
HAL Id: hal-00924491
https://hal.inria.fr/hal-00924491

Submitted on 7 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Event-Based Style for Developing M2M
Applications

Truong Giang Le, Olivier Hermant, Matthieu Manceny, Renaud Pawlak,
Renaud Rioboo

To cite this version:
Truong Giang Le, Olivier Hermant, Matthieu Manceny, Renaud Pawlak, Renaud Rioboo. Using
Event-Based Style for Developing M2M Applications. GPC - 8th International Conference on Grid
and Pervasive Computing - 2013, 2013, Seoul, South Korea. pp.348-357, �10.1007/978-3-642-38027-
3_37�. �hal-00924491�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49697142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00924491
https://hal.archives-ouvertes.fr

Using Event-Based Style for Developing

M2M Applications

Truong-Giang Le1, Olivier Hermant2, Matthieu Manceny1,
Renaud Pawlak3, and Renaud Rioboo4

1 LISITE - ISEP, 28 rue Notre-Dame des Champs, 75006 Paris, France
2 CRI - MINES ParisTech, 35 rue ST-Honoré, 77300 Fontainebleau, France

3 IDCapture, 2 rue Duphot, 75001 Paris, France
4 ENSIIE, 1 square de la Résistance, F-91025 Évry CEDEX, France

{le-truong.giang,matthieu.manceny}@isep.fr

olivier.hermant@mines-paristech.fr

renaud.pawlak@gmail.com

renaud.rioboo@ensiie.fr

Abstract. In this paper, we introduce how to write M2M applications
by using INI, a programming language specified and implemented by our-
selves that supports event-based style. With event-based programming, all
M2M communication can be handled and scheduled. Programmers may
use existing built-in events or define their own events. We apply our ap-
proach in a real M2M gateway, which allows gathering and exchanging
information between sensors and machines in the network. The results
shows that our work proposes a concise and elegant alternative and com-
plement to industrial state-of-the-art languages such as Java or C/C++.

Keywords: event-based programming; parallel programming; domain-
specific languages; M2M applications; gateway

1 Introduction

Machine-to-machine (M2M) refers to technologies that allow data communica-
tion and interaction between machine(s), device(s) or sensor(s) over a network
without human intervention. The M2M connectivity market, a.k.a. the “Internet
of Things”, is growing worldwide. Analysts predict that there will be 25 billion
connected IP devices by 2015, with M2M traffic expected to grow by 258% [2].
Another research estimates that M2M generates $35 billion in service revenues
by 2016 [5]. It covers a wide array of applications including automotive, meter-
ing, remote management, IP multimedia subsystem, industrial data collection,
health care, etc [16, 23]. For example, in agriculture, M2M applications are used
to capture images to track crops’ growth in the fields or to collect sounds to
estimate insect quantity in the plants. Another example are medical centers,
where the patient data such as blood pressure, heart rate, body temperature,
and respiratory rate should be accumulated and sent periodically to the health
care provider. In a factory, M2M sensors are used to track and monitor assets,

equipment, materials, cargo and supplies. To understand more about M2M tech-
nologies, please refer to [19, 27]. Currently, M2M industry continues to looks for
better and comprehensive M2M solutions.

Although, M2M has attracted a large amount of attention over the years,
developing M2M applications is still challenging. Besides, “existing M2M solu-
tions are fragmented and usually are dedicated to a specific single application”
[6]. In our work, we develop a novel programming language called INI to sup-
port developers to write M2M programs more easily. INI comes with event-based
paradigm, which is an appropriate style to handle and schedule M2M communi-
cation [22]. Moreover, events handlers in INI run in parallel either asynchronously
or synchronously to improve the performance and responsiveness of the system.

The rest of this paper is organized as follows. In Section 2, we give an overview
of related work. In Section 3, we briefly introduce INI and how it supports event-
based style. Then, the case study of a M2M gateway written in INI along with
the experiment tested on the real device are presented in Section 4. Section 5
concludes the paper.

2 Related work

Many M2M infrastructures frameworks, models, paradigms and services have
been proposed to ease the development of M2M systems.

In recent years, the event-driven programming has been recognized as an
efficient method for interacting and collaborating with the environment in ubiq-
uitous computing [17]. Event-based programs are generally driven by a loop that
waits for events and executes the appropriate callback [15]. Using event-driven
style requires less effort and may lead to better performance, simpler, more
manageable, portable code, and robust software [12]. This style is strong and
convenient to write many kinds of applications: M2M applications, sensors ap-
plications, mobile applications, simulation systems, embedded systems, robotics,
context-aware reactive applications, self-adaptive systems, etc.

Herstad et al. [20] defined a service platform architecture for connected ob-
jects. The architecture exhibits a number of features to support scalability, rapid
development, and technology and device independence. Liu et al. [24] focused on
the construction of a generic manager-to-manager (M2M) interface, which en-
ables a seamless cooperation between autonomous managers on the basis of Web
services. Cristaldi et al. [11] presented an interface platform, which is able to col-
lect and process data from a wide variety of sensors and exchange information
supporting different communication networks and protocols. Matson et al.[25]
tried to create a model and architecture to support networking, communication,
interaction, organization and collective intelligence features between machines,
robots, software agents, and humans. Currently, in order to build M2M applica-
tions, developers use classical programming languages (e.g. Java, .Net, C/C++,
Perl, etc.) or their extensions. Besides, there has been several work on construct-
ing event-based programming languages [10, 21], which can be applied to handle
events happening in M2M systems.

However, these languages are not fully comfortable for M2M applications
since they lack a well-defined mechanism to support scheduled operations, which
are essential in M2M communication. Another limitation is that events are not
constructed and handled in an intuitive manner, i.e. they are mixed with other
syntaxes and notations. In our language called INI, events are defined and applied
clearly. Furthermore, event actions can be scheduled easily with the help of two
built-in events (e.g. @every, @cron) or by user-defined events. Another advantage
is a flexible support of parallelism for events when running. Our next section will
discuss in details.

3 Event-based programming with INI

Events are used to monitor changes happening in the environment or for time
scheduling. In other words, any form of monitoring can be considered to be com-
patible with event-based style. In M2M communication, events are very frequent.
Generally, three types of events are distinguished [26]:

– A timer event to express the passing of time.
– An arbitrary detectable state change in a system, e.g. the change of the value

of a variable during execution.
– A physical event such as the appearance of a person detected by cameras.

For example, programmers may define an event to monitor the power level
of their systems or to observe users’ behaviors in order to react. They can also
specify an event to schedule a desired action at preferable time. To understand
more about event-based programming, please refer to [13–15].

INI is a programming language developed by ourselves, which runs on Java
Virtual Machine (JVM). In INI, we support all these kinds of event as shown
later. Event callback handlers (or events instances) are declared in the body
of functions and are raised, by default asynchronously, every time the event
occurs. By convention, an event instance in INI starts with @ and takes input
and output parameters. Input parameters are configuration parameters to tune
the event execution. Output parameters are variable names that are filled in
with values when then the event callback is called. They can be considered as
the measured characteristic of the event instance. It has to be noticed that those
variables, as well as any INI variable, enjoy a global scope in the function’s
body. Both two kinds of parameters are optional. Moreover, an event can also
be optionally bound to an id, so that other parts of the program can refer to it.
The syntax of event instances is shown below:

id:@eventKind[inputParam1=value1 , inputParam2=value2 , ...]

(outputParam1 , outputParam2 , ...)

{ <action > }

Programmer may use built-in events (listed in Table 1), or write user-defined
events (in Java or in C/C++), and then integrate them to their INI programs.
By developing custom events, we can process data which are captured by sensors.

Built-in event kind Meaning

@init() used to initialize variables, when a function starts.

@end() triggered when no event handler runs, and when the
function is about to return.

@every[time:Integer]() occurs periodically, as specified by its input
parameter (in milliseconds).

@update[variable:T] invoked when the given variable’s value changes
(oldValue:T, newValue:T) during execution.

@cron[pattern:String]() used to trigger an action, based on the CRON pattern
indicated by its input parameter.

Table 1. Some built-in events in INI.

1 function main() {

2 // Monitor the temperature of a patient

3 t:@temperatureMonitor[tempPeriod = 1](temperature) {

4 case {

5 temperature > ... {

6 // Notify to a doctor or do other automatic

7 // emergency actions

8 ...

9 }

10 //A default action

11 default {

12 ...

13 }

14 }

15 }

16

17 // Monitor the blood pressure of a patient

18 b:@bloodPressureMonitor[bpPeriod = 2](pressure) {

19 case {

20 pressure <= ... { ... }

21 ... //other conditions

22 }

23 }

24 ...

25 }

Fig. 1. A simple health monitoring system written in INI.

To illustrate user-defined events in INI, let us consider a simple health moni-
toring system that must monitor several information related to the patient such
as body temperature, blood pressure, etc. We can design events to deal with
each task as shown in Figure 1. The event @temperatureMonitor named t has
one input parameter called tempPeriod, which is applied to set how long the
event should sleep between two consecutive checks (time unit is in hours). Be-

sides, it has one output parameter named temperature to indicate the current
body temperature of the patient. Inside this event, based on the value of the
current temperature, we can define several corresponding actions through the
n-ary boolean case instruction (quite standard and not described here, please
refer to INI Language Reference Documentation [30]). The other event @blood-
PressureMonitor named b has a similar structure. All events in our program
run concurrently, which means that we can handle multiple tasks at one time.
To learn how to write user-defined events in INI, interested readers may refer
to [30].

By default, except for the @init and @end events (see Table 1), all INI events
are executed asynchronously. However, in some scenarios, a given event e0 may
want to synchronize on other events e1,..., eN. It means that the synchronizing
event e0 must wait for all running threads corresponding to the target events
to be terminated before running. For instance, when e0 may affect the actions
defined inside other events, we need to apply the synchronization mechanism.

Programmers may use the following code to ensure that the event e0 syn-
chronizes on N target events:

$(e1 ,e2 ,...,eN) e0:@eventKind ...

{ <action > }

Events in INI may also be reconfigured at runtime in order to adjust their be-
haviors when necessary to adapt to changes happening in the environment. Pro-
grammers can call the built-in function reconfigure event(eventId, [inputParam1
= value1, inputParam2 = value2,...]) in order to modify the the values of event’s
input parameters. For example, at some time during running, we want to collect
patient’s temperature data more frequently, we can adjust the input parameters
of t by callings: reconfigure event(t, [tempPeriod = 0.5]). Now our event
will gather data for every 30 minutes instead of one hour as before. Moreover,
we also allow programmers to stop and restart events with the built-in functions
stop event([eventId1, eventId2, ...]) and restart event([eventId1,

eventId2, ...]). For instance, we may stop all data collection processes when
the energy level of the system is too low and restart them later when the energy
is charged again.

Last but not least, events in INI may be used in combination with a boolean
expression express the requirement that need to be satisfied before an event is
executed. Programmers may use the syntax below:

<event_expression > <logical_expression >

{ <action > }

For example, if we want the event @bloodPressureMonitor to be executed
only when the temperature is higher than some threshold:

@bloodPressureMonitor[bpPeriod =2](pressure) temperature >...

{...}

To understand more about the above mechanisms and other aspects of INI
(e.g. semantics, rules, type system, type checking, built-in functions), program-
mers may have a look at [30].

4 Case study: A M2M gateway program

Many M2M applications are required to send data to a M2M server through
network and a M2M gateway is a typical example [28]. In other words, a M2M
gateway allows different types of networks to communicate with each another in
order to provide data [29]. For example, users may use this device for industrial
data collection or for surveillance purpose [13]. Since this kind of tasks does not
create much added-value and maybe in dangerous or remote environment, taking
advantages of M2M technologies is a good solution.

In this section, we show how to apply INI to write a M2M gateway program,
containing two basic steps as shown in Figure 2:

– Collecting data (e.g. images, sound, etc.), which are captured by sensors or
peripherals.

– Transmitting data to the server through the network.

Fig. 2. The role of a gateway.

All these operations above can be scheduled easily with the help of the two
built-in events @every and @cron (see Table 1. The event @every can be applied
to do an action periodically. The event @cron[pattern:String]() event occurs
on times indicated by the UNIX CRON pattern expression. CRON is a task
scheduler that allows the concise definition of repetitive task within a single
(and simple) CRON pattern [3]. A UNIX crontab-like pattern is a string split
in five space separated parts, including minutes sub-pattern, hours sub-pattern,
days of month sub-pattern, months sub-pattern, and days of week sub-pattern.

Some examples:

– "5 * * * *": This pattern causes the event instance to occur once every
hour, at the begin of the fifth minute (00:05, 01:05, 02:05 etc.).

– "* * * * *": This pattern causes the event instance to occur every minute.

– "59 11 * * 1-5": This pattern causes the event to occur at 11:59 AM on
every weekday (i.e. Monday, Tuesday, Wednesday, Thursday and Friday).

1 function main() {

2 // Initialization

3 @init () {

4 capturedDataFolder = file("data")

5 // Create a new data folder in case that it does not exist

6 case {

7 !file_exists(capturedDataFolder) {

8 mkdirs(capturedDataFolder)

9 }

10 }

11 zipFile = file("data.zip")

12 keepParentFolder = true

13 }

14

15 // Capture image from a camera using the library gphoto2

16 e1:@every[time = 60000]() {

17 exec("gphoto2␣--capture -image -and -download␣--filename

18 ␣␣␣␣␣data/img" + time() + ".jpg")

19 }

20

21 // Capture sound from a microphone using the library alsa

22 e2:@every[time = 30000]() {

23 exec("arecord␣-d␣30␣-f␣cd␣data/sound" + time() + ".wav")

24 }

25

26 // Upload data to a FTP server by schedule

27 @cron[pattern = "0␣09-18␣*␣*␣1-5"]() {

28 stop_event ([e1,e2])

29 zip(capturedDataFolder ,zipFile)

30 upload_ftp("server_address", "user_name",

31 "password", zipFile , to_string(time ()) + "data.zip")

32 delete_file(zipFile)

33 delete_folder(capturedDataFolder , keepParentFolder)

34 restart_event ([e1,e2])

35 }

36 }

Fig. 3. A M2M gateway program written in INI.

Our complete program is shown in Figure 3. The main function is composed
of four events. The event @init (lines 3-13) is invoked to initialize necessary
variables that will be used later. The variable capturedDataFolder indicates
the folder where we put the collected data. If this folder does not exist, we create

it (lines 7-9). The variable zipFile denotes a zipped data file. We compress the
data before uploading to save network bandwidth.

The next two events are @every event kind. They are used to collect image
and sound data (e.g. in a field or in a factory). The event e1 (lines 16-19)
is invoked every minute to get a picture captured by a camera (by using the
library gphoto2 [4]). The event e2 (lines 22-24) is invoked every 30 seconds to
use a microphone to record sound (by using the library alsa [1]). All files (i.e.
pictures and sounds) are saved into the data folder. These collecting processes
(i.e. two events) run in parallel to take advantage of multithreading for better
performance.

The last event is a @cron (lines 27-35) event, which is employed to upload
the data to a FTP server every hour during working hours (i.e. 9:00 AM - 6:00
PM) on every weekday. Inside this event, first, we stop the two events e1 and e2

(line 28). Next, we compress the data folder before uploading (line 33). Then we
upload the compressed data to a FTP server (lines 30-31). Since the gateway is
only an data-exchanging device with limited storage capacity, after uploading,
we delete the data to save storage (lines 32-33). Finally, we restart the two events
e1 and e2 so that we can collect data again (line 34).

Now let us compare our INI program with a Java program that do the same
tasks. In order to makes all operations running in parallel in Java, we need
to create some explicit threads for different tasks: capturing pictures, record-
ing sounds, uploading data and time scheduling for all operations. Scheduling
is a nontrivial task since it is not well-supported in Java. In addition, we also
need some thread pools in order to manage and synchronize those threads when
needed. Although Java has a powerful support for concurrency, writing correct
concurrent applications in this language is still challenging and error-prone, es-
pecially for novice programmers [18]. To decrease the difficulty and hide the
unnecessary complexity, INI separates the thread issue (implemented in Java),
and the event-handling issue (implemented in INI). This separation of concerns
helps in making the INI approach clearer and less error-prone than a pure-Java
program.

We tested our program on the real gateway in the scope of the MCUBE
project [7]. The device is provided by Webdyn [9], a company dedicated to
design, develop, and market this kind of product. We use Oracle Java SE Em-
bedded for establishing the runtime environment of INI on the gateway. This
platform is optimized for mid-range to high-end embedded systems and offers a
high-performance virtual machine, full high-performance graphics support, de-
ployment infrastructure, and a rich set of features and libraries [8]. During the
experiment, our program worked well. All the data are captured and transmitted
properly.

5 Conclusion and future work

In this paper, we presented how to write M2M applications using event-based
style through INI, a programming language developed by ourselves. INI can be

seen as an Architecture + DSL (Domain-Specific Language) for (multi-threaded)
event handling and coordination. INI allows programmers to construct and define
events in a convenient and straightforward way. Besides, events in INI run in
parallel to perform multiple tasks concurrently. For testing, we built a gateway
program and when running on the real device, this program completes required
tasks adequately and appropriately.

For the future work, we will apply INI in more M2M applications and also
in other domains like robotics or manufacturing systems. We also have a plan
to evaluate quality and performance of INI programs. Currently, we are trying
to better a tool called INICheck, which can convert a major subset of INI to
Promela, the input modeling language of the model checker SPIN. Then SPIN
can be used to verify some properties of INI programs. This tool allows the
programmer to have insurances on his code and its behavior.

Acknowledgments

The work presented in this article is supported by the European Union. Europe
is committed in Ile-de-France with the European Regional Development Fund.

References

1. Alsa, http://www.alsa-project.org/

2. Cisco jumps into the M2M market, http://www.networkcomputing.com/

wireless/231600077

3. Crontab, http://crontab.org/

4. Gphoto2, http://gphoto.org/

5. M2M to generate $35bn in service revenues by 2016, http://juniperresearch.
com/viewpressrelease.php?pr=243

6. Machine-to-Machine (M2M) The rise of the machines, http://www.juniper.net/
us/en/local/pdf/whitepapers/2000416-en.pdf

7. The MCUBE project, http://mcube.isep.fr:8080/

8. Oracle Java SE Embedded, http://www.oracle.com/technetwork/java/

embedded/overview/getstarted/index.html

9. Webdyn, http://www.webdyn.com/en/

10. Cohen, N.H., Kalleberg, K.T.: EventScript: an event-processing language based
on regular expressions with actions. In: Proceedings of the 2008 ACM SIGPLAN-
SIGBED conference on Languages, compilers, and tools for embedded systems. pp.
111–120. LCTES ’08, ACM, New York, NY, USA (2008)

11. Cristaldi, L., Faifer, M., Grande, F., Ottoboni, R.: An improved M2M platform for
multi-sensors agent application. In: Sensors for Industry Conference, 2005. pp. 79
–83 (feb 2005)

12. Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., Morris, R.: Event-driven
programming for robust software. In: Proceedings of the 10th workshop on ACM
SIGOPS European workshop. pp. 186–189. EW 10 (2002)

13. Denecke, K.: Event-Driven Surveillance: Possibilities and Challenges. Springer,
Berlin (2012)

14. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.
(2010)

15. Faison, T.: Event-Based Programming: Taking Events to the Limit. Apress,
Berkely, CA, USA (2006)

16. Fan, Z., Tan, S.: M2M communications for E-health: Standards, enabling tech-
nologies, and research challenges. In: Medical Information and Communication
Technology (ISMICT), 2012 6th International Symposium on. pp. 1 –4 (march
2012)

17. Fischer, J., Majumdar, R., Millstein, T.: Tasks: language support for event-driven
programming. In: Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. pp. 134–143. PEPM ’07,
ACM, New York, NY, USA (2007)

18. Goetz, B., Peierls, T.: Java concurrency in practice. Addison-Wesley (2006)
19. Hersent, O., Boswarthick, D., Elloumi, O.: The Internet of Things: Key Applica-

tions and Protocols. John Wiley & Sons, Incorporated (2011)
20. Herstad, A., Nersveen, E., Samset, H., Storsveen, A., Svaet, S., Husa, K.: Con-

nected objects: Building a service platform for M2M. In: Intelligence in Next Gen-
eration Networks, 2009. ICIN 2009. 13th International Conference on. pp. 1 –4 (oct
2009)

21. Holzer, A., Ziarek, L., Jayaram, K., Eugster, P.: Putting events in context: aspects
for event-based distributed programming. In: Proceedings of the tenth interna-
tional conference on Aspect-oriented software development. pp. 241–252. AOSD
’11, ACM, New York, NY, USA (2011)

22. IoT-A: (Internet of Things – Architecture) Project Deliverable d3.1 - Initial M2M
API Analysis (2012)

23. Kim, B.H., Ahn, H.J., Kim, J.O., Yoo, M., Cho, K., Choi, D.: Application of
M2M technology to manufacturing systems. In: Information and Communication
Technology Convergence (ICTC), 2010 International Conference on. pp. 519 –520
(nov 2010)

24. Liu, L., Gaedke, M., Koeppel, A.: M2M interface: a Web services-based frame-
work for federated enterprise management. In: Web Services, 2005. ICWS 2005.
Proceedings. 2005 IEEE International Conference on. pp. 2 vol. (xxxiii+856) (july
2005)

25. Matson, E., Min, B.C.: M2M infrastructure to integrate humans, agents and robots
into collectives. In: Instrumentation and Measurement Technology Conference
(I2MTC), 2011 IEEE. pp. 1 –6 (may 2011)

26. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006)

27. Roebuck, K.: Machine-to-machine (M2M) Communication Services: High-impact
Technology - What You Need to Know: Definitions, Adoptions, Impact, Benefits,
Maturity, Vendors. Lightning Source Incorporated (2011)

28. Singh, S., Huang, K.L.: A robust M2M gateway for effective integration of capil-
lary and 3GPP networks. In: Advanced Networks and Telecommunication Systems
(ANTS), 2011 IEEE 5th International Conference on. pp. 1 –3 (dec 2011)

29. Sosinsky, B.: Networking Bible. Wiley Publishing, 1st edn. (2009)
30. Truong-Giang, L.: INI Online (2012), https://sites.google.com/site/

inilanguage/

