferred combination of R′ from (18) and T from (19), which is implemented by the circuit

in Figure 1. Table 1 gives the select inputs to the multiplexors that allow this one circuit to compute R′,

T , P , R′′ and T ′′.

Figure 1: DLNS ALU.

3.4 DLNS by SLNS Multiply/Accumulate

The three-operand multiply-accumulate operation, w · y + x, is common in many applications. In signal

processing, it frequently occurs in situations where the same w is used with different values of x and

y, suggesting w could be stored in SLNS format, with x and y in DLNS format. In this case, treating

multiply-accumulate as an atomic operation (rather than as a multiply followed by an addition) allows

considerable simplification:

|w̄ · ȳ + x̄| = bWL ·
(

bYD − bJ
)

+
(

bXD − bJ
)

=
(

bJ+WL+db(YD−J) + bXD

)

− bJ .

RR n° 8412

12 Mark G. Arnold, Sylvain Collange

Table 1: Value of control signals as a function of the desired output. “X” stands for any value (don’t

care).

Signal R′

D TD R′′

D T ′′

D PD

a 0 1 1 1 0

b 0 0 X X 1

c - + X X +

d 2 2 0 1 2

e 1 1 1 0 1

f 1 0 1 1 0

As with pure-DLNS addition, there are two cases, depending on signs. If the sign of w̄ · ȳ is the same as

the sign of x̄, the result is

|w̄ · ȳ + x̄| = bXD ·
(

bJ+WL+db(YD−J)

bXD

+ 1

)

− bJ

= bPD − bJ ,

where the hardware computation is

P ′

D = XD + sb(J +WL + db(YD − J)−XD). (24)

If the sign of w̄ · ȳ is different than the sign of x̄, the hardware computation is

QD = XD + db(J +WL + db(YD − J)−XD). (25)

4 Analysis and Simulation

Unlike SLNS, the relative precision in DLNS varies with the magnitude of the value being represented

in relation to the designer’s choice of bJ . Given one exactly-represented-DLNS point, |x̄|, the internal

value processed by logarithmic hardware would look like |x̄| + bJ . Such internal hardware is subject

to the same relative spacing as conventional F -bit SLNS, and so the value of the next larger exactly-

represented-DLNS point is β(|x̄|+ bJ)− bJ . From this we see the absolute spacing of the adjacent points

is (β − 1)(|x̄|+ bJ) and for |x̄| ≥ bJ the relative spacing is

(β − 1)(|x̄|+ bJ)

|x̄| . (26)

For |x̄| < bJ , DLNS naturally underflows to the representation |x̄| = 0.0, and hence (26) is undefined.

The Fast Fourier Transform (FFT) is a common signal-processing algorithm, often implemented with

both fixed- and floating-point arithmetic. It has also been extensively studied in the context of SLNS

[26, 18, 3, 13]. We implemented an FFT using actual SLNS (with a wide enough dynamic range that

underflow does not occur) and our proposed DLNS b = 2 arithmetics. Figure 2 shows the RMS error

for a 64-point radix-two FFT whose input is a real-valued 25% duty-cycle square wave plus complex

white noise. (We obtained similar figures for larger size FFTs.) This code was simulated 100 times with

different pseudo-random noise. Using the same initial random data, the simulation computes several

results: a double precision result which, for practical purposes, is regarded as “exact”; DLNS results for

8 ≤ F ≤ 13 and −20 ≤ J ≤ 0; and SLNS results for 8 ≤ F ≤ 13, shown in the last column. For J near

0, the RMS appears to depend only on the choice of J . When J < −E0, the RMS for DLNS appears

asymptotic to the RMS for the F -bit underflow-free SLNS.

Inria

Options for Denormal Representation in Logarithmic Arithmetic 13

For comparision, instead of a simple underflow-free SLNS, we modeled an SLNS which abruptly un-

derflows at b−J . Figure 3 shows the RMS error for the same FFT simulation using this abrupt-underflow

SLNS. The shape of the curves in Figures 2 and 3 are similar, reaching similar asymptotes; however, for

J near zero, DLNS is two to three times more accurate.

We also modeled the DLNS error mechanism more abstractly by injecting noise into each double-

precision-FFT step from a random distribution whose width is given by (26). Although Figure 4 is noisy

and overestimates the error, it appears similar to the actual simulation results in Figure 2, suggesting (26)

is a reasonable model for DLNS behavior.

 0.0001

 0.001

 0.01

 0.1

 1

 10

0

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

−
1
0

−
1
1

−
1
2

−
1
3

−
1
4

−
1
5

−
1
6

−
1
7

−
1
8

−
1
9

−
2
0

S
L
N

S

R
M

S

J

F=13

F=12

F=11

F=10

F=9

F=8

Figure 2: 64-point FFT RMS using actual DLNS and SLNS arithmetic.

 0.0001

 0.001

 0.01

 0.1

 1

 10

0

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

−
1
0

−
1
1

−
1
2

−
1
3

−
1
4

−
1
5

−
1
6

−
1
7

−
1
8

−
1
9

−
2
0

S
L
N

S

R
M

S

J

F=13

F=12

F=11

F=10

F=9

F=8

Figure 3: 64-point FFT RMS using abrupt-underflow SLNS arithmetic.

In some applications, Paliouras and Stouraitis [25] have shown SLNS reduces dynamic power con-

sumption of memory accesses because of decreased switching activity on the memory bus resulting from

the compression inherent in the logarithmic representation. To see whether DLNS has similar advan-

tages, we measured switching activity during the memory access pattern of our FFT simulation using

actual DLNS arithmetic, and also, for comparision, using SLNS arithmetic. The data are plotted in Fig-

ure 5 as a percentage of SLNS switching activity. As is most natural, Figure 5 uses two’s complement

integers to represent the DLNS XD and SLNS XL. This means negative XD represents absolute values

less than 1 − bJ ; for J = 0, XD ≥ 0, which is significant since one of the major causes of increased

switching activity is alternating between positive and negative two’s complement values in memory. Val-

ues of J near zero offer up to 15% reduction in switching activity; J = −F yields a 3% reduction in

switching activity. As J moves further away from zero, the switching activity becomes similar to SLNS.

RR n° 8412

14 Mark G. Arnold, Sylvain Collange

 0.0001

 0.001

 0.01

 0.1

 1

 10

0

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

−
1

0

−
1

1

−
1

2

−
1

3

−
1

4

−
1

5

−
1

6

−
1

7

−
1

8

−
1

9

−
2

0

S
L

N
S

R
M

S

J

F=13

F=12

F=11

F=10

F=9

F=8

Figure 4: 64-point FFT RMS using random error model (26).

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

−
1
0

−
1
1

−
1
2

−
1
3

−
1
4

−
1
5

−
1
6

−
1
7

−
1
8

−
1
9

−
2
0

S
L
N

S

R
e
la

ti
v
e
 s

w
it
c
h
in

g
 a

c
ti
v
it
y

J

F=13
F=12

F=11
F=10

F=9
F=8

Figure 5: DLNS FFT Switching Activity (% SLNS) using Two’s Complement XD.

An alternative to two’s complement negative XD is to use an offset (by J) representation for XD,

analogous to how IEEE-754 exponents are encoded. Figure 6 shows this offers switching reduction

over a wide range of J . It reaches 15% reduction for J = −8, F = 8 and nearly 25% reduction for

J = 1, F = 8. It is also possible to use offset representation for abrupt-underflow SLNS. Figure 7 shows

this offers less switching reduction (around 10%) than DLNS, and, as described earlier, this comes at a

cost of greater RMS error than DLNS.

To measure software-implementation cost, a 32-bit (F = 23) C++ implementation of abrupt-underflow

LNS (using interpolation and cotransformation with range and precision comparable to IEEE-754 single

precision) was extended to DLNS using R and T . A simple computation (described in Section 6.4) was

benchmarked on a 1.3GHz Core 2 Duo, using g++ and Microsoft compilers. DLNS only adds around

16% overhead with purely normal data, because these pass through the extra sb or db as essential identi-

ties. As k moves into the denormal range, the speed of DLNS can be as much as 2.5 times slower than

LNS.

5 DLNS Synthesis

We implemented two versions of the proposed DLNS/SLNS ALU designs inside the FloPoCo arithmetic

core generator framework. FloPoCo [10] is a software tool that automatically generates arithmetic cores

in synthesizable VHDL. It includes support for SLNS arithmetic. Our first ALU implementation com-

Inria

Options for Denormal Representation in Logarithmic Arithmetic 15

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

−
1

0

−
1

1

−
1

2

−
1

3

−
1

4

−
1

5

−
1

6

−
1

7

−
1

8

−
1

9

−
2

0

S
L

N
S

R
e

la
ti
v
e

 s
w

it
c
h

in
g

 a
c
ti
v
it
y

J

F=13
F=12

F=11
F=10

F=9
F=8

Figure 6: DLNS FFT Switching Activity (% SLNS) using Offset XD.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0

−
1

−
2

−
3

−
4

−
5

−
6

−
7

−
8

−
9

−
1
0

−
1
1

−
1
2

−
1
3

−
1
4

−
1
5

−
1
6

−
1
7

−
1
8

−
1
9

−
2
0

S
L
N

S

R
e
la

ti
v
e
 s

w
it
c
h
in

g
 a

c
ti
v
it
y

J

F=13
F=12

F=11
F=10

F=9
F=8

Figure 7: Abrupt-Underflow SLNS FFT Switching Activity (% SLNS) using Offset XL.

putes T,R′, R′′

D, T ′′

D and PD, and our second implementation additionally supports multiply-accumulate

operations P ′

D and QD. We leverage the implementations of sb and db that FloPoCo provides for SLNS.

The implementation of sb is based on an optimized polynomial evaluator [11] and db is evaluated using

co-transformation [4].

We synthesized, placed and routed both units for a Xilinx Virtex-4 LX-25 FPGA using the Xilinx ISE

12.3 synthesis toolchain. Table 2 shows the area in FPGA slices and DSP blocks and the combinatorial

latency in nanoseconds after place and route, for various precisions. These results are compared with

the resources taken by sb and db alone, a valid point of comparison for typical applications where the

signs of numbers are not known. As can be seen, sb and db account for most of the area and delay. The

overheads added by the combined ALU and multiply-accumulate ALU over a conventional SLNS ALU

are respectively 26% and 43% in the worst case (for F = 10).

Although we synthesized combinatorial versions of the operators for direct delay comparison, all

circuits can be pipelined. We expect the additional logic for DLNS would increase pipeline depth, but

would not significantly affect the minimum cycle time in a highly-pipelined implementation, as it only

involves a small table and multiplier and pure combinatorial logic.

RR n° 8412

16 Mark G. Arnold, Sylvain Collange

Table 2: Area and combinatorial delay of synthesized DLNS operators, after place and route. Area is

given in general-purpose slices and DSP48 slices. The area and delay of the sb and db parts synthesized

separately are shown for reference. For all entries, J = 3.

F Combined sb and db Multiply-accumulate db and sb-db
Area ns Area ns Area ns Area ns

8 895 + 0 35.7 739 + 0 30.9 1184+ 0 42.90 892 + 0 38.6

9 1105 + 0 39.3 857 + 0 31 1414 + 0 46.70 1086 + 0 40.4

10 1177 + 3 42.3 936 + 2 32.8 1694 + 3 50.72 1182 + 2 40

11 1462 + 3 43.0 1226 + 2 34.9 1975 + 3 52.72 1686 + 2 42.2

12 1665 + 6 46.4 1479 + 6 37.8 2602 + 6 54.18 1824 + 6 46.2

13 2063 + 6 46.8 1740 + 6 39.5 3279 + 6 56.53 2366 + 6 53.4

14 2356 + 6 44.6 2158 + 6 37.8 4209 + 6 57.69 3004 + 6 47.4

Table 3: Area and combinatorial delay of synthesized DMLNS and DOMLNS 5-operation ALUs, com-

pared to SLNS. Settings are the same as in table 2.

F SLNS (sb-db) DMLNS DOMLNS

Area ns Area ns Area ns

8 509+0 21.852 685+1 40.660 593+0 25.221

9 588+0 21.773 765+1 37.887 706+0 28.575

10 712+1 24.269 907+2 40.859 843+1 30.664

11 983+1 29.557 1193+2 44.213 1181+1 34.469

12 1112+3 29.244 1366+4 47.512 1284+3 34.111

13 1491+3 30.600 1776+4 45.852 1688+3 35.806

14 1717+3 28.186 2064+4 44.223 1965+3 37.936

6 Mitchell-Based Alternatives: DMLNS and DOMLNS

Mitchell [31] proposed two related techniques: one produces an approximation to the logarithm, log2(X),
and the other produces an approximation to the antilogarithm, 2x. (In this section, we will use X and x
as simple algebraic variables, which is different than earlier usage.) Although half a century old, these

techniques continue to be frequently used primarily in the way Mitchell intended (as a means of low-

cost approximate multiplication) [32, 33, 34, 35, 36, 37, 38], although a few modern applications have

used it for other approximate computations, such as spam filtering [39, 40] or ultrasound imaging [41].

Mitchell’s methods are approximately equal to ordinary real-valued functions, but Mitchell’s results can

be computed as precisely as desired at relatively low cost. The confusion between precision and accurary

of Mitchell’s method was a point of a little controversy some years ago [42, 43]. The novel usage of

Mitchell’s method in this section obtains accurate results because it is being used only for compression

of denormal values, rather than the actual arithmetic on such values. Two alternative approaches are

considered, which we will call the Denormal Mitchell LNS (DMLNS) and the Denormal Offset Mitchell

LNS (DOMLNS). DMLNS and DLNS share that large values have the identical representation as SLNS;

DOMLNS sacrifices this compatibility for reduced hardware cost.

6.1 Review

We start by considering Mitchell’s original technique for a restricted range of arguments. For the argu-

ment, X , in the range 1 ≤ X ≤ 2, Mitchell approximates its logarithm as log2(X) ≈ M(X) = X − 1.

Inria

Options for Denormal Representation in Logarithmic Arithmetic 17

If X is outside this range, it is possible to determine int(log2(X)) by finding the position of the leading

significant bit in X and then shifting appropriately. For 0 < X ≤ 1.0, M(X) ≤ 0.0 can be described as

follows:

M(X) = 2X − 2, 0.5 ≤ X ≤ 1.0 (27)

= 4X − 3, 0.25 ≤ X ≤ 0.5

= 8X − 4, 0.125 ≤ X ≤ 0.25

= 16X − 5, 0.0625 ≤ X ≤ 0.125

...

= 2n ·X − n− 1, 2−n ≤ X ≤ 2−n+1.

The other method proposed by Mitchell is an antilogarithm approximation, M−1(x). For the an-

tilogarithm whose argument, x, is in the range 0 ≤ x ≤ 1, Mitchell approximates the antilogarithm as

2x ≈ M−1(x) = x+ 1. A simple shift deals with arguments outside this range so that in general

2x ≈ M−1(x) = 2int(x) · (frac(x) + 1), (28)

where int(X) is the unique integer such that int(X) + frac(X) = X and 0 ≤ frac(X) < 1. Although not

specified by Mitchell, this generalizes to negative −n < x ≤ 0:

M−1(x) = (x+ 1) · 0.5 + 0.5, −1 ≤ x ≤ 0

= (x+ 2) · 0.25 + 0.25, −2 ≤ x ≤ −1

...

= (x+ n) · 2−n + 2−n, −n ≤ x ≤ −n+ 1. (29)

The Mitchell logarithm and antilogarithm are exact inverses of each other, M(M−1(x)) = x and

M−1(M(X)) = X , a property important to their usage in this section.

In addition to its usage as an approximation for the base-two antilogarithm, Mitchell’s method has

been suggested to approximate the base-two addition logarithm [44, 45, 46] as s2(z) ≈ M−1(z) for

z < 0. This approximation is exact at z = 0 and as z approaches −∞ (the expected essential zero

property). It is slightly larger otherwise, allowing for approximately 4-bit accuracy. From (7), the case

for z ≥ 0 is s2(z) ≈ z +M−1(−z). Although it was also suggested [44] to approximate the subtraction

logarithm in a similar way, the two functions would not be exact inverses of each other, and therefore not

suitable for use here.

6.2 DMLNS

In DMLNS (unlike [44]), Mitchell’s method is not used for the actual computation of sums and differ-

ences, which are computed as in ordinary SLNS using interpolated sb and db units. Instead, Mitchell’s

method is used in place of (13) in the definition of the denormal decompression function:

f(x) = J +M−1(x− J) x < J (30)

= J + x+M−1(−x− J) x ≥ J. (31)

To simplify the algebra, let’s consider the typical case of J = 0 (analogous results hold for arbitrary

J), and introduce for this subsection n = −int(−x) = int(x) + 1 and y = f(x) as the ordinate to the

corresponding abcissa, x. Inverting (31) in the case J = 0 and y < 1 is trivially f−1(y) = M(y) < 0, as

described in the last section.

RR n° 8412

18 Mark G. Arnold, Sylvain Collange

The novel aspect of inverting (31), which has not been considered in the literature, is when y ≥ 1. In

this case, we are trying to invert y = x+M−1(−x), which from (29) is

y = x+ (−x+ n) · 2−n + 2−n. (32)

In this case, 2−n < 1 , causing a right shift by n places. The larger x is, the closer y becomes to x, just

like sb(x) for x ≫ 0. The signs of −x and n are opposite, having the effect of computing frac(−x) with

the (−x+ n).
Solving equation (32) for x :

y =
2n − 1

2n
· x+

n+ 1

2n
,

we obtain

x = f−1(y) =
2n

2n − 1
· y −

(

2n − 2− n

2n − 1
+ 1

)

. (33)

The problem is that the n in (33) is defined using the desired result, x. We can overcome this by noting

that the y endpoints of each interval (in which n remains the same) are of the form n + 2−n. If y ≥
int(y) + 2−int(y), we use n = int(y) + 1; otherwise, we use n = int(y).

6.3 DOMLNS

DMLNS requires computing the reciprocal of odd constants, and this can be somewhat expensive in

hardware[48, 49]. If we are willing to sacrifice bit-level compatibility to SLNS (and also accept a reduc-

tion in the largest representable value by half), we could offset the decompression function so that the

multiplication by 2n/(2n−1) is unnecessary. Instead, with Denormal Offset Mitchell LNS (DOMLNS), a

non-denormal value is represented by a fixed-point representation which is one larger than the fixed-point

representation that would be used in SLNS:

f(x) = J +M−1(x− J) x < J (34)

= x+ 1 x ≥ J. (35)

The inverse of this is easily computed

f−1(x) = J +M(x− J) x < J + 1 (36)

= x− 1 x ≥ J + 1. (37)

6.4 Taylor-series Benchmarks

In order to experiment with the variations of logarithmic denormal representation proposed here, several

truncated-Taylor-series values were computed using 32-bit words (F = 23 bit precision) after scaling

the terms by 2−i, where the range 100 ≤ i ≤ 145 was chosen to start well before subnormals would be

encountered in the summation and end with most subnormal terms underflowing to zero. These results

may be compared against IEEE-754 single precision FP. Figure 8 shows the relative errors of FP, SLNS,

DLNS, DMLNS and DOMLNS when computing the non-negative series

2−i · e1 ≈
10
∑

k=0

2−i

k!
. (38)

Figure 9 shows similar results for the alternating series

2−i · sin(π/4) = 2−i
√
0.5 ≈

10
∑

k=0

(−1)k
2−i(π/4)2k−1

(2k − 1)!
. (39)

Inria

Options for Denormal Representation in Logarithmic Arithmetic 19

Figure 10 works with a larger number of terms of the slower converging alternating series

2−i · arctan(1) = 2−i · π/4 ≈
100
∑

k=0

(−1)k
2−i

(2k − 1)
. (40)

The alternating series force the arithmetic to deal with sums and differences; the e-series avoids some

of those complications. In each figure, SLNS fails to produce any usable result once the first term of

the series falls below the denormal boundary, and SLNS results are not shown in these cases. Even

when the correct answer has a valid non-denormal representation, the plots show the relative errors grow

much larger than for any of the systems which can represent denormal values. This is because denormals

capture some of the information from the higher-order terms of the Taylor series, which the truncation

behavior of SLNS is unable to do.

The behavior of all techniques proposed roughly matches that of IEEE-754 for subnormal values,

although in this range DLNS is often as or more accurate than FP. DOMLNS and DMLNS, on the other

hand, are often identical to each other but slightly less accurate than FP.

DMLNS has problems with the quickly converging alternating sine series prior to the denormal

boundary, where it should be as accurate as FP and SLNS. We conjecture that since it is impossible

to approximate 2n/(2n − 1) perfectly for DMLNS, non-denormal values are biased during repeated ap-

plications of f and f−1.

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 1
0
0

 1
0
5

 1
1
0

 1
1
5

 1
2
0

 1
2
5

 1
3
0

 1
3
5

 1
4
0

 1
4
5

R
e
la

ti
v
e
 e

rr
o
r

i

FP

SLNS

DLNS

DMLNS

 DOMLNS

Figure 8: Relative error in ten-term 2i-scaled Taylor series for e.

6.5 DMLNS and DOMLNS Synthesis

To evaluate the overhead of DMLNS and DOMLNS, we consider a combined arithmetic unit perform-

ing either addition, subtraction, multiplication, division and square root. In the DMLNS and DOMLNS

cases, two compression functions and one decompression function are shared between all operators. Ta-

ble 3 compares the resource usage of synthesized 5-operation arithmetic units in SLNS, DMLNS and

DOMLNS. Adding compression and decompression functions to the inputs and output of SLNS oper-

ators leads to an area overhead comprised between 19% (F=13) and 35% (F=8) using DMLNS, and

between 13% (F=13) and 20% (F=9) using DOMLNS. The implementation of each DMLNS f function

also consumes a DSP slice, while DOMLNS is implemented in logic only. DMLNS has a substantial cost

in latency (between 50% and 86%), while DOMLNS has a much lower impact (between 15% and 35%).

As the implementation of f and f−1 scale better with precision than SLNS addition, higher precisions

tend to amortize the overhead of DMLNS and DOMLNS.

RR n° 8412

20 Mark G. Arnold, Sylvain Collange

 1e−08

 1e−07

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 1
0

0

 1
0

5

 1
1

0

 1
1

5

 1
2

0

 1
2

5

 1
3

0

 1
3

5

 1
4

0

 1
4

5

R
e

la
ti
v
e

 e
rr

o
r

i

FP

SLNS

DLNS

DMLNS

 DOMLNS

Figure 9: Relative error in ten-term 2i-scaled Taylor series for sin(π/4).

 0.0001

 0.001

 0.01

 0.1

 1

 1
0
0

 1
0
5

 1
1
0

 1
1
5

 1
2
0

 1
2
5

 1
3
0

 1
3
5

 1
4
0

 1
4
5

R
e
la

ti
v
e
 e

rr
o
r

i

FP

SLNS

DLNS

DMLNS

 DOMLNS

Figure 10: Relative error in 100-term 2i-scaled Taylor series for arctan(1).

7 Conclusions

This paper introduced three new alternatives for including gradual underflow in logarithmic arithmetic:

the Denormal Logarithmic Number System (DLNS), the Denormal Mitchell LNS (DMLNS) and the

Denormal Offset Mitchell LNS (DOMLNS). Large values have identical representations in DLNS and

DMLNS as they have in the conventional Signed LNS (SLNS). DLNS, DMLNS and DOMLNS are

hybrids of the properties of the FiXed-point Number System (FXNS) and SLNS, that can be characterized

in terms of base (typically b = 2), precision (F) and a new design parameter, J , which allows customizing

the range in which gradual underflow occurs. J = 0 gives a wide gradual underflow range that acts like

FXNS (and like the µ law); J < −F gives a narrow gradual underflow range that act likes SLNS (and like

the IEEE-754 standard). Taylor-series computation of common mathematical constants scaled to be in

the denormal range show that when F and J are chosen as in the IEEE-754 Floating-Point (FP) standard,

DLNS, DMLNS and DOMLNS have similar gradual-underflow behavior as FP.

DLNS is most suitable for application-specific problems that only require add, subtract and mixed

multiply (where one operand can be preconverted to SLNS). An example of such an application is the

Fast Fourier Transform (FFT). Simulation of an FFT application illustrates DLNS using J ≈ 0 decreases

bit-switching activity 15% with a two’s complement encoding and nearly 25% with an offset representa-

tion; however, this causes significant increase in RMS error. A choice of J = −F provides a balanced

design point, decreasing bit-switching activity by 15% with an offset representation at the cost of a 30%

Inria

Options for Denormal Representation in Logarithmic Arithmetic 21

increase in RMS error. DLNS reduces switching activity 5% to 20% more than an abruptly-underflowing

SLNS with around one-half the RMS error. The majority of the area of the synthesized DLNS circuit

is for traditional SLNS addition and subtraction tables; only a small area is used for the novel datapaths

that allow the ALU to act on conventional SLNS as well as DLNS and mixed data. Although DLNS

is affordable for such application-specific situations, the question of its suitability for general-purpose

computation is problematic. In software, general-purpose DLNS only increases overhead about 16%

for computations like the Taylor-series examples involving non-denormal data, with signifcant overhead

only for denormal data. In hardware, general-purpose DLNS requires multiple instances of the tradi-

tional SLNS addition and subtraction tables which make the hardware very expensive. While general

multipliction and division in SLNS are inexpensive, they are are very expensive in DLNS.

For applications that need general multiplication and division, this paper proposed two other novel

variations (DMLNS and DOMLNS) that simplify hardware using Mitchell’s method so that the cost of

general multiplication and division is much lower. DMLNS and DOMLNS offer tradeoffs that allow for

further reduction in area, at the expense of a minor decrease in accuracy for numbers in the denormal

range. DOMLNS sacrifices compatibility with SLNS representations of large values in order to lower

hardware cost and to improve accuracy compared to DMLNS.

References

[1] M. G. Arnold, T. A. Bailey, J. R. Cowles and J. J. Cupal, “Redundant Logarithmic Arithmetic,”

IEEE Trans. Comput., vol. 39, pp. 1077–1086, Aug. 1990.

[2] M. G. Arnold, T. A. Bailey, J. R. Cowles and M. D. Winkel, “Applying Features of IEEE 754 to

Sign/Logarithm Arithmetic,” IEEE Trans. Comput., vol. 41, pp. 1040–1050, Aug. 1992.

[3] M. Arnold and C. Walter, “Unrestricted Faithful Rounding is Good Enough for Some LNS Appli-

cations,” 15th Intl. Symp. Computer Arithmetic, Vail, Colorado, pp. 237-245, 11-13 June 2001.

[4] M. Arnold and S. Collange, “A Dual-Purpose Real/Complex Logarithmic Number System ALU,”

19th Intl. Symp. Computer Arithmetic, Portland, OR, pp. 15-24, 8-10 June 2009.

[5] M. Arnold, et al. “Towards a Quaternion Complex Logarithm Number System,” 20th Intl. Symp.

Computer Arithmetic, Tuebingen, Germany, pp. 33-42, 25-27 July 2011.

[6] C. Chen and C. H. Yang, “Pipelined Computation of Very Large Word-Length LNS Addi-

tion/Subtraction with Polynomial Hardware Cost,” IEEE Trans. Comput., vol. 49, no. 7, pp. 716-

726, July 2000.

[7] E. I. Chester and J. N. Coleman, “Matrix Engine for Signal Processing Applications Using the

Logarithmic Number System,” Proceedings of the IEEE Intl. Conf. on Application-Specific Systems,

Architectures and Processors, San Jose, California, pp. 315-324, 17-19 July 2002.

[8] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlac, “Arithmetic on the European Logarithmic

Microprocessor,” IEEE Trans. Comput., vol. 49, no. 7, pp. 702-715, July 2000.

[9] J. N. Coleman, C. I. Softley, J. Kadlec, R. Matousek, M. Tichy, Z. Pohl, A. Hermanek, and N.

F. Benschop, “The European Logarithmic Microprocessor”, IEEE Transactions on Computers, pp.

532-546, 2008.

[10] F. de Dinechin, “The Arithmetic Operators You Will Never See in a Microprocessor”, 20th Intl.

Symp. Computer Arithmetic, Tuebingen, Germany, pp, 189-190, July 2011.

RR n° 8412

22 Mark G. Arnold, Sylvain Collange

[11] F. de Dinechin, M. Joldes and B. Pasca, “Automatic Generation of Polynomial-Based Hardware

Architectures for Function Evaluation”, Application-specific Systems, Architectures and Processors,

IEEE, 2010.

[12] A.D. Edgar and S.C. Lee, “FOCUS Microcomputer Number System,” Commun. of the ACM, vol.

22, p. 166-167, 1979.

[13] H. Fu, O. Mencer and W. Luk, “FPGA Designs with Optimized Logarithmic Arithmetic”, IEEE

Transactions on Computers, vol. 59, no. 7, pp. 1000-1006, July 2010.

[14] K. F. Gauss, Werke, vol. 8, pp. 121-128, 1900.

[15] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, IEEE, 1985.

[16] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Std 754-2008, IEEE, 2008.

[17] R. C. Ismail and J. N. Coleman, “ROM-less LNS”, 20th Intl. Symp. Computer Arithmetic, Tuebin-

gen, Germany, pp. 43-51, July 2011.

[18] S. J. Kidd, “Implementation of the Sign-Logarithm Arithmetic FFT,”Royal Signals and Radar Es-

tablishment Memorandum 3644, Malvern, 1983.

[19] N. G. Kingsbury and P. J. W. Rayner, “Digital Filtering Using Logarithmic Arithmetic,” Electron.

Lett., vol. 7, no. 2, pp. 56-58, Jan 28, 1971.

[20] M. Kahrs and K. Branderburg, Editors., Applications of Digital Signal Processing to Audio and

Acoustics, Kluwer Academic Publ., Norwell, Massachusetts, p. 224, 1998.

[21] D. M. Lewis, “114 MFLOPS Logarithmic Number System Arithmetic Unit for DSP Applications,”

Intl. Solid-State Circuits Conf., San Francisco, pp. 1547-1553, Feb. 1995.

[22] V. S. Dimitrov, J. Eskritt, L. Imbert, G. A. Jullien and W. C. Miller, “The Use of The Multi-

Dimensional Logarithmic Number System in DSP Applications,” 15th Intl. Symp. Computer Arith-

metic, Vail, Colorado, pp. 247-254, 11-13 June 2001.

[23] I. Kouretas, Ch. Basetas and V. Paliouras, “Low-Power Logarithmic Number System Addition and

Subtraction and their Impact on Digital Filters,” IEEE Trans. Comput., 29 May 2011, IEEE Com-

puter Society Digital Library, http://doi.ieeecomputersocety.org/10.1109/TC.2012.111

[24] Junichiro Makino and Makoto Taiji, Scientific Simulations with Special-Purpose Computers—the

GRAPE Systems, John Wiley and Sons, Chichester, England, 1998.

[25] V. Paliouras and T. Stouraitis, “Low Power Properties of the Logarithmic Number System,” Pro-

ceedings of the 15th IEEE Symp. on Computer Arithmetic, Vail, Colorado, pp. 229-236, 11–13 June

2001.

[26] E. E. Swartzlander, D. Chandra, T. Nagle, and S. A. Starks, “Sign/logarithm Arithmetic for FFT

Implementation,” IEEE Trans. Comput., vol. C-32, pp. 526-534, 1983.

[27] E. E. Swartzlander and A. G. Alexopoulos, “The Sign/Logarithm Number System,” IEEE Trans.

Comput., vol. C-24, pp. 1238–1242, December 1975.

[28] S. Young, et al., The HTK Book (for HTK Version 3.1), Cambridge University Engineering Depart-

ment, England, Dec. 2001.

http://htk.eng.cam.ac.uk

Inria

Options for Denormal Representation in Logarithmic Arithmetic 23

[29] www.xlnsresearch.com has an extensive bibliography of LNS-related articles.

[30] “Pulse Code Modulation (PCM) of Voice Frequencies”, International Telecomunications Union,

1988.

http://www.itu.int/rec/T-REC-G.711/en

[31] J. N. Mitchell, “Computer Multiplication and Division using Binary Logarithms,” IEEE Trans. Elec-

tronic Comput., vol. EC-11, pp. 512-517, August 1962.

[32] Khalid H. Abed and R. E. Siferd, “CMOS VLSI Implementation of a Low-Power Logarithmic

Converter,” IEEE Transactions on Computers, vol. 52, no. 11, pp. 1421-1433, Nov. 2003.

[33] Khalid H. Abed and R. E. Siferd, “VLSI Implementation of a Low-Power Antilogarithmic Con-

verter,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1221-1228, Sept. 2003.

[34] Satish Bhairannawar et al., “FPGA based Recursive Error-Free Mitchell Log Multiplier for Image

Filters,” IEEE International Conference on Computational Intelligence and Computing Research

(ICCIC), Coimbatore, India, pp. 1-5, 18-20 Dec. 2012. doi: 10.1109/ICCIC.2012.6510248

[35] V. Mahalingam and N. Ranganathan, “Improving Accuracy in Mitchell’s Logarithmic Multiplication

Using Operand Decomposition,” IEEE Transactions on Computers, vol. 55, no. 12, pp. 1523-1535,

Dec. 2006.

[36] D.J. McLaren, “Improved Mitchell-Based Logarithmic Multiplier for Low-power DSP Applica-

tions,” IEEE International System On Chip (SOC) Conference, pp. 53-56, 17-20 Sept. 2003.

[37] M. Sullivan and E. E. Swartzlander “Truncated Logarithmic Approximation”, 21th Symposium on

Computer Arithmetic, Austin, TX, Apr. 2013.

[38] D.R. Shetty and S. Patil, “Improving Accuracy in Mitchell’s Logarithmic Multiplication Using It-

erative Multiplier for Image Processing Application”, International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Vol. 3, No. 3, pp. 187-191, July 2013.

[39] C. Layer, H. J. Pfleiderer and C. Heer, “A Scalable Compact Architecture for the Computation

of Integer Binary Logarithms through Linear Approximation,” 2004 International Symposium on

Circuits and Systems (ISCAS), vol. 2, pp. 421-424, Vancouver, Canada, 23-26 May 2004.

[40] M. N. Marsono, M. W. El-Kharashi and F. Gebali, “Binary LNS-based Naı̈ve Bayes Hardware

Classifier for Spam Control,” IEEE International Symposium on Circuits and Systems (ISCAS), Kos,

Greece, pp. 3674 - 3677, 21-24 May 2006.

[41] A. Page and T. Mosemnin, “An Efficient and Reconfigurable FPGA and ASIC Implementation of a

Spectral Doppler Ultrasound Imaging System”, 21th Symposium on Computer Arithmetic, Austin,

TX, Apr. 2013.

[42] R. Maenner, “A Fast Integer Binary Logarithm of Large Arguments,” IEEE Micro, vol. 7, no. 6, pp.

41-45, Dec. 1987.

[43] M. Arnold, T. Bailey, J. Cowles and J. Cupal, “Error Analysis of the Kmetz/Maenner Algorithm,”

Journal of VLSI Signal Processing, vol. 33, pp. 37-53, Oct. 2002.

[44] M. G. Arnold, “LPVIP: A Low-power ROM-Less ALU for Low-Precision LNS,” 14th International

Workshop on Power and Timing Modeling, Optimization and Simulation, LNCS 3254, pp. 675-684,

Santorini, Greece, 15-17 Sept. 2004.

RR n° 8412

24 Mark G. Arnold, Sylvain Collange

[45] M. G. Arnold and P. Vouzis, “A Serial Logarithmic Number System ALU,” EuroMicro Digital

System Design DSD, Lubeck, Germany, pp. 151-156, 29 Aug. 2007.

[46] M.G. Arnold, “Improved DNA-sticker Arithmetic: Tube-encoded-carry, Logarithmic Number Sys-

tem and Monte-Carlo methods,” Natural Computing, Vol. 12, no. 2, pp. 235-246, 2013.

[47] M. G. Arnold, and S. Collange, “The Denormal Logarithmic Number System”,24th International

Conference on Application Specific Systems, Architectures and Processors (ASAP), Washington,

DC, June 2013.

[48] S.-Y. R. Li, “Fast Constant Division routines,” IEEE Trans. Comput., vol. C-34, pp. 866–869, Sept.

1985.

[49] D. H. Jacobsohn, “A Combinatoric Division Algorithm for Fixed-Integer Division”, IEEE Trans.

Comput., vol. C-22, pp. 608–610, June 1973.

Inria

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	DLNS-to-DLNS Operations
	DLNS-to-DLNS Addition
	Same Signs
	Different Signs

	Mixed DLNS Operations
	DLNS plus SLNS Add
	DLNS by SLNS Multiply
	A combined DLNS/SLNS ALU
	DLNS by SLNS Multiply/Accumulate

	Analysis and Simulation
	DLNS Synthesis
	Mitchell-Based Alternatives: DMLNS and DOMLNS
	Review
	DMLNS
	DOMLNS
	Taylor-series Benchmarks
	DMLNS and DOMLNS Synthesis

	Conclusions

