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Mean field games systems of first order

Pierre Cardaliaguet∗ P. Jameson Graber†

January 8, 2014

Abstract

We consider a system of mean field games with local coupling in the deterministic limit. Under

general structure conditions on the Hamiltonian and coupling, we prove existence and uniqueness of

the weak solution, characterizing this solution as the minimizer of some optimal control of Hamilton-

Jacobi and continuity equations. We also prove that this solution converges in the long time average

to the solution of the associated ergodic problem.

Keywords: mean field games, Hamilton-Jacobi equations, optimal control, nonlinear PDE, trans-

port theory, long time average.

1 Introduction

Our purpose is to study the system







(i) −∂tφ+H(x,Dφ) = f(x,m)
(ii) ∂tm− div (mDpH(x,Dφ)) = 0
(iii) φ(T, x) = φT (x),m(0, x) = m0(x).

(1.1)

System (1.1) is a model for first-order mean field games with local coupling. Mean field games (MFG)
were introduced simultaneously by Lasry and Lions [LL06a, LL06b, LL07] and by Huang, Malhamé, and
Caines [HMC06, HCM07] in order to study large population differential games. The function φ in system
(1.1) can be thought of as the value function for an average player seeking to optimize an objective
functional, while m represents the time-evolving probability distribution of the state of the players. The
coupling between the two is represented here by the function f(x,m).

The purpose of this article is to study the existence and uniqueness of weak solutions of the model (1.1)
as well as their long time average behavior. Structure conditions guaranteeing existence and uniqueness
of solutions are already well-investigated in two general cases: the second order case with diffusion,
and the first order case where the coupling is nonlocal and smoothing; see the discussion in Lasry and
Lions [LL06b, LL07] as well as the more recent contributions by Gomes, Pimentel and Sánchez-Morgado
[GPSM1, GPSM2] and by Porretta [Por13]. Here the situation is one of first order equations with
local coupling, about which much less is understood. One approach, given in the lectures in [Lio07],
is to transform the system into a quasilinear elliptic equation in space time, thereby yielding smooth
solutions. However, this approach requires certain structure conditions (in particular to ensure that m
does not vanish) which we wish to abandon entirely.

The existence and uniqueness of weak solutions for this first order system under general structure condi-
tions was studied in Cardaliaguet [Car13b] and in Graber [Gra13]. The approach, introduced by Benamou
and Brenier [BB00] and carried on in Cardaliaguet, Carlier and Nazaret [CCN12] for optimal transport
problems, was to characterize weak solutions in terms of minimizers for optimal control problems for
some PDEs (Hamilton-Jacobi equations and transport equations). We use a similar ideas in the present
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article, but we remove certain assumptions from [Car13b]. In particular, the following two generalizations
deserve emphasis:

• we completely dispense with hypothesis (H3) in [Car13b], a strong restriction on the dependence of
the Hamiltonian on space which would explicitly forbid, say, H(x,Dφ) = c(x)|Dφ|r for a positive
continuous function c; for this we follow [Gra13], where the analysis of mean field game system with
local coupling and Hamiltonians positively homogeneous with respect to the gradient variable was
performed;

• we dispense with the growth assumption on f(x,m) form near the origin; unlike in [Car13b, Gra13],
we do not make the assumption f(x, 0) = 0, and indeed we do not assume that limm→0+ f(x,m) is
finite for all x.

Thus we allow for fairly general structure conditions, with the only major restriction being the relationship
between the growth rate of the Hamiltonian and the coupling (Equation (1.5)). Note that conditions
linking the growth on the Hamiltonian to the growth of the coupling are fairly standard in mean field
game theory (see, e.g., [LL07, GPSM1, GPSM2, Por13]). We prove the existence of solutions in an
appropriately defined weak sense, characterizing the minimizers of two optimal control problems which
are in duality (see Section 2).

Our second main result concerns the long time average of the solution of the mean field game system.
Following standard arguments in control theory, one expects that, as horizon T tends to infinity, the
value function φ converges to the value of an ergodic control problem, while the measure m stabilizes to
an invariant measure. The resulting system should be therefore an ergodic MFG system, as introduced
by Lasry and Lions in [LL06b]:







(i) λ+H(x,Dφ) = f(x,m(x))
(ii) −div(mDpH(x,Dφ)) = 0
(iii) m ≥ 0,

∫

Td m = 1

This intuition turns out to be essentially correct, at least under suitable conditions. The first results
in this direction were established by Lasry and Lions in [Lio07] and then extended and sharpened by
Cardaliaguet, Lasry, Lions, Porretta [CLL+12, CLLP13]: in these references, the authors are concerned
with second order mean field game systems, namely systems involving stochastic control problems with
a nondegenerate diffusion. The main conclusion is that the rescaled map (s, x) → φ(sT, x)/T converges
to the (constant in space) map s → λ̄(1 − s) in (0, 1) × T

d while the (rescaled) map (s, x) → m(sT, x)
converges to the (constant in time) map x→ m̄(x). Moreover this last convergence holds at an exponential
rate. Similar results in the discrete setting were also obtained by Gomes, Mohr and Souza in [GMS10].
This long time average behavior is similar for first order MFG systems with nonlocal coupling [Car13a],
which correspond to systems of the form (5.1) in which the map f is a nonlocal (and smoothing) function
of the measure m(t). The difficulty is then to define a notion of solution for the ergodic problem, since
in this setting the measure m̄ can have (and usually has) a singular part: this problem is overcome by
using ideas from weak KAM theory.

In the present paper we address the same issue for the first order MFG systems with local coupling.
The construction of solutions can be obtained as for the time-dependent problem. This construction was
actually carried out by Evans in [Ev03] for the coupling f(m) = ln(m), where smoothness of the solution
is established as well. Under our general assumptions, we cannot hope to obtain smooth solutions, but
we show the existence and uniqueness of weak solutions.

To prove the convergence of the time dependent system (1.1) to the ergodic one, we extend a classical
energy inequality introduced by Lasry and Lions [LL07] to our weak solutions (see Proposition 3.8): this
provides the convergence of m. The convergence of φ/T is more subtle. Indeed, in [CLL+12, CLLP13],
it relies on the fact that m does not vanish for second order MFG systems; in [Car13a], we used the
comparison principle for Hamilton-Jacobi equations (HJ equations). In the present context, the measure
m is expected to vanish and the notion of solution is too weak to allow for a comparison argument. To
overcome this issue, we pass to the limit in the optimization problem that characterizes weak solutions
of (1.1).
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The outline of the paper is as follows. In the following subsection, we list the basic assumptions which
hold for all of our main results. Then in Section 2 we present two optimal control problems, one for the
Hamilton Jacobi equation and the other for the continuity equation, whose minimizers are characterized
by weak solutions to the mean field games system (1.1). Section 3 is devoted to the study of weak
solutions, in particular their existence and uniqueness. In Section 4, we study weak solutions for the
corresponding ergodic problem. Finally, in Section 5, we study the link between the time-dependent and
ergodic problems.

Acknowledgement: This work has been partially supported by the Commission of the European Com-
munities under the 7-th Framework Programme Marie Curie Initial Training Networks Project SADCO,
FP7-PEOPLE-2010-ITN, No 264735, and by the French National Research Agency ANR-10-BLAN 0112
and ANR-12-BS01-0008-01.

1.1 Notation and assumptions

Notation: We denote by 〈x, y〉 the Euclidean scalar product of two vectors x, y ∈ R
d and by |x| the

Euclidean norm of x. We work in the flat d−dimensional torus Td = R
d\Zd. For k, n ∈ N and T > 0, we

denote by Ck([0, T ]× T
d,Rn) the space of maps φ = φ(t, x) of class Ck in time and space with values in

R
n. For p ∈ [1,∞] and T > 0, we denote by Lp(Td) and Lp((0, T ) × T

d) the set of p−integrable maps
over Td and [0, T ]×T

d respectively. We often abbreviate Lp(Td) and Lp((0, T )×T
d) into Lp. We denote

by ‖f‖p the Lp−norm of a map f ∈ Lp. For f ∈ L1((0, 1)×T
d), we define 〈f(t)〉 to be the (a.e. defined)

quantity
∫

Td f(t, x)dx.

If µ is a vector measure over Td or [0, T ]× T
d, we denote by µac and µs the decomposition of µ in abso-

lutely continuous part and singular part with respect to the Lebesgue measure. Recall that µ = µac+µs.
For simplicity, if φ ∈ BV over [0, T ]× T

d, we abbreviate the notation (∂tφ)
ac into ∂tφ

ac.

Assumption: We now list the various conditions needed on the data of the problem. These assumptions
are in force throughout the paper.

1. (Conditions on the initial and final conditions)m0 is a probability measure on T
d which is absolutely

continuous with respect to Lebesgue measure, having density which we also call m0 in C(Td). We
suppose moreover that m0 > 0 on T

d. We assume that φT : Td → R is a Lipschitz continuous
function on T

d.

2. (Conditions on the Hamiltonian) H : Td × R
d → R is continuous in both variables, convex and

differentiable in the second variable, with DpH continuous in both variables. Moreover, H has
superlinear growth in the gradient variable: there exist r > 1 and C > 0 such that

1

rC
|p|r − C ≤ H(x, p) ≤

C

r
|p|r + C, (1.2)

We denote by H∗(x, ·) the Fenchel conjugate of H(x, ·), which, due to the above assumptions,
satisfies

1

r′C
|q|r

′

− C ≤ H∗(x, q) ≤
C

r′
|q|r

′

+ C, (1.3)

where r′ is the conjugate of r. We will also denote by L the Lagrangian given by L(x, q) = H∗(x,−q),
which thus satisfies the same bounds as H∗.

3. (Conditions on the coupling) Let f be continuous on T
d × (0,∞), strictly increasing in the second

variable, satisfying
1

C
|m|q−1 − C ≤ f(x,m) ≤ C|m|q−1 + C ∀ m ≥ 1. (1.4)

4. The relation holds between the growth rates of H and of F :

r > max{d(q − 1), 1}. (1.5)
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Note that condition (1.5) implies that the growth of f (of order q − 1) has to be much smaller than the
growth of H (of order r).

We define F so that F (x, ·) is a primitive of f(x, ·) on (0,∞), that is,

F (x,m) =

∫ m

1

f(x, s)ds, ∀ m > 0. (1.6)

It follows that F is continuous on T
d× (0,∞), is strictly convex and differentiable in the second variable,

and satisfies the growth condition

1

qC
|m|q − C ≤ F (x,m) ≤

C

q
|m|q + C ∀ m ≥ 1. (1.7)

For m < 0 we set F (x,m) = +∞. We denote by F (x, 0) the limit limm→0+ F (x,m), which may be finite
or +∞ (see Remark 1.1 below).

We will denote throughout the conjugate exponent of q by p = q∗. Define F ∗(x, ·) to be the Fenchel
conjugate of F (x, ·) for each x. Note that

1

pC
|a|p − C ≤ F ∗(x, a) ≤

C

p
|a|p + C, ∀a ≥ 0. (1.8)

Remark 1.1. Note that our assumptions imply that F is bounded below on T
d × (0,+∞): indeed, by

(1.7), F is uniformly coercive at infinity, so that we only have to worry about m ∈ (0, 1). For such m’s,
we have by convexity of F :

F (x,m) ≥ F (x, 1) + f(x, 1)(m− 1) ≥ min
Td

F (·, 1)−max
Td

f(·, 1).

Finally, note that, since F (x,m) = +∞ for m < 0, F ∗(x, a) = supm≥0ma− F (x,m) is nondecreasing.

Remark 1.2. Our assumptions do not prohibit the possibility limm→0+ f(x,m) = −∞, which creates
special difficulties in proving the existence of solutions, as we will see in the proof of Theorem 2.9. By
way of comparison, let us review what happens if we posit that limm→0+ f(x,m) is finite. Then without
loss of generality we may suppose it is zero (otherwise change f by a continuous function depending
only on x, which does not change the assumptions on its growth in m). In this case, as we analyze
the optimal control of the Hamilton-Jacobi equation (see Section 2 below), the right-hand side can be
assumed positive, which turns out to be a boon for regularity of the solution. That is, the solution turns
out to be Hölder continuous thanks to nothing more than the Lq regularity of the right-hand side (the
“control”). Such a result has been proved in [CS12] and used in [Car13b] to construct solutions of systems
of the form (1.1) for which φ is a continuous viscosity solution to the Hamilton-Jacobi equation. Since
we no longer have this assumption, we will be forced to look for solutions with lower regularity.

2 Optimal control problems

Throughout this section we study several optimal control problems: we will see in the next section that
the MFG system (1.1) is the system of optimality conditions for these problems.

2.1 Optimal control of HJ equations

Denote by K0 the set of maps φ ∈ C1([0, T ] × T
d) such that φ(T, x) = φT (x). Then define on K0 the

functional

A(φ) =

∫ T

0

∫

Td

F ∗(x,−∂tφ+H(x,Dφ))dxdt −

∫

Td

φ(0, x)dm0(x). (2.1)

Then we have our first optimal control problem.
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Problem 2.1 (Optimal control of HJ). Find infφ∈K0 A(φ).

We now look at the dual problem. Define K1 to be the set of all pairs (m,w) ∈ L1((0, T ) × T
d) ×

L1((0, T )× T
d;Rd) such that m ≥ 0 almost everywhere,

∫

Td m(t, x)dx = 1 for a.e. t ∈ (0, T ), and

∂tm+ div (w) = 0

m(0, ·) = m0(·)

in the sense of distributions. Because of the integrability assumption on w, it follows that t 7→ m(t) has
a unique representative such that

∫

m(t)φ is continuous on [0, T ] for all φ ∈ C∞(Td) (cf. [AC08]). It is
to this representative that we refer when we write m(t), and thus m(t) is well-defined for all t ∈ [0, T ].

Define a functional

B(m,w) =

∫

Td

φT (x)m(T, x)dx +

∫ T

0

∫

Td

m(t, x)L

(

x,
w(t, x)

m(t, x)

)

+ F (x,m(t, x))dxdt (2.2)

on K1. Recall that L is defined juste after (1.3). We follow the convention that

mH∗
(

x,−
w

m

)

=

{

∞ if m = 0 and w 6= 0
0 if m = 0 and w = 0

(2.3)

Since m ≥ 0, the second integral in (2.2) is well-defined in (−∞,∞] by the assumptions on F and L (see
also Remark 1.1). The first integral is well-defined and necessarily finite by the continuity of φT and the
fact that m(T, x)dx is a probability measure.

We next state the “dual problem” succinctly as

Problem 2.2 (Dual Problem). Find inf(m,w)∈K1
B(m,w).

The main result of this section is

Theorem 2.3. Problems 2.1 and 2.2 are in duality, i.e.

inf
φ∈K0

A(φ) = − min
(m,w)∈K1

B(m,w) (2.4)

Moreover, the minimum on the right-hand side is achieved by a unique pair (m,w) ∈ K1 which must

satisfy m ∈ Lq((0, T )× T
d) and w ∈ L

r′q

r′+q−1 ((0, T )× T
d).

Proof of Theorem 2.3. Proving Equation (2.4) is simply an application of the Fenchel-Rockafellar theorem
(see [ET76]) as in [CCN12] and [Car13b]. To see the rest, we suppose that (m,w) ∈ K1 minimizes B.
Since L satisfies the growth conditions (1.3) we have

∫ T

0

∫

Td

1

C

|w|r
′

mr′−1
− Cdsdt ≤

∫ T

0

∫

Td

mL
(

x,
w

m

)

dsdx. (2.5)

On the other hand, since F (x, ·) is bounded below (see Remark 1.1),

B(m,w) ≥ −C +

∫ T

0

∫

Td

mL
(

x,
w

m

)

dsdx (2.6)

for some C > 0. Since B(m,w) must be finite, it follows that
|w|r

′

mr′−1
∈ L1. Now we use the growth

conditions (1.7) on F to deduce

∫ T

0

∫

Td

|m|qdxdt ≤ C(T + 1) + C

∫ T

0

∫

Td

F (x,m)dxdt. (2.7)
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Again appealing to (1.8) we have that

B(m,w) ≥ −C +

∫ T

0

∫

Td

F (x,m)dsdx ≥ −C +
1

C

∫ T

0

∫

Td

|m|qdxdt (2.8)

for large enough C. Hence m ∈ Lq. Using Hölder’s inequality we get that w ∈ L
r′q

r′+q−1 ((0, T ) × T
d).

Uniqueness comes from the fact that F (x, ·) and L(x, ·) are strictly convex.

2.2 Relaxation of Problem 2.1

We do not expect Problem 2.1 to have a solution. For this reason we introduce a new problem on a wider
class of functions K and show in Proposition 2.6 that it is the relaxation of Problem 2.1.

Definition 2.4 (Relaxed set). The set K will be defined as the set of all pairs (φ, α) ∈ BV × L1 such
that Dφ ∈ Lr((0, T )×T

d), φ(T, ·) ≤ φT in the sense of traces, α+ ∈ Lp((0, T )×T
d), φ ∈ L∞((t, T )×T

d)
for every t ∈ (0, T ), and

− ∂tφ+H(x,Dφ) ≤ α. (2.9)

in the sense of distribution.

We remark that K is a convex subset of the space BV × L1, and that for (φ, α) ∈ K, H(x,Dφ) ∈ L1 by
the bounds in (1.2).

Problem 2.5 (Relaxed Problem). Find

inf
(φ,α)∈K

A(φ, α) = inf
(φ,α)∈K

∫ T

0

∫

Td

F ∗(x, α(t, x))dxdt −

∫

Td

φ(0, x)m0(x)dx.

Note that A(φ, α) is well-defined in (−∞,+∞] for any (φ, α) ∈ K: indeed, φ(0, ·) is well defined in L1 in
the sense of trace and, if we set K1 := maxTd F (·, 1), then we have F ∗(x, a) ≥ a−K1, so that, as α ∈ L1,

∫ T

0

∫

Td

F ∗(x, α(t, x))dxdt ≥

∫ T

0

∫

Td

α(t, x)dxdt − TK1 > −∞.

The main result of this section is the following:

Proposition 2.6. The relaxed problem 2.5 is in duality with 2.2, i.e.

inf
(φ,α)∈K

A(φ, α) = − min
(m,w)∈K1

B(m,w). (2.10)

Equivalently, the infimum appearing in Problem 2.5 is the same as that appearing in Problem 2.1.

Before proving the proposition, let us start with a key consequence of Equation (2.9):

Lemma 2.7. Suppose (φ, α) ∈ K. If (m,w) ∈ K1 is such that m ∈ Lq and mL(·, w
m ) ∈ L1, then αm is

integrable and we have
∫

Td

φ(t, x)m(t, x)dx ≤

∫

Td

φ(s, x)m(s, x)dx +

∫ s

t

∫

Td

m(τ, x)L

(

x,
w(τ, x)

m(τ, x)

)

+ α(τ, x)m(τ, x)dxdτ,

(2.11)
for almost every 0 < t < s < T . Moreover,

∫

Td

φ(0, x)m0(x)dx ≤

∫

Td

φ(t, x)m(t, x)dx +

∫ t

0

∫

Td

m(τ, x)L

(

x,
w(τ, x)

m(τ, x)

)

+ α(τ, x)m(τ, x)dxdτ,

(2.12)
∫

Td

φ(t, x)m(t, x)dx ≤

∫

Td

φT (x)m(T, x)dx +

∫ T

t

∫

Td

m(τ, x)L

(

x,
w(τ, x)

m(τ, x)

)

+ α(τ, x)m(τ, x)dxdτ

(2.13)
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for almost every t ∈ (0, T ).

Proof. We first assume that α ∈ Lp and remove this assumption at the end of the proof. We first extend
(m,w) to R×T

d by setting (m,w) = (m0, 0) on (−∞, 0)×T
d and (m,w) = (m(T ), 0) on (T,+∞)×T

d.
Note that we still have ∂tm + div w = 0 on R × T

d. Let ξ be a standard convolution kernel on R × R
d

such that ξ > 0 and let ξǫ(t, x) := ξ((t, x)/ǫ)/ǫd+1. Define mǫ := ξǫ ∗m and wǫ := ξǫ ∗ w. Then mǫ and
wǫ are C∞ smooth, mǫ > 0, and

∂tmǫ + div wǫ = 0. (2.14)

Fix t, s ∈ (0, T ) with t < s. Integrating against φ over [t, s]× T
d we have

∫

Td

φ(s)mǫ(s)− φ(t)mǫ(t)−

∫ s

t

∫

Td

∂tφmǫ + (Dφ,wǫ) = 0. (2.15)

Here φ(s) and φ(t) are functions in L1(Td) based on trace theory, ∂tφ is a signed Radon measure, and
we recall that Dφ is integrable by virtue of (φ, α) belonging to K. Note that

−

∫ s

t

∫

Td

(Dφ,wǫ) ≤

∫ s

t

∫

Td

H(x,Dφ)mǫ +mǫL

(

x,
wǫ

mǫ

)

. (2.16)

Recalling that −∂tφ+H(x,Dφ) ≤ α in distribution, we deduce

∫

Td

φ(t)mǫ(t) ≤

∫

Td

φ(s)mǫ(s) +

∫ s

t

∫

Td

mǫL

(

x,
wǫ

mǫ

)

+mǫα. (2.17)

As ǫ → 0, we have that mǫ → m in Lq((0, T ) × T
d), and in particular mǫ(τ) → m(τ) in Lq(Td) for

almost every τ ∈ (0, T ), while mǫα → mα in L1 since α ∈ Lp. Thus as φ(τ) ∈ Lp(Td) for almost every
τ ∈ (0, T ), we get

∫

φ(τ)mǫ(τ) →
∫

φ(τ)m(τ) for almost every τ ∈ (0, T ). We assume in particular that
this holds for τ = t, s. Then

∫

Td

φ(t)m(t) ≤

∫

Td

φ(s)m(s) + lim sup
ǫ→0

∫ s

t

∫

Td

mǫL

(

x,
wǫ

mǫ

)

+mα. (2.18)

To conclude, we just need to show that

lim
ǫ→0

∫ s

t

∫

Td

mǫL

(

x,
wǫ

mǫ

)

=

∫ s

t

∫

Td

mL
(

x,
w

m

)

. (2.19)

Since the map (m,w) → mL(x,w/m) is lower semicontinuous and bounded below, Fatou Lemma implies

lim inf
ǫ→0

∫ s

t

∫

Td

mǫL

(

x,
wǫ

mǫ

)

≥

∫ s

t

∫

Td

mL
(

x,
w

m

)

.

The difficult (and useful) inequality is the opposite one. We first note that
∫ s

t

∫

Td

ξǫ ∗
(

mL
(

·,
w

m

))

(x)dxdr =

∫ s

t

∫

Td

ξǫ ∗
(

mL
(

x,
w

m

))

(x)dxdr +Rǫ (2.20)

where Rǫ =

∫ s

t

∫

Td

ζǫ(r, x)dxdr, with

ζǫ(r, x) :=

∫

R

∫

Rd

ξǫ(r − τ, x− y)

(

m(τ, y)L

(

y,
w(τ, y)

m(τ, y)

)

−m(τ, y)L

(

x,
w(τ, y)

m(τ, y)

))

dydτ

As ǫ→ 0, the left-hand side of (2.20) converges to

∫ s

t

∫

Td

mL
(

·,
w

m

)

. On another hand, by the convexity

of the map (m,w) → mL(x,w/m), we have

∫ s

t

∫

Td

ξǫ ∗
(

mL
(

x,
w

m

))

(x)dxdr ≥

∫ s

t

∫

Td

mǫL

(

x,
wǫ

mǫ

)

.
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So we are left to show that Rǫ → 0. Note that ζǫ → 0 a.e. The bounds on L indicate

|ζǫ(r, x)| ≤ 2C

∫

R

∫

Rd

ξǫ(r − τ, x− y)

(

|w(τ, y)|r
′

mr′−1(τ, y)
+ 1

)

dydτ

where the right-hand side converges in L1 to 2C |w|r
′

mr′−1 +1 since this map is in L1 by the proof of Theorem
2.3. By the Dominate Convergence Theorem we conclude that Rǫ → 0 and (2.19) holds.

We now want to extend this argument to the case where t = 0 or s = T . For the case, s = T , note that

∫

Td

φ(t)mǫ(t) ≤

∫

Td

φTmǫ(T ) +

∫ T

t

∫

Td

mǫL

(

x,
wǫ

mǫ

)

+mǫα.

It suffices to show that
∫

Td

φTmǫ(T ) →

∫

Td

φTm(T ), ǫ→ 0, (2.21)

and the rest of the argument follows as before. We can choose a sequence sn → T such that for a fixed
n, mǫ(sn) → m(sn) in L

q(Td) as ǫ→ 0. Then recall that mǫ and m are both weakly continuous in time,
and in particular t 7→

∫

φTm(t) is continuous. Since mǫ is a regularization of m by convolution, it follows
that t 7→

∫

φTmǫ(t) is continuous with modulus of continuity independent of ǫ. Let us examine the three
terms on the right-hand side of the following estimate:

∣

∣

∣

∣

∫

Td

φTmǫ(T )−

∫

Td

φTm(T )

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Td

φTmǫ(T )−

∫

Td

φTmǫ(sn)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Td

φTmǫ(sn)−

∫

Td

φTm(sn)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Td

φTm(sn)−

∫

Td

φTm(T )

∣

∣

∣

∣

.

The first and third terms can be made small by choosing n large enough, independent of ǫ. The second
term can then be made small be choosing ǫ small, which yields the desired result.

Now we consider the case t = 0. To do this we are going to choose a different smooth approximation of
m and w. Let η : R → (0,∞) and ψ : Rd → (0,∞) be convolution kernels, with ηǫ(t) = ǫ−1η(t/ǫ) and
ψδ(x) = δ−dψ(x/δ). Let ξǫ,δ(t, x) = ηǫ(t)ψδ(x) and define mǫ,δ := ξǫ,δ ∗m and wǫ,δ := ξǫ,δ ∗ w. We have
that

∂tmǫ,δ + div wǫ,δ = 0,

and so we obtain, as before,

∫

Td

φ(0)mǫ,δ(0) ≤

∫

Td

φ(t)mǫ,δ(t) +

∫ t

0

∫

Td

mǫ,δL

(

x,
wǫ,δ

mǫ,δ

)

+mǫ,δα.

As ǫ, δ both tend to zero, we have that mǫ,δ → m,wǫ,δ → w in Lq. So the same arguments as above hold,
if we can just show that

∫

Td

φ(0)mǫ,δ(0) →

∫

Td

φ(0)m0. (2.22)

on some subsequence ǫ, δ → 0. Our first observation is that

|mǫ,δ(0, x)−m0(x)| ≤

∣

∣

∣

∣

∫∫

ηǫ(−s)ψδ(x − y)[m(s, y)−m0(y)]dyds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

ηǫ(−s)ψδ(x− y)[m0(y)−m0(x)]dyds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫∫

ηǫ(−s)ψδ(x − y)[m(s, y)−m0(y)]dyds

∣

∣

∣

∣

+ ω(δ),
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where ω is the modulus of continuity of m0. Next, we observe that

∣

∣

∣

∣

∫∫

ηǫ(−s)ψδ(x− y)[m(s, y)−m0(y)]dyds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

ηǫ(−s)ψδ(x− y)

∫ s

0

∂tm(τ, y)dτdyds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ǫ

−ǫ

∫

Td

∫ s

0

ηǫ(−s)ψδ(x − y)div w(τ, y)dτdyds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ǫ

−ǫ

∫

Td

∫ s

0

ηǫ(−s)Dψδ(x − y)w(τ, y)dτdyds

∣

∣

∣

∣

≤
1

δ2d

∫ ǫ

−ǫ

∫

Td

∫ ǫ

0

ηǫ(−s)

∣

∣

∣

∣

Dψ

(

x− y

δ

)∣

∣

∣

∣

|w(τ, y)|dτdyds

≤
C

δ2d

∫ ǫ

0

∫

Td

|w(τ, y)|dτdy.

Since w is integrable, we can take ǫ = ǫ(δ) small enough relative to δ to get mǫ(δ),δ(0) → m0 uniformly
as δ → 0. It follows that

∫

φ(0)mǫ,δ(0) →
∫

φ(0)m0, and the rest of the argument proceeds as above.

It now remains to remove the assumption α ∈ Lp. For M > 0 large, let us set αM = α ∨ (−M). Then
the pair (φ, αM ) belongs to K and αM ∈ Lp since α+ ∈ Lp. So we can apply the above results to this
pair. In particular,

∫

Td

φ(0, x)m0(x)dx ≤

∫

Td

φT (x)m(T, x)dx +

∫ T

0

∫

Td

m(τ, x)L

(

x,
w(τ, x)

m(τ, x)

)

+ αM (τ, x)m(τ, x)dxdτ.

Hence

∫ T

0

∫

Td

(α− ∧ M)m ≤ C for any M , which shows that (α−)m is integrable. Then αm is also

integrable and we can easily complete the proof of (2.11), (2.12) and (2.13) by approximation.

Proof of Proposition 2.6. Since for φ ∈ K0 we have that (φ,−∂tφ+H(x,Dφ)) ∈ K, it follows that
inf(φ,α)∈K A(φ, α) ≤ infφ∈K0 A(φ). It therefore suffices to prove the opposite inequality. Equivalently, let
(m,w) be a minimizer of the dual problem 2.2; it suffices to show by Theorem 2.2 that for (φ, α) ∈ K,
we have A(φ, α) ≥ −B(m,w). As we will see below, this essentially follows from Lemma 2.7.

From Lemma 2.7, αm is integrable and we have

∫ T

0

∫

Td

F ∗(x, α(t, x)) + F (x,m(t, x))dxdt ≥

∫∫

αm

and
∫∫

αm ≥ −

∫∫

mL
(

x,
w

m

)

+

∫

Td

φ(0)m0 − φTm(T ).

Putting the above estimates together,

A(φ, α) =

∫ T

0

∫

Td

F ∗(x, α(t, x))dxdt −

∫

Td

φ(0, x)m0(x)dx

≥ −

∫ T

0

∫

Td

F (x,m(t, x)) +m(t, x)L

(

x,
w(t, x)

m(t, x)

)

dxdt−

∫

Td

φT (x)m(T, x)dx

= −B(m,w).

We complete this part by a simple remark concerning the case of equality in (2.11):
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Corollary 2.8. Assume that (φ, α) and (m,w) are as in Lemma 2.7 and that

∫

Td

φ(0, x)m0(x)dx =

∫

Td

φT (x)m(T, x)dx+

∫ T

0

∫

Td

m(τ, x)L

(

x,
w(τ, x)

m(τ, x)

)

+α(τ, x)m(τ, x)dxdτ. (2.23)

Then −∂tφ
ac(t, x)+H(x,Dφ(t, x)) = α(t, x) for m−a.e. (t, x) ∈ (0, T )×T

d, where ∂tφ
ac is the absolutely

continuous part of the measure ∂tφ.

Proof. Let ∂tφ
s be the singular part of the measure ∂tφ. Since inequality −∂tφ ≤ −H(x,Du)+α holds in

the sense of distribution and the right-hand side of the inequality belongs to L1, ∂tφ
s ≥ 0. Assume that the

result claimed in the corollary is false. Then there exists δ > 0 such that −∂tφ
ac(t, x)+H(x,Dφ(t, x)) ≤

α(t, x) − δ in a set E in which m ≥ δ a.e. and such that |E| ≥ δ. If we set αδ := α − δ1E , then, as
∂tφ

s ≥ 0, one has −∂tφ+H(x,Du) ≤ αδ, so that the pair (φ, αδ) still belongs to K. Lemma 2.7 implies
that

∫

Td

φ(0, x)m0(x)dx ≤

∫

Td

φT (x)m(T, x)dx +

∫ T

0

∫

Td

m(τ, x)L

(

x,
w(τ, x)

m(τ, x)

)

+ αδ(τ, x)m(τ, x)dxdτ,

where
∫ T

0

∫

Td

αδ(τ, x)m(τ, x)dxdτ ≤

∫ T

0

∫

Td

α(τ, x)m(τ, x)dxdτ − δ3.

This contradicts equality (2.23).

2.3 Existence of minimizers of the relaxed problem

We now explain that the relaxed problem has a solution:

Theorem 2.9. Under our structure conditions, Problem 2.5 has a minimizer (φ, α) ∈ K.

Before actually proving the result, we need pointwise estimates on solutions of the Hamilton-Jacobi
equation.

Lemma 2.10. For any smooth subsolution of −∂tφ +H(x,Dφ) ≤ α, for 0 ≤ t1 < t2 ≤ T and x, y ∈ T
d

we have

φ(t1, x) ≤ φ(t2, y) + C
[

|x− y|r
′

(t2 − t1)
1−r′ +

[

(t2 − t1)
ν ∧ 1 + T 1/q

]

(‖α+‖p + 1)
]

(2.24)

where C does not depend on T and

ν :=
r − d(q − 1)

d(q − 1)(r − 1) + rq
. (2.25)

Note that, by assumption (1.5), ν is positive.

Proof. Fix β ∈ (1/r, 1
d(q−1) ) to be specified later. Let x, y ∈ T

d and 0 ≤ t1 < t2 ≤ T such that t2− t1 ≤ 1

(this assumption is removed at the end of the proof), and let γ be an absolutely continuous path such
that

• γ(t1) = x,

• γ(t2) = y, and

• Cγ :=
∫ t2
t1

|γ̇(s)|r
′

ds <∞.
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For instance, we can choose γ(s) = x+ θ(s− t), where θ =
x− y

t2 − t1
; this example gives the minimial value

of Cγ at |x− y|r
′

(t2 − t1)
1−r′ .

For any σ ∈ R
d with |σ| ≤ 1 define the arc

xσ(s) =

{

γ(s) + σ(s− t1)
β if s ∈ [t1,

t1+t2
2 ]

γ(s) + σ(t2 − s)β if s ∈ [ t1+t2
2 , t2]

(2.26)

Then

d

ds

[

φ(s, xσ(s))−

∫ t2

s

L(xσ(τ), ẋσ(τ))dτ

]

= ∂tφ(s, xσ(s)) +Dφ(s, xσ(s)) · ẋσ(s) + L(xσ(s), ẋσ)

≥ ∂tφ(s, xσ(s)) −H(xσ(s), Dφ(s, xσ(s))) ≥ −α+(s, xσ(s)).

Integrating over [t1, t2]×B1 we get

φ(t1, x) ≤ φ(t2, y) +
1

|B1|

∫

B1

∫ t2

t1

[L(xσ(s), ẋσ(s)) + α+(s, xσ))]dsdσ. (2.27)

By Assumption (1.3) we have

1

|B1|

∫

B1

∫ t2

t1

L(xσ(s), ẋσ(s))dsdσ ≤ C

[
∫

B1

∫ t2

t1

|ẋσ(s)|
r′dsdσ + (t2 − t1)

]

.

We compute

∫

B1

∫

t1+t2
2

t1

|ẋσ(s)|
r′dsdσ =

∫

B1

∫

t1+t2
2

t1

|γ̇(s) + βr′σ(s− t1)
β−1|r

′

dsdσ

≤ C(Cγ + βr′(t2 − t1)
1−r′(1−β))

where 1− r′(1 − β) > 0. In like manner we obtain

∫

B1

∫ t2

t1+t2
2

|ẋσ(s)|
r′dsdσ ≤ C(Cγ + βr′(t2 − t1)

1−r′(1−β)), (2.28)

from which we deduce

1

|B1|

∫

B1

∫ t2

t1

L(xσ(s), ẋσ(s))dsdσ ≤ C(Cγ + βr′(t2 − t1)
1−r′(1−β)). (2.29)

On the other hand, using Hölder, we get

∫

B1

∫

t1+t2
2

t1

α+(s, xσ(s))dsdσ ≤

∫

t1+t2
2

t1

∫

B1

α+(s, x+ θ(τ − t1) + σ(s− t1)
β)dσds

≤

∫

t1+t2
2

t1

∫

B(x+θ(τ−t1);(s−t1)β)

(s− t1)
−dβα+(s, ρ)dρds

≤

[

∫

t1+t2
2

t1

C(s− t1)
−dβ(q−1)ds

]

1
q

‖α+‖p

≤ C(t2 − t1)
(1−dβ(q−1))/q‖α+‖p.

Applying the same argument on the time interval [ t1+t2
2 , t2] and summing we can conclude

1

|B1|

∫

B1

∫ t2

t1

α(s, xσ(s))dsdσ ≤ C(t2 − t1)
(1−dβ(q−1))/q‖α+‖p. (2.30)
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We now specify that

β :=
q(r′ − 1) + 1

d(q − 1) + r′q
=

q + r − 1

d(q − 1)(r − 1) + rq
. (2.31)

Note that β ∈ (1/r, 1
d(q−1) ) and

1− dβ(q − 1)

q
= 1− r′(1− β) =

r − d(q − 1)

d(q − 1)(r − 1) + rq
= ν. (2.32)

It follows from the above argument that

φ(t1, x) ≤ φ(t2, y) + C[Cγ + (t2 − t1)
ν(‖α+‖p + 1)]. (2.33)

Taking the particular example of γ(s) = x + θ(s − t), where θ =
x− y

t2 − t1
, we conclude with Equation

(2.24).

It remains to dispose of the assumption t2 − t1 ≤ 1: if t2 − t1 ≥ 1, we can argue in the same way, just
changing the family of paths into

xσ(s) =







γ(s) + σ(s− t1)
β if s ∈ [t1, t1 + 1/2]

γ(s) + σ(1/2)β if s ∈ [t1 + 1/2, t2 − 1/2]
γ(s) + σ(t2 − s)β if s ∈ [t2 − 1/2, t2]

Proof of Theorem 2.9. Let φn ∈ K0 be minimizing sequence, that is, suppose

∫ T

0

∫

Td

F ∗(x, αn)dxdt −

∫

Td

φn(0, x)m0(x)dx → inf
φ∈K0

A(φ) (2.34)

where αn := −∂tφn +H(x,Dφn).

Step 1. We need to prove that (αn) is bounded in an L1 sense. First note that

C ≥

∫ T

0

∫

Td

F ∗(x, αn)dxdt −

∫

Td

φn(0, x)m0(x)dx. (2.35)

By the bounds on F ∗ in Equation (1.8) we have

∫ T

0

∫

Td

F ∗(x, αn)dxdt ≥
1

pC
‖(αn)+‖

p
p +

∫∫

αn<0

F ∗(x,−(αn)−)dxdt − C, (2.36)

while by Lemma 2.10, there is a constant C > 0 such that

−

∫

Td

φn(0, x)m0(x)dx ≥ −C‖(αn)+‖p − C. (2.37)

Let ǫ > 0 to be chosen later. Since F (·, ǫ) is continuous on T
d, we let Kǫ be its supremum. We have

F ∗(x, a) ≥ ǫa−Kǫ by definition of Fenchel conjugate. So from Equation (2.36) we get

∫ T

0

∫

Td

F ∗(x, αn)dxdt ≥
1

pC
‖(αn)+‖

p
p − ǫ

∫ T

0

∫

Td

(αn)−dxdt−KǫT − C. (2.38)

Now taking into account (1.2) we have

(αn)− = (αn)+ + ∂tφn −H(x, φn) ≤ (αn)+ + ∂tφn + C, (2.39)
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and upon integration we get

1

C

∫ T

0

∫

Td

(αn)−dxdt ≤

∫ T

0

∫

Td

(αn)−m0dxdt

≤

∫ T

0

∫

Td

(αn)+m0dxdt+

∫

Td

φTm0 − φn(0)m0dx + CT

≤ C‖(αn)+‖p + C(T + 1)−

∫ T

0

∫

Td

F ∗(x, αn)dxdt,

where we have used (2.35) for the last inequality. Substituting into (2.38) we get

(1− ǫC)

∫ T

0

∫

Td

F ∗(x, αn)dxdt ≥
1

pC
‖(αn)+‖

p
p − ǫC2‖(αn)+‖p −KǫT − ǫC2(T + 1). (2.40)

Take ǫ > 0 sufficiently small. Combining (2.40) and (2.37) and substituting into (2.35) we get

C ≥
1

pC
‖(αn)+‖

p
p − C‖(αn)+‖p − CKǫT (2.41)

where C is some large constant. It follows that (αn)+ is uniformly bounded in Lp.

To show that (αn)− is uniformly bounded in L1, we will use (2.39). First, for some constant C large
enough and any ǫ > 0 we have

C ≥

∫ T

0

∫

Td

F ∗(x, αn)dxdt −

∫

Td

φn(0, x)m0(x)dx

≥ −ǫ

∫ T

0

∫

Td

(αn)−dxdt−KǫT −

∫

Td

φn(0, x)m0(x)dx

≥ −ǫC‖(αn)+‖p − ǫC(T + 1)−KǫT − (1− ǫC)

∫

Td

φn(0, x)m0(x)dx.

It follows that −

∫

Td

φn(0)m0 is uniformly bounded above. We make the stronger claim that ‖φn(0)‖L1(Td)

is uniformly bounded. By Lemma 2.10,

φn(t, x) ≤ φT (x) + CT ν(‖(αn)+‖p + 1) ≤ C,

so φn is bounded above. Then using 1/C ≤ m0 ≤ C we find
∫

Td

|φn(0)| ≤

∫

Td

(φn(0))− + C ≤ C

∫

Td

(φn(0))−m0 + C ≤ −C

∫

Td

φn(0)m0 + C ≤ C,

as desired. Now Equation (2.39) implies

∫ T

0

∫

Td

(αn)− ≤ C + C‖(αn)+‖p +

∫

Td

(φT − φn(0)) (2.42)

which proves that (αn)− is uniformly bounded in L1. We conclude that (αn) is bounded in L1.

Step 2. We would like to show next that φn is uniformly bounded in L1. We already have from (2.24)
that φn has a uniform upper-bound. On the other hand, one has from the same equation that

φn(t, x) ≥ φn(0, x)− Ctν(‖(αn)+‖p + 1) ≥ φn(0, x)− C.

As ‖φn(0)‖1 is bounded, this implies that sup
t∈[0,T ]

‖φn(t)‖1 ≤ C.

Step 3. We want to take a modified version of αn which has a weak limit in L1 but also still minimizes
the target functional. Since (αn)− is bounded in L1, by [KV08] we can pass to a subsequence on which
(αn)− = βn + rn, where
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• βn = (αn)−1{(αn)−≤ln} where ln → ∞,

• (βn) is uniformly integrable,

• βnrn = 0, rn ≥ 0 and the measure of {rn > 0} goes to zero.

Observe that [0, T ] × T
d can be decomposed as {αn ≥ 0} ∪ {βn > 0} ∪ {rn > 0}, where the union is

disjoint and the set {rn > 0} coincides with {(αn)− > ln}. Define α̃n := αn on {rn = 0} and α̃n := 1
otherwise. We have

∫ T

0

∫

Td

F ∗(x, αn) =

∫∫

{αn≥0}

F ∗(x, (αn)+) +

∫∫

{βn>0}

F ∗(x,−βn) +

∫∫

{rn>0}

F ∗(x,−rn)

=

∫ T

0

∫

Td

F ∗(x, α̃n) +

∫∫

{rn>0}

(F ∗(x,−rn)− F ∗(x, 1)). (2.43)

To see that (φn, α̃n) is also a minimizing sequence in K, it suffices to show that

lim inf
n→∞

∫∫

{rn>0}

F ∗(x,−rn)− F ∗(x, 1) = 0.

For ǫ > 0, let us set as usual Kǫ = maxTd F (·, ǫ). Then

∫∫

{rn>0}

F ∗(x,−rn)− F ∗(x, 1) ≥

∫∫

{(αn)−>ln}

(−ǫrn −Kǫ −max
Td

F ∗(·, 1))

≥ −ǫ‖αn‖L1 − (Kǫ + C)
1

ln

∫∫

{(αn)−>ln}

(αn)−

≥ −(ǫ+
Kǫ + C

ln
)‖αn‖L1

Since (αn) is bounded in L1, ln → ∞, and ǫ > 0 is arbitrary, the claim follows. We have shown that
(φn, α̃n) is a minimizing sequence of A in K with (α̃n) uniformly integrable.

Step 4. We want to show that (φn) is bounded in BV , and that its weak∗ limit has the desired regularity.
First of all,

∫ T

0

∫

TN

H(x,Dφn(t, x))dxdt =

∫ T

0

∫

TN

∂tφn(t, x) + αn(t, x)dxdt

≤

∫

TN

φT (x) − φn(0, x)dx + ‖αn‖1

which proves by (1.2) that Dφn is uniformly bounded in Lr′ and H(x,Dφn) is uniformly bounded in
L1. We then have that ∂tφn = H(x,Dφn) − αn is bounded in L1 as well. Thus φn is bounded in BV
and we have some φ ∈ BV for which φn → φ in L1, and (∂tφn, Dφn) ⇀ (∂tφ,Dφ) weakly in the sense
of measures. Finally, we prove that φ ∈ L∞(t, T )× T

d) for almost every t ∈ [0, T ]. Indeed, we already
proved uniform upper bounds on φn, which thus apply to φ. On the other hand,

−φn(t, x) = −

∫

Td

φn(t, x)m0(y)dy

≤ −

∫

Td

φn(0, y)m0(y)dy + Ct1−r′
∫

Td

|y − x|r
′

m0(y)dy + Ctν(‖(αn)+‖p + 1)

which shows that φn is uniformly bounded below on [t, T ]× T
d for all t > 0.

Step 5. Finally, we pass to the limit and verify the existence of a minimizer. Since α̃n is uniformly
integrable, by the Dunford-Pettis theorem there exists α ∈ L1 such that (up to a subsequence) α̃n ⇀ α
weakly in L1. Since

− ∂tφn +H(x,Dφn) ≤ α̃n (2.44)

14



for each n, we pass to the limit and get

− ∂tφ+H(x,Dφ) ≤ α (2.45)

in the sense of distributions. Finally the terminal condition holds, thanks to Lemma 2.10.

It remains to check that (φ, α) minimizes (2.5). We just proved that (φ, α) ∈ K. By convexity of F ∗ and
weak convergence of (α̃n),

∫ T

0

∫

Td

F ∗(x, α)dxdt ≤ lim inf
n

∫ T

0

∫

Td

F ∗(x, α̃n)dxdt.

Fix ǫ > 0 small. By (2.24),

−

∫

Td

φn(0)m0 ≥ −
1

ǫ

∫ ǫ

0

∫

Td

φn(s, x)m0(x)dxds − Cǫν .

So, by L1 convergence of (φn),

lim inf
n

−

∫

Td

φn(0)m0 ≥ −
1

ǫ

∫ ǫ

0

∫

Td

φ(x, s)m0(x)dxds − Cǫν .

Recalling (2.34) we finally have

∫ T

0

∫

Td

F ∗(x, α)dxdt −
1

ǫ

∫ ǫ

0

∫

Td

φ(x, s)m0(x)dxds − Cǫν ≤ inf
φ∈K0

A(φ),

which, after letting ǫ→ 0, implies the desired result.

A straightforward consequence of the proof is the following approximation of the optimal pair (φ, α) of
Problem 2.5.

Corollary 2.11. There exists (φ, α) ∈ K which is optimal for Problem 2.5 and for which there exists
a sequence of maps (φn, αn) ∈ K, such that, for each n, φn is C1, (φn) is bounded in BV and in
L∞([t, T ] × T

d) for any t ∈ (0, T ), (φn) converges to φ in L1 while (Dφn) converge to (Dφ) weakly in
Lr, (αn

+) is bounded in Lp, (αn) converges weakly in L1 to α while

∫ T

0

∫

Td

F ∗(x, αn)dxdt →

∫ T

0

∫

Td

F ∗(x, α)dxdt.

3 Weak solutions

The purpose of this section is to define and characterize the solutions of System (1.1). It is divided into
three subsections. We define weak solutions in Section 3.1. Then we prove their existence and (partial)
uniqueness in Section 3.2. Finally, we show that the solution satisfies a classical energy estimate (Section
3.3). The energy estimate will be applied later in Section 5 to study long time average behavior.

3.1 Definition of weak solutions

Definition 3.1. A pair (φ,m) ∈ BV ((0, T )×T
d)×Lq((0, T )×T

d) is called a weak solution to the system
(1.1) if it satisfies the following conditions.

1. Dφ ∈ Lr and the maps mf(x,m), mH∗ (x,−DpH(x,Dφ)) and mDpH(x,Dφ) are integrable,
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2. φ satisfies a first-order Hamilton-Jacobi inequality

− ∂tφ+H(x,Dφ) ≤ f(x,m) (3.1)

in the sense of distributions, the boundary condition φ(T, ·) ≤ φT in the sense of trace and the
following equality

∫ T

0

∫

Td

m(t, x) (H(x,Dφ(t, x)) − 〈Dφ(t, x), DpH(x,Dφ(t, x))〉 − f(x,m(t, x))) dxdt

=

∫

Td

(φT (x)m(T, x)) − φ(0, x)m0(x))dx (3.2)

3. m satisfies the continuity equation

∂tm− div (mDpH(x,Dφ)) = 0 in (0, T )× T
d, m(0) = m0 (3.3)

in the sense of distributions.

Remark 3.2. From Corollary 2.8, we have by (3.2) that

− ∂tφ
ac(t, x) +H(x,Dφ(t, x)) = f(x,m(t, x)) m− a.e. in (0, T )× T

d, (3.4)

where ∂tφ
ac is the absolutely continuous part of the measure ∂tφ.

Remark 3.3. Again in view of (3.2) and Lemma 2.7, inequalities (2.11) and (2.12) are actually equalities
for the solution (φ, α := f(·,m)).

Let us make a few comments on the definition of weak solution, which draws its inspiration from [CCN12]
and is in the same vein as [Car13b, Gra13]. First, we mention that the integrals in (3.2) are well-defined:
because mf(·,m) and mH∗(·,−DpH(x,Dφ)) are integrable, so the fact that m ≥ 0 and the definition of
Fenchel conjugate prove that the left-hand side is integrable, while the right-hand side is integrable by
assumptions on φT and m0 (namely that they are bounded). We note in particular that f(·,m) is in Lp

be the growth assumptions on f (1.7) and that H(·, Dφ) is integrable by the growth assumptions on the
Hamiltonian (1.2) and the fact that Dφ ∈ Lr. This gives meaning to Equation (3.1).

Next, we comment on the above definition in relation to System (1.1). The continuity equation is
naturally dealt with in part 3 of Definition 3.1. On the other hand, the Hamilton-Jacobi equation is more
difficult to interpret, as pointed out in the references [CCN12, Car13b, Gra13]. In particular, we cannot
expect the Hamilton-Jacobi equation to hold in the viscosity sense, since neither φ nor m is continuous.
Equation (3.4) is close to giving an “almost everywhere” sense to the Hamilton-Jacobi equation, but only
on {m > 0} and for the absolutely continuous part of ∂tφ.

In practice it is often useful to know that a solution can be approximated by smoother maps. This is the
aim of the next definition:
Definition 3.4. We say that a weak solution (φ,m) to the MFG system is “good” if there exists a
sequence (φn, αn) such that for each n, φn is C1, (φn) is bounded in BV and in L∞([t, T ]× T

d) for any
t ∈ (0, T ), (φn) converges to φ in L1 while (Dφn) converge to (Dφ) weakly in Lr, (αn

+) is bounded in Lp,
(αn) converges weakly in L1 to α while

∫ T

0

∫

Td

F ∗(x, αn)dxdt →

∫ T

0

∫

Td

F ∗(x, α)dxdt.

3.2 Existence and uniqueness of weak solutions

The main result of this section is the following.
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Theorem 3.5 (Existence and (partial) uniqueness of weak solutions). (i) If (m,w) ∈ K1 is a minimizer
of Problem 2.2 and (φ, α) ∈ K̃ is a minimizer of Problem 2.5, then (φ,m) is a weak solution of (1.1) and
α(t, x) = f(x,m(t, x)) almost everywhere.

(ii) Conversely, if (φ,m) is a weak solution of (1.1), then there exist functions w,α such that (φ, α) ∈ K
is a minimizer of Problem 2.5 and (m,w) ∈ K1 is a minimizer of Problem 2.2.

(iii) If (φ,m) and (φ′,m′) are both weak solutions to (1.1), then m = m′ almost everywhere while φ = φ′

almost everywhere in the set {m > 0}.

Remark 3.6. The existence of a minimizer (φ, α) ∈ K of Problem 2.5 such that φ ∈ L∞([t, T ]×T
d) for

any t ∈ (0, T ) is guaranteed by Theorem 3.5. Moreover, Corollary 2.11 states that there exists “good”
solutions.

Remark 3.7. If we assume that f is bounded below, then following [Car13b] one can show the existence
of a solution (φ,m) such that φ is continuous and satisfies the terminal condition φ(T, ·) = φT .

Proof. (i) Step 1. Suppose (m,w) ∈ K1 is a minimizer of Problem 2.2 and (φ, α) ∈ K is a minimizer of
Problem 2.5. By Proposition 2.6 we have

∫ T

0

∫

TN

F ∗(x, α) + F (x,m) +mL
(

x,
w

m

)

dxdt+

∫

TN

φTm(T )− φ(0)m0dx = 0. (3.5)

We claim that α = f(x,m). In general

F ∗(x, α(t, x)) + F (x,m(t, x)) − α(t, x)m(t, x) ≥ 0, (3.6)

so that
∫ T

0

∫

TN

α(t, x)m(t, x) +mL
(

x,
w

m

)

dxdt +

∫

TN

φTm(T )− φ(0)m0dx ≤ 0.

Using Lemma 2.7, this inequality has to be an equality and therefore the inequality in Equation (3.6) is
in fact equality almost everywhere: hence, we have both

α(t, x) = f(x,m(t, x)) (3.7)

almost everywhere and

∫ T

0

∫

TN

αm+mL
(

x,
w

m

)

dxdt +

∫

TN

φTm(T )− φ(0)m0dx = 0. (3.8)

Applying Equations (3.7) and (3.8) to Equation (2.11) yields (3.2). Moreover, considering that (φ, α) ∈ K
and Equation (3.7), we have −∂tφ +H(x,Dφ) ≤ f(x,m) in distribution and φ(T ) ≤ φT in the sense of
trace.

Step 2. We wish to show that (3.3) holds. We know that

∂tm+ div w = 0 (3.9)

in distribution. It is enough to show therefore that

w = −mDpH(x,Dφ), (3.10)

or equivalently that

− 〈w(t, x), Dφ(t, x)〉 = m(t, x)H(x,Dφ(t, x)) +m(t, x)L

(

x,
w(t, x)

m(t, x)

)

(3.11)

almost everywhere.
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Let mδ = mǫ(δ),δ be the smooth approximation of m obtained in the proof of Lemma 2.7 by convolution,
and define wδ to be the analogous smooth approximation of w. Since −∂tφ+H(x,Dφ) ≤ α in distribution,
we have

0 ≤

∫∫

mH(x,Dφ) +mL
(

x,
w

m

)

+ 〈w,Dφ〉

≤ lim inf
δ→0

∫∫

mδH(x,Dφ) +mL
(

x,
w

m

)

+ 〈wδ , Dφ〉

≤ lim inf
δ→0

∫∫

(∂tφ+ α)mδ +mL
(

x,
w

m

)

− (div wδ)φ

using Fatou’s Lemma in the second line. Since mδ, wδ are obtained through convolution we have

∂tmδ + div wδ = 0, (3.12)

hence

0 ≤

∫∫

mH(x,Dφ) +mL
(

x,
w

m

)

+ 〈w,Dφ〉

≤ lim inf
δ→0

∫∫

∂tφmδ + φ∂tmδ + αmδ +mL
(

x,
w

m

)

= lim inf
δ→0

∫

Td

φ(T )mδ(T )− φ(0)mδ(0) +

∫∫

αmδ +mL
(

x,
w

m

)

The proof of Lemma 2.7 shows that

lim
δ→0

∫

Td

φ(T )mδ(T )− φ(0)mδ(0) ≤

∫

Td

φTm(T )− φ(0)m0. (3.13)

On the other hand, mδ → m in Lq, but α is not necessarily Lp. We can use αM := α ∨ (−M) (where M
is large) as an upper bound. Since αM ∈ Lp, we can let δ → 0 to get:

0 ≤

∫∫

mH(x,Dφ)+mL
(

x,
w

m

)

+ 〈w,Dφ〉 ≤

∫

Td

φTm(T )−φ(0)m0+

∫∫

αMm+mL
(

x,
w

m

)

. (3.14)

The next step is to let M → ∞. Note that αMm → αm and |αMm| ≤ |αm| = |α|m. Recall that αm is
integrable from the proof of Lemma 2.7. Hence by the dominated convergence theorem

∫∫

αMm→
∫∫

αm
and we have

0 ≤

∫∫

mH(x,Dφ)+mL
(

x,
w

m

)

+〈w,Dφ〉 ≤

∫

Td

φTm(T )−φ(0)m0+

∫∫

αm+mL
(

x,
w

m

)

= 0 (3.15)

by Equation (3.8). This completes Part (i) of Theorem 3.5.

(ii) Suppose now that (φ,m) is a weak solution of (1.1). Set w = −mDpH(x,Dφ) and α(t, x) =
f(x,m(t, x)). By definition of weak solution α ∈ L1. Moreover, since m ∈ Lq and f is increasing in
m, it follows by growth condition (1.7) that α+ ∈ Lp. We thus have that (φ, α) ∈ K, and (m,w) ∈ K1.
We want to show that (φ, α) minimizes A and (m,w) minimizes B.

Begin with (φ, α). Let (φ′, α′) ∈ K. By the convexity of F in the second variable, we have

A(φ′, α′) =

∫ T

0

∫

Td

F ∗(x, α′(t, x))dxdt −

∫

Td

φ′(0, x)m0(x)dx

≥

∫ T

0

∫

Td

F ∗(x, α(t, x)) + ∂αF
∗(x, α(t, x))(α′(t, x)− α(t, x))dxdt −

∫

Td

φ′(0, x)m0(x)dx

≥

∫ T

0

∫

Td

F ∗(x, α(t, x)) +m(t, x)(α′(t, x)− α(t, x))dxdt −

∫

Td

φ′(0, x)m0(x)dx,
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where α′m and αm both belong to L1 thanks to Lemma 2.7. Using Equation (3.2) we have
∫∫

mα = −

∫∫

mL
(

x,
w

m

)

+

∫

Td

φ(0)m0 − φTm(T ). (3.16)

On the other hand, from Lemma 2.7 we have
∫∫

mα′ ≥ −

∫∫

mL
(

x,
w

m

)

+

∫

Td

φ′(0)m0 − φTm(T ). (3.17)

Substituting into the previous estimate, we get

A(φ′, α′) ≥

∫ T

0

∫

Td

F ∗(x, α(t, x))dxdt −

∫

Td

φ(0, x)m0(x)dx = A(φ, α),

and (φ, α) is a minimizer of A.

The argument for (m,w) is similar. Let (m′, w′) minimize B. Then because F is convex in the second
variable, we have

B(m′, w′) =

∫

Td

φTm
′(T ) +

∫∫

m′L

(

x,
w′

m′

)

+ F (x,m′)

≥

∫

Td

φTm
′(T ) +

∫∫

m′L

(

x,
w′

m′

)

+ F (x,m) + f(x,m)(m′ −m)

=

∫

Td

φTm
′(T ) +

∫∫

m′L

(

x,
w′

m′

)

+ F (x,m) + α(m′ −m).

Now we have just shown that (φ, α) minimizes A. So by part (i), we have that (φ,m′) is a weak solution
of (1.1), and in particular

∫∫

αm′ +m′L

(

x,
w′

m′

)

+

∫

Td

φTm
′(T ) =

∫

Td

φ(0)m0. (3.18)

Combine this with (3.16) to get

B(m′, w′) ≥

∫

Td

φTm(T ) +

∫∫

mL
(

x,
w

m

)

+ F (x,m) = B(m,w), (3.19)

as desired. This completes the proof of part (ii) of Theorem 3.5.

(iii) The proof of uniqueness follows along the same lines Theorem 3.2. (iii) in [Gra13], so we omit it.

3.3 An energy inequality

The following energy inequality is standard for solutions of MFG systems and goes back to the work of
Lasry and Lions [LL07].

Proposition 3.8. Let (φ1,m1) and (φ2,m2) be two weak solutions of the MFG system with respective
boundary conditions (m1

0, φ
1
f ) and (m2

0, φ
2
f ). We assume that (φ1,m1) and (φ2,m2) are “good” solutions

in the sense of Definition 3.4. Then, for almost all 0 ≤ t1 ≤ t2 ≤ T ,

∫ t2

t1

∫

Td

m2
(

H(x,Dφ1)−H(x,Dφ2)− 〈DpH(x,Dφ2), D(φ1 − φ2)〉
)

dxdt

+

∫ t2

t1

∫

Td

m1
(

H(x,Dφ2)−H(x,Dφ1)− 〈DpH(x,Dφ1), D(φ2 − φ1)〉
)

dxdt

+

∫ t2

t1

∫

Td

(f(x,m2)− f(x,m1))(m2 −m1) dxdt

≤

[
∫

Td

(m2(t)−m1(t))(φ2(t)− φ1(t)) dx

]t2

t1
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Note that, as the right-hand side is well-defined, the left-hand side, which is nonnegative, converges: this
is a part of the proposition. For smooth solutions, equality holds in the above inequality; we do not know
if this is still the case for weak solutions.

Proof. Since (φ1,m1) and (φ2,m2) are “good” solutions, for i = 1, 2 we can approximate (φi, αi :=
f(·,mi)) by a sequence of maps (φi,n, αi,n) such that φi,n is C1 for each n, (φi,n) is bounded in BV and
in L∞([t, T ]×T

d) for any t ∈ (0, T ), (φi,n) converges to φi in L1 while (Dφi,n) converge to (Dφi) weakly
in Lr, (αi,n

+ ) is bounded in Lp, (αi,n) converges weakly in L1 to αi while

∫ T

0

∫

Td

F ∗(x, αi,n)dxdt →

∫ T

0

∫

Td

F ∗(x, αi)dxdt

and the following inequality holds a.e.:

− ∂tφ
i,n +H(x,Dφi,n) ≤ αi,n. (3.20)

We multiply the equality ∂tm
1 − div(m1DpH(x,Dφ1)) = 0 by φ2,n and integrate on (t1, t2)× T

d:

∫ t2

t1

∫

Td

m1∂tφ
2,n + 〈Dφ2,n,m1DpH(x,Dφ1)〉 =

[
∫

Td

m1(t)φ2,n(t)

]t2

t1

.

By (3.20) for i = 2:
∫ t2

t1

∫

Td

m1∂tφ
2,n ≥

∫ t2

t1

∫

Td

m1(H(x,Dφ2,n)− α2,n),

(where, as m1 ∈ Lq while α2,n
+ is in Lp, the left-hand side is well defined in [−∞,+∞)), so that

∫ t2

t1

∫

Td

m1(H(x,Dφ2,n)− α2,n + 〈Dφ2,n, DpH(x,Dφ1)〉) ≤

[
∫

Td

m1(t)φ2,n(t)

]t2

t1

. (3.21)

Recalling Remark 3.3, we have, by (3.2) in the definition of weak solutions and the fact that inequalities
(2.12) and (2.13) hold,

∫ t2

t1

∫

Td

m1
(

H(x,Dφ1)− 〈Dφ1, DpH(x,Dφ1)〉 − f(x,m1)
)

=

[
∫

Td

φ1m1

]t2

t1

, (3.22)

for almost all t1 < t2. Combining (3.21) with (3.22) gives

∫ t2

t1

∫

Td

m1
(

H(x,Dφ2,n)−H(x,Dφ1)− 〈DpH(x,Dφ1), D(φ2,n − φ1)〉
)

+

∫ t2

t1

∫

Td

m1
(

f(x,m1)− α2,n
)

≤

[
∫

Td

m1(t)(φ2,n(t)− φ1(t))

]t2

t1

. (3.23)

Our aim is now to let n → +∞ in (3.23): for the first integral, we use the fact that Dφ2,n weakly
converges to Dφ2 and that the map ξ → m1

(

H(x, ξ)−H(x,Dφ1)− 〈DpH(x,Dφ1), ξ −Dφ1)
)

is convex
and nonnegative for any x to get the inequality:

∫ t2

t1

∫

Td

m1
(

H(x,Dφ2)−H(x,Dφ1)− 〈DpH(x,Dφ1), D(φ2 − φ1)〉
)

≤ lim inf
n

∫ t2

t1

∫

Td

m1
(

H(x,Dφ2,n)−H(x,Dφ1)− 〈DpH(x,Dφ1), D(φ2,n − φ1)〉
)

For the second integral, we rewrite the last term as
∫ t2

t1

∫

Td

m1
(

−α2,n
)

=

∫ t2

t1

∫

Td

(

F ∗(x, α2,n) + F (x,m1)−m1α2,n
)

−

∫ t2

t1

∫

Td

(F ∗(x, α2,n) + F (x,m1)).

(3.24)
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The integrand in the first integral of the right-hand side is nonnegative and convex with respect to α2,n.
As (α2,n) converges weakly in L1 to f(·,m2), we obtain the inequality

∫ t2

t1

∫

Td

(

F ∗(x, f(x,m2)) + F (x,m1)−m1f(x,m2)
)

≤ lim inf
n

∫ t2

t1

∫

Td

(

F ∗(x, α2,n) + F (x,m1)−m1α2,n
)

On another hand, we know by construction of α2,n that the last integral in (3.24) converge as n → 0 to
∫ t2

t1

∫

Td

(F ∗(x, f(x,m2)) + F (x,m1)). Thus

∫ t2

t1

∫

Td

m1
(

−f(x,m2)
)

≤ lim inf
n

∫ t2

t1

∫

Td

m1
(

−α2,n
)

.

We now consider the right-hand side of (3.23). Since the (φ2,n) are uniformly bounded in [t, T ] for
t ∈ (0, T ) and (φ2,n) converges a.e. to φ2, we have, for a.e. t1 < t2,

lim
n

[
∫

Td

m1(t)(φ2,n(t)− φ1(t))

]t2

t1

=

[
∫

Td

m1(t)(φ2(t)− φ1(t))

]t2

t1

.

So, we can let n→ ∞ in (3.23) to get, for a.e. t1 < t2,

∫ t2

t1

∫

Td

m1
(

H(x,Dφ2)−H(x,Dφ1)− 〈DpH(x,Dφ1), D(φ2 − φ1)〉
)

+

∫ t2

t1

∫

Td

m1
(

f(x,m1)− f(x,m2))
)

≤

[
∫

Td

m1(t)(φ2(t)− φ1(t))

]t2

t1

.

Exchanging the roles of (φ1,m1) and (φ2,m2), we get

∫ t2

t1

∫

Td

m2
(

H(x,Dφ1)−H(x,Dφ2)− 〈DpH(x,Dφ2), D(φ1 − φ2)〉
)

+

∫ t2

t1

∫

Td

m2
(

f(x,m2)− f(x,m1))
)

≤

[
∫

Td

m2(t)(φ1(t)− φ2(t))

]t2

t1

,

which, added to the previous inequality gives the result.

4 Analysis of the ergodic problem

The aim of this section is to define a notion of weak solution for the ergodic problem







(i) λ+H(x,Dφ) = f(x,m(x))

(ii) −div(mDpH(x,Dφ)) = 0
(iii) m ≥ 0,

∫

Td m = 1

(4.1)

and to show that this problem is well-posed.

4.1 Well-posedness of the ergodic problem

Let us start with the definition of solution of the ergodic problem (4.1).

Definition 4.1. We say that a triple (λ, φ,m) ∈ R×W 1,pr(Td)× Lq(Td) is a weak solution of (4.1) if

(i) m ≥ 0,

∫

Td

m = 1 and mDpH(x,Dφ) ∈ L1(Td),
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(ii) Equation (4.1)-(i) holds in the following sense:

λ+H(x,Dφ(x)) = f(x,m(x)) a.e. in {m > 0} (4.2)

and
λ+H(x,Dφ(x)) ≤ f(x,m) a.e. in T

d, (4.3)

(iii) Equation (4.1)-(ii) holds:
div(mDpH(x,Dφ)) = 0 in T

d, (4.4)

in the sense of distribution.

Note that, if (λ,m, φ) is a solution, then φ is Hölder continuous because, by (1.5), pr > d.

Theorem 4.2. There exists at least one solution (λ, φ,m) to the ergodic MFG system (4.1). Moreover,
the pair (λ,m) is unique.

In the following example, given in [Lio07], the solution can be computed explicitly:
An example: Let us assume that H(x, p) = 1

2 |p|
2 − V (x) and f(x, 0) = 0 for any x ∈ T

d. Let

ξ(x, λ) =

{

f−1(x, λ − V (x)) if λ ≥ V (x)
0 otherwise

where f−1 is the inverse of f with respect to the second variable. As f(x, 0) = 0 and f is strictly increasing
and coercive with respect to the second variable, ξ is nonnegative and continuous in all variables, strictly
increasing and coercive with respect to the second variable. Moreover, ξ(x,−s) = 0 for s ≥ ‖V ‖∞. In
particular, there is a unique real number ρ such that

∫

Td ξ(x, ρ)dx = 1. As a consequence, if (λ̄, φ̄, m̄) is
a solution to (4.1), then

λ̄ = ρ, m̄(x) = ξ(x, λ̄), Dφ̄ = 0.

4.2 Proof of Theorem 4.2

The basic strategy of proof is the same as (but much simpler than) for the time-dependent problem: we
introduce two optimal control problems, which turn out to be in duality. The optimality conditions for
these problems are precisely given by the ergodic MFG system. The main difference is the role played
by the variable λ.

4.2.1 Two optimization problems in duality

We define, on K0 := R×W 1,pr(Td), the functional

A(λ, φ) =

∫

Td

F ∗ (x, λ +H(x,Dφ(x))) dx− λ. (4.5)

Our first optimization problem is
inf

(λ,φ)∈K0

A(λ, φ) (4.6)

In view of the coercivity assumptions on F ∗ and H given in (1.2) and (1.8), it is clear that problem (4.6)
has at least one solution (λ, φ).

To describe the second optimization problem, let us denote by K1 the set of pairs (m,w) ∈ L1(Td) ×

L1(Td;Rd) such that m(x) ≥ 0 a.e.,

∫

Td

m(x)dx = 1, and which satisfy in the sense of distributions

div(w) = 0 in T
d. (4.7)
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We define on K1 the functional

B(m,w) =

∫

Td

m(x)H∗

(

x,−
w(x)

m(x)

)

+ F (x,m(x)) dx,

where we use the same convention as in (2.3). Since H∗ and F are bounded below and m ≥ 0 a.e., the
integral in B(m,w) is well defined in R ∪ {+∞}. The second optimal control problem is the following:

inf
(m,w)∈K1

B(m,w) . (4.8)

The following statement says that the two problems are in duality:

Lemma 4.3. We have
min

(λ,φ)∈K0

A(λ, φ) = − min
(m,w)∈K1

B(m,w), (4.9)

Moreover, the minimum in the right-hand side is achieved by a unique pair (m,w) ∈ K1 satisfying

(m,w) ∈ Lq(Td)× L
r′q

r′+q−1 (Td).

Remark 4.4. Note that r′q
r′+q−1 > 1 because r′ > 1 and q > 1.

Proof. Let us start with the regularity and the uniqueness of the solution of (4.8). Let (m,w) ∈ K1 be
optimal in the above system. From the growth conditions (1.3) and (1.7), we have

C ≥

∫

Td

F (x,m) +mH∗(x,−
w

m
) dx ≥

∫

Td

(

1

C
|m|q +

m

C

∣

∣

∣

w

m

∣

∣

∣

r′

− C

)

dx.

In particular, m ∈ Lq. By Hölder inequality, we also have

∫

Td

|w|
r′q

r′+q−1 =

∫

{m>0}

|w|
r′q

r′+q−1 ≤ ‖m‖
r′−1

r′+q−1
q

(

∫

{m>0}

|w|r
′

mr′−1

)

q

r′+q−1

≤ C,

so that w ∈ L
r′q

r′+q−1 . Finally, we note that there is a unique minimizer to (4.8), because the set K1 is

convex and the maps F (x, ·) and H∗(x, ·) are strictly convex: thus m is unique and so is
w

m
in {m > 0}.

As w = 0 in {m = 0}, uniqueness of w follows as well.

Next we prove equality (4.9). Let us rewrite problem (4.8) as a min-max problem:

inf
(m,w)∈K1

B(m,w) =

inf

(m,w)∈Lq×L
r′q

r′+q−1

sup
(λ,φ)∈R×C1(Td)

∫

Td

(

mH∗
(

x,−
w

m

)

+ F (x,m) + 〈Dφ,w〉 − λm
)

dx+ λ.

In view of the convexity and coercivity properties of H∗ and F , we can use the min-max theorem (cf.
e.g., [ET76]) to get:

inf
(m,w)∈K1

B(m,w)

= sup
(λ,φ)∈R×C1(Td)

inf

(m,w)∈Lq×L
r′q

r′+q−1

∫

Td

(

mH∗
(

x,−
w

m

)

+ F (x,m) + 〈Dφ,w〉 − λm
)

dx+ λ

= sup
(λ,φ)∈R×C1

∫

Td

inf
(m,w)∈R×Rd

(

mH∗
(

x,−
w

m

)

+ F (x,m) + 〈Dφ,w〉 − λm
)

dx+ λ.

An easy computation shows that

inf
(m,w)∈R×Rd

(

mH∗
(

x,−
w

m

)

+ F (x,m) + 〈Dφ,w〉 − λm
)

= −F ∗(x, λ +H(x,Dφ))
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so that

inf
(m,w)∈K1

B(m,w) = − inf
(λ,φ)∈R×C1

(
∫

Td

F ∗(x, λ+H(x,Dφ))dx − λ

)

.

This proves the claim since the natural relaxation of the minimization problem in the right-hand side is
(4.6) by coercivity of F ∗.

4.2.2 Existence of solutions of the ergodic MFG problem

We now show the existence part of Theorem 4.2. The proof is based on the one-to-one correspondence
between solutions of the ergodic MFG system and the two optimization problems (4.6) and (4.8).

Proposition 4.5. If (m,w) ∈ K1 is a minimizer of (4.8) and (λ, φ) ∈ K0 is a minimizer of (4.6), then
(m,φ) is a solution of the mean field game system (4.1) and w = −mDpH(·, Dφ) a.e..

Conversely, any solution (λ, φ,m) of (4.1) is such that the pair (m,−mDpH(·, Dφ)) is the minimizer of
(4.8) while (φ, f(·,m)) is a minimizer of (4.5).

Proof. Let (m,w) ∈ K1 be a solution of (4.8) and let (λ, φ) ∈ K0 be a solution of the problem (4.8).

Recall that mH∗(·,−
w

m
) ∈ L1. From Lemma 4.3, we have

0 =

∫

Td

mH∗(x,−
w

m
) + F (x,m) + F ∗(x, λ +H(x,Dφ))− λ .

Since m ∈ Lq while H(·, Du) ∈ Lp, we have by convexity of F ,

∫

Td

mH∗(x,−
w

m
) + F (x,m) + F ∗(x, λ +H(x,Dφ))− λ

≥

∫

Td

m
(

H∗(x,−
w

m
) + λ+H(x,Dφ)

)

− λ.

We now use the fact that
∫

m = 1 and that Dφ ∈ Lpr while w ∈ L(r′q)/(r′+q−1) = (Lpr)′ to infer that

∫

Td

m
(

H∗(x,−
w

m
) + λ+H(x,Dφ)

)

− λ ≥ −

∫

Td

〈w,Dφ〉 = 0,

where the last inequality comes from the constraint div(w) = 0. Since equality holds in the above string
of inequalities, one must have

F (x,m) + F ∗(x, λ +H(x,Dφ)) = m(x)(λ +H(x,Dφ)) a.e.,

and

m(x)

(

H∗(x,−
w(x)

m(x)
) +H(x,Dφ(x))

)

= −〈w(x), Dφ(x)〉 a.e..

The first equality implies that λ+H(x,Dφ(x))) = f(x,m(x)) for almost every x such thatm(x) > 0 since
F (x, ·) is strictly convex and smooth on (0,+∞). On {m = 0}, one has λ+H(x,Du(x))) ∈ ∂mF (x, 0).
So, if f(x, 0) = −∞, then m > 0 a.e. because λ + H(x,Du(x))) is integrable. If f(x, 0) > −∞, then
λ +H(x,Du(x))) ≤ f(x, 0) in {m = 0} because ∂mF (x, 0) = (−∞, f(x, 0)]. So (4.3) holds. The second

inequality entails that w(x) = −m(x)DpH(x,Dφ(x)) a.e. In particular, mDpH(·, Dφ) ∈ L
r′q

r′+q−1 (Td).
So (λ, φ,m) is a solution to the ergodic problem.

Let us now assume that (m,φ) is a solution of (4.1) and set w = −mDpH(x,Dφ). Then (m,w) belongs
to K1 and (λ, φ) ∈ K0. We first prove that (m,w) is optimal for (4.8). Let (m′, w′) ∈ K1 be an admissible
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pair. Without loss of generality we can assume that m′H∗(x,− w′

m′
) ∈ L1 and m′ ∈ Lq, because otherwise

B(m′, w′) = +∞. Then, by convexity of F with respect to the second variable, we have:

B(m′, w′) =

∫

Td

m′H∗(x,−
w′

m′
) + F (x,m′)

≥

∫

Td

m′H∗(x,−
w′

m′
) + F (x,m) + f(x,m)(m′ −m).

By (4.3) and the fact that

∫

Td

(m′ −m) = 0:

B(m′, w′) ≥

∫

Td

m′H∗(x,−
w′

m′
) + F (x,m) + (λ+H(x,Dφ))(m′ −m)

≥

∫

Td

m′(H∗(x,−
w′

m′
) +H(x,Dφ)) + F (x,m)−H(x,Dφ)m

≥

∫

Td

−〈w′, Dφ〉+ F (x,m) −H(x,Dφ)m.

Recall that div(w′) = 0, so that

∫

Td

〈w′, Dφ〉 = 0. Moreover, equality w = −mDpH(x,Dφ) implies that

H(x,Dφ) = 〈DpH(x,Dφ), Dφ〉 −H∗(x,−w/m). So we finally obtain
∫

Td

−〈w′, Dφ〉+ F (x,m)−H(x,Dφ)m =

∫

Td

F (x,m)−m〈DpH(x,Dφ), Dφ〉 +mH∗(x,−w/m)

=

∫

Td

F (x,m) +mH∗(x,−w/m),

because mDpH(x,Dφ) = −w and div(w) = 0. This proves the optimality of (m,w).

The argument for proving the optimality of (λ, φ) is similar: let (λ′, φ′) ∈ K0 be another admissible pair.
Then, since m ∈ ∂αF

∗(x, λ +H(x,Dφ)) a.e. because of (4.2) and (4.3),

A(φ′, λ′) =

∫

Td

F ∗(x, λ′ +H(x,Dφ′))− λ′

≥

∫

Td

F ∗(x, λ+H(x,Dφ)) +m(λ′ − λ+ 〈DpH(x,Dφ), D(φ′ − φ)〉)− λ′.

We use the fact that
∫

Td m = 1 while mDpH(x,Dφ) = −w and div(w) = 0 to infer immediately that
∫

Td

m(λ′ − λ+ 〈DpH(x,Dφ), D(φ′ − φ)〉) = λ′ − λ,

which shows the optimality of (λ, φ).

4.2.3 Uniqueness of the solution of the MFG ergodic system

We conclude the section by proving the uniqueness part of Theorem (4.2). Following Proposition 4.5,
we know that, if (λ, φ,m) is a solution to (4.1), then (m,w) (where w = −mDpH(·, Dφ)) is a solution
of the minimization problem (4.8). By strict convexity of this latter problem, the pair (m,w) is unique.
Since, as explained in the proof of Proposition 4.5, mH(x,Dφ) = −〈DpH(x,Dφ), w〉 −mH∗(x,−w/m),
we have by (4.2):

λm− 〈w,Dφ〉 −mH∗(x,−w/m) = mf(x,m) a.e.,

which, after integration over Td gives, since div(w) = 0,

λ =

∫

Td

mH∗(x,−w/m)−mf(x,m).

In particular, λ is unique because the pair (m,w) is unique.
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5 Asymptotic behavior

In this section, we consider the asymptotic average of the solution of the finite time horizon mean field
game system as time tends to infinity. For this we fix a terminal condition φf : Td → R for the mean
field game system. We assume that φf is C1 on T

d.

Let (φT ,mT ) be a “good” solution of the finite time horizon mean field game system on (0, T )× T
d







−∂tφ+H(x,Dφ) = f(x,m)
∂tm− div (mDpH(x,Dφ)) = 0
φ(T, x) = φf (x),m(0, x) = m0(x).

(5.1)

and (λ̄, φ̄, m̄) be a solution of the ergodic mean field game system (4.1). Let us define the rescaled
functions

ψT (s, x) = φT (sT, x), µT (s, x) = mT (sT, x) ∀(s, x) ∈ (0, 1)× T
d.

Our main result is the following.

Theorem 5.1. As T → +∞,

• (µT ) converges to m̄ in Lθ((0, 1)× T
d) for any θ ∈ [1, q),

• ψT /T converges to the map s→ λ̄(1 − s) in Lθ((δ, 1)× T
d) for any θ ≥ 1 and any δ ∈ (0, 1).

The proof is based, for the convergence for µT , on the energy estimate given in Proposition 3.8 and, for
the convergence for ψT /T , on a passage to the limit in the optimization problem (2.5).

5.1 Energy estimates and the convergence of mT

Let us first provide various estimates on the solution of the time dependent system:

Lemma 5.2. There is a constant C such that, for any T ≥ 1,

∫ T

0

∫

Td

(mT (t, x))q + (αT (t, x))p+ + |DφT (t, x)|r dxdt+ ‖φT ‖L∞([1,T ]×Td) ≤ CT,

where αT (t, x) = f(x,mT (t, x)).

Proof. Let wT := −mTDpH(x,DφT ) and αT := f(x,mT ). Using (m,w) := (m0, 0) ∈ K1 as a competitor
in the dual problem (2.2), we see that, as (mT , wT ) is an optimum,

∫ T

0

∫

Td

mT (t, x)H∗

(

x,−
wT (t, x)

mT (t, x)

)

+ F (x,mT (t, x)) dxdt+

∫

Td

φf (x)m
T (T, x)dx

≤

∫ T

0

∫

Td

m0(x)H
∗(x, 0) + F (x,m0(x)) dxdt+

∫

Td

φf (x)m0(x)dx ≤ CT.

As φf is bounded, H∗ satisfies (1.3), and F satisfies (1.7), we infer the bound on mT .

Using the pair (φ, α) := (φf , H(·, Dφf )) ∈ K as a competitor in the relaxed problem (2.5), we have, by
optimality of (φT , αT ),

∫ T

0

∫

Td

F ∗(x, αT )−

∫

Td

m0φ
T (0) ≤

∫ T

0

∫

Td

F ∗(x,H(·, Dφf ))−

∫

Td

m0φf ≤ CT.

Fix ǫ > 0 to be chosen later and set Kǫ = sup
Td F (·, ǫ). Then F ∗(x, a) ≥ ǫa − Kǫ. So, in view of the

growth of F ∗, the above inequality implies

∫ T

0

∫

Td

1

C
|αT

+|
p − ǫ|αT

−| −

∫

Td

m0(φ
T (0))+ +

∫

Td

m0(φ
T (0))− ≤ CT. (5.2)
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Since φT satisfies the HJ inequality: −∂tφ
T + H(x,DφT ) ≤ αT with φT (T ) ≤ φf , we have, for almost

every x ∈ T
d,

φT (0, x) +

∫ T

0

H(x,DφT )dt ≤

∫ T

0

αT (t, x)dt + φf (x). (5.3)

We integrate in space, using the growth of H and the bound of φf , and get

1

C

∫ T

0

∫

Td

|DφT |r ≤

∫ T

0

∫

Td

αT −

∫

Td

φT (0) + CT.

As m0 ≥ 1/C0, this inequality can be rewritten as:

1

C

∫ T

0

∫

Td

|DφT |r ≤

∫ T

0

∫

Td

αT
+ −

∫ T

0

∫

Td

αT
− + C0

∫

Td

m0(φ
T (0))− + CT. (5.4)

Coming back to (5.3) that we integrate over φT (0) ≥ 0, we have from the lower bound onH , the regularity
of φf and the assumption m0 ≤ C0,

1

C0

∫

Td

m0(φ
T (0))+ ≤

∫

Td

(φT (0))+ ≤

∫ T

0

∫

Td

αT
+ + CT. (5.5)

Putting together (5.2) and the above inequality:

∫ T

0

∫

Td

1

C
|αT

+|
p − C0|α

T
+| − ǫ|αT

−|+

∫

Td

m0(φ
T (0))− ≤ CT.

Choosing ǫ = 1/C0, we divide (5.4) by C0 and add to the above inequality:

∫ T

0

∫

Td

1

C

(

|DφT |r + |αT
+|

p
)

− C|αT
+| ≤ CT.

This shows the desired bound on DφT and on αT
+. In view of (5.5), these estimates imply that

m0(φ
T (0))+—and thus (φT (0))+—are bounded by CT in L1. Then we use (5.2) for ǫ > 0 small enough

combined to (5.4) to get an L1 bound for m0(φ
T (0))− and (φT (0))−.

We now show the L∞ bound on φT . Lemma 2.10 immediately implies that φT is bounded above by CT
(here as in the rest of the proof, we actually use the fact that we work with “good” solutions, and we
first apply the Lemma at the level of the regular approximating maps and then pass to the limit). For
the lower bound, we first note that for almost all x, y ∈ T

d,

−|φT (0, x)| ≤ φT (0, x) ≤ φT (1, y) + C|x− y|r
′

+ C(‖αT
+‖p + 1).

We integrate this inequality over x ∈ T
d to obtain the uniform lower bound: φT (1, y) ≥ −CT . Then

using again Lemma 2.10, we obtain, for almost all x ∈ T
d,

−CT ≤ φT (1, x) ≤ φT (t, x) + CT,

which shows the uniform estimate.

We are now ready to prove the convergence of mT .

Proof of Theorem 5.1: convergence of mT . Let us fix β ∈ (0, 1), to be chosen later. Using Lemma 5.2 we
find that there exists, for any T > 0, two times sT ∈ [1, T β] and tT ∈ [T − T β, T ] such that

∫

Td

|DφT (sT , x)|
r + (mT (sT , x))

p + |DφT (tT , x)|
r + (mT (tT , x))

p dx ≤ CT 1−β (5.6)
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and for which the energy inequality given in Proposition 3.8 and applied to the solutions (φT ,mT ) and
(φ̄ − λ̄t, m̄) holds:

1

T

∫ tT

sT

∫

Td

(mT − m̄)(f(mT )− f(m̄)) ≤
1

T

[
∫

Td

(mT (t)−m)(φT (t)− φ) dx

]tT

sT

. (5.7)

where we have used that
∫

Td λ̄t(m
T (t) − m) = 0 in the right-hand side of the equality. Let us set

〈φT (sT )〉 =
∫

Td φ
T (sT ). At t = sT , we have

1

T

∣

∣

∣

∣

∫

Td

(mT (sT )−m)(φT (sT )− φ) dx

∣

∣

∣

∣

=
1

T

∣

∣

∣

∣

∫

Td

(mT (sT )−m)(φT (sT )− 〈φT (sT )〉 − φ) dx

∣

∣

∣

∣

≤
1

T
(‖mT (sT )‖q + ‖m‖q)(‖φ

T (sT )− 〈φT (sT )〉‖p + ‖φ̄‖p).

Using (5.6), the bound on ‖φT ‖∞ in Lemma 5.2 and Poincaré inequality, we obtain

1

T
(‖mT (sT )‖q + ‖m‖q)(‖φ

T (sT )− 〈φT (sT )〉‖p + ‖φ̄‖p)

≤ CT
1−β
q

−1

(

‖φT (sT )− 〈φT (sT )〉‖
(p−r)+

p
∞ ‖φT (sT )− 〈φT (sT )〉‖r + C

)

≤ CT
1−β

q
−1

(

T
(p−r)+

p ‖DφT (sT )‖r + 1

)

≤ CT
1−β

q
−1+

(p−r)+
p

+ 1−β

r

We can argue in a similar way for the term t = tT to get

1

T

∣

∣

∣

∣

∫

Td

(mT (tT )−m)(φT (tT )− φ) dx

∣

∣

∣

∣

≤ CT
1−β

q
−1+

(p−r)+
p

+ 1−β

r .

Let us choose β ∈ (0, 1) such that
1− β

p
+

1− β

r
+

(p− r)+
p

< 1. Then (5.7) implies, after scaling and

taking into account the above estimates:

lim sup
T→+∞

∫ 1−Tβ−1

Tβ−1

∫

Td

(µT − m̄)(f(x, µT )− f(x, m̄)) dxds = 0.

We can then conclude the proof by using that f is strictly increasing with respect to the second variable
and that the (µT ) are bounded in Lq.

5.2 Averaged limit of the variational problems and convergence of φT/T

The convergence of (φT ) is proved by letting T → ∞ in the (averaged) optimization problem (2.5).

Proof of Theorem 5.1: the convergence of φT /T . Fix a subsequence T → +∞ (again denoted by T ) and
s ∈ (0, 1) such that µT (s) converges to m in Lθ(Td) for any θ ∈ [1, q).

We first establish an estimate on the negative part (∂tφ
T )− of the measure ∂tφ

T . Note that, as −∂tφ
T +

H(x,DφT ) ≤ αT (t, x), where H(·, DφT ) and αT are integrable, (∂tφ
T )− is absolutely continuous with

respect to the Lebesgue measure, with

0 ≤ (∂tφ
T )− ≤ αT (t, x)−H(x,DφT ) ≤ αT (t, x) + C a.e.,

since H is bounded below. We have therefore

∫ T

0

∫

Td

(∂tφ
T )p− ≤ C

∫ T

0

∫

Td

(αT
+)

p + CT,
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so that, by the bound on αT given in Lemma 5.2,

∫ T

0

∫

Td

(∂tφ
T )p− dxdt ≤ CT. (5.8)

Next we need to define a specific time sT near sT at which DφT and mT are not too large. For this we
use Lemma 5.2, which says that

∫ T

0

∫

Td

|DφT |r + (mT )q dx ≤ CT.

Then, for any β ∈ (0, 1) to be chosen below, there exists a time sT ∈ [sT, sT + T β] such that
∫

Td

|DφT (sT )|
r + (mT (sT , x))

q dx ≤ CT 1−β. (5.9)

By standard dynamic programming property the pair (φT , αT ) is optimal for the (relaxed) problem of
optimal control of HJ equation defined on the time horizon [Ts, T ] with initial measure mT (sT ):

inf
(φ,α)∈K

∫ T

sT

∫

Td

F ∗(x, α(x, t)) dxdt−

∫

Td

φ(sT, x)mT (sT, x) dx

=

∫ T

sT

∫

Td

F ∗(x, αT (x, t)) dxdt−

∫

Td

φT (sT, x)mT (sT, x) dx.

Let γTs be the value of this problem divided by T . We claim that

γTs ≤ (1− s)γ∞ + o(1), (5.10)

where γ∞ is the value of the Problem (4.6) and o(1) → 0 as T → +∞. Indeed, let us define

φ(t, x) =

{

(T − t)φ̄(x) + (t− T + 1)φf (x) if t ∈ [T − 1, T ]
φ̄(x)− λ̄(t− T + 1) if t ∈ [sT, T − 1]

and

α(t, x) =

{ (

φ̄(x)− φf (x) +H(x, (T − t)Dφ̄(x) + (t− T + 1)Dφf (x))
)

∨ 1 if t ∈ [T − 1, T ]
λ̄+H(x,Dφ̄(x)) if t ∈ [sT, T − 1]

Then the pair (φ, α) belongs to K and, by definition of γTs ,

γTs ≤
1

T

∫ T

sT

∫

Td

F ∗(x, α) −
1

T

∫

Td

φ(sT, x)mT (sT, x)dx.

As φ̄ and φf belong to W 1,rp(Td), the right-hand side is bounded above by

(1− s)

∫

Td

F ∗(x, λ̄ +H(x, φ̄))dx− (1 − s)λ̄+
C

T
= (1− s)γ∞ +

C

T
,

since (λ̄, φ̄) is optimal in (4.5). This implies (5.10). In particular, if we set

δT =
1

T

∫ sT

sT

∫

Td

F ∗(x, αT (t, x)) dxdt,

then

(1− s)γ∞ + o(1)

≥
1

T

∫ T

sT

∫

Td

F ∗(x, αT (t, x)) dxdt + δT −
1

T

∫

Td

φT (sT, x)mT (sT, x) dx

≥ (1 −
sT
T

)

∫

Td

F ∗

(

x,
1

T − sT

∫ T

sT

αT (t, x) dt

)

dx+ δT −
1

T

∫

Td

φT (sT, x)m(x) dx+ o(1)

(5.11)
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where the last inequality comes, for the first term, by convexity of F ∗ and, for the last one, from the fact
that ‖φT ‖∞ is bounded by CT on [1, T ] and (mT (sT )) converges to m in L1. Since −∂tφ

T +H(x,DφT ) ≤
αT with φT (T, x) ≤ φf (x), we have for a.e. x ∈ T

d,

1

T − sT

∫ T

sT

αT (t, x) dt ≥
φT (sT , x)− φf (x)

T − sT
+

1

T − sT

∫ T

sT

H(x,DφT )dt.

Let us now estimate δT . We have, for any ǫ > 0 (recalling the inequality F ∗(x, a) ≥ ǫa−Kǫ),

δT ≥
ǫ

T

∫ sT

sT

∫

Td

αT (t, x) dxdt−
Kǫ(sT − sT )

T
)

≥
ǫ

T

(
∫

Td

(φT (sT, x)− φT (sT , x))dx +

∫ sT

sT

∫

Td

H(x,DφT )dxdt

)

−KǫT
β−1,

where φT is bounded by CT on [1, T ] and H is bounded below. Thus

δT ≥ −Cǫ− (Kǫ + Cǫ)T β−1,

which implies that δT ≥ o(1) as T → +∞. Collecting the above estimates and coming back to (5.11), we
obtain, as F ∗(x, ·) is nondecreasing,

(1− s)γ∞ + o(1)

≥ (1 −
sT
T

)

∫

Td

F ∗

(

x,
φT (sT , x)− φf (x)

T − sT
+

1

T − sT

∫ T

sT

H(x,DφT )dt

)

dt

−
1

T

∫

Td

φT (sT, x)m̄(x) dx.

(5.12)

We now estimate the last term:

−
1

T

∫

Td

φT (sT, x)m̄(x) dx = −
1

T

∫

Td

φT (sT , x)m̄(x) dx+
1

T

∫ sT

sT

∫

Td

∂tφ
T (s, x)m̄(x) dxds

≥ −
1

T
〈φT (sT )〉 −

‖m̄‖q
T

‖φT (sT )− 〈φT (sT )〉‖p

−
1

T

∫ sT

sT

∫

Td

(∂tφ
T (s, x))−m̄(x) dxds,

where, by the bound ‖φT ‖∞ ≤ CT , Poincaré inequality and (5.9),

‖m̄‖q
T

‖φT (sT )− 〈φT (sT )〉‖p ≤
C

T
‖φT ‖

(p−r)+
p

∞ ‖φT (sT )− 〈φT (sT )〉‖r

≤ CT
(p−r)+

p
−1‖DφT (sT )‖r ≤ CT

(p−r)+
p

+ 1−β

r
−1,

while, from Hölder inequality and (5.8):

1

T

∫ sT

sT

∫

Td

(∂tφ
T (s, x))−m̄(x) dxds ≤

‖m̄‖q
T

(sT − sT )1/q‖(∂tφ
T )−‖p ≤ CT

β

q
+ 1

p
−1.

So (5.12) becomes

(1 − s)γ∞ + o(1) ≥ (1−
sT
T

)

∫

Td

F ∗

(

x,−
C

T
+
φT (sT , x)

T − sT
+

1

T − sT

∫ T

sT

H(x,DφT )dt

)

dx

−
1

T
〈φT (sT )〉 − C(T

(p−r)+
p

+ 1−β

r
−1 + T

β

q
+ 1

p
−1).

(5.13)

Note that, because of (5.9) and the L∞ bound on φT , −
1

T − sT
φT (sT , ·) converges, up to a subsequence,

to a constant λ in Lr(Td). In particular, − 1
(1−s)T 〈φ

T (sT )〉 converges also to λ. On the other hand, if we
set

φ
T
(x) =

1

T − sT

∫ T

sT

(φT (t, x) − 〈φT (t)〉)dt,
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then we have by Lemma 5.2,
∫

Td

|Dφ
T
(x)|rdx ≤ C and

∫

Td

φ
T
(x)dx = 0,

so that (again up to a subsequence), φ
T
converges weakly to a map φ in W 1,r(Td). We rewrite (5.13) by

using the above notation and the convexity of H :

(1− s)γ∞ + o(1) ≥ (1−
sT
T

)

∫

Td

F ∗

(

x,−
C

T
+
φT (sT , x)

T − sT
+H(x,Dφ

T
)

)

dx

−
1

T
〈φT (sT )〉 − C(T

(p−r)+
p

+ 1−β

r
−1 + T

β

q
+ 1

p
−1).

Letting T → +∞, we get by convexity of the map (a, b) → F ∗(x, a+H(x, b)) and choosing β such that
(p−r)+

p + 1−β
r − 1 < 0,

(1− s)γ∞ ≥ (1 − s)

∫

Td

F ∗(x, λ+H(x,Dφ)) dx− (1 − s)λ.

Therefore the pair (λ, φ) is a solution to the optimization problem (4.6). By uniqueness of the ergodic
constant, we get λ = λ. By definition of φT and (5.9), we have therefore

lim
T→+∞

1

T
〈φT (sT , ·)〉 = −λ.

Inequality −∂φT +H(x,DφT ) ≤ αT implies, since H is bounded below:

〈φT (sT )〉 − 〈φT (sT )〉 ≤ C(sT − sT ) + (sT − sT )1/q‖αT
+‖p ≤ CT β/q+1/p, (5.14)

where we have used the bound ‖αT
+‖p ≤ CT 1/p in the last inequality. This shows that

lim inf
T→+∞

1

T
〈φT (sT )〉 ≥ lim inf

T→+∞
〈φT (sT )〉 − CT β/q+1/p−1 ≥ −(1− s)λ.

To obtain the opposite inequality, we just need to pick a time sT ∈ [sT − T β, sT ] for which (5.9) holds
and prove as above that (〈φT (sT )〉/T ) converges to −(1− s)λ. Since, as for (5.14), we have

〈φT (sT )〉 − 〈φT (sT )〉 ≤ CT β/q+1/p,

we can then prove that

lim sup
T→+∞

1

T
〈φT (sT, ·)〉 ≤ −(1− s)λ.

This shows the convergence of (〈φT (·)〉/T ) to −(1 − ·)λ in Lθ(0, 1) for any θ ≥ 1. Then, by Poincaré
inequality and the bound on ‖DφT ‖r,

‖
φT

T
+ (1− ·)λ‖Lr((0,T )×Td) ≤ ‖

φT

T
−

〈φT 〉

T
‖r + ‖

〈φT 〉

T
+ (1− ·)λ‖r

≤ CT−1/r′ + ‖〈φT 〉/T + (1− ·)λ‖r

where the right-hand side vanishes as T → +∞. As (φT /T ) is bounded in [1, T ], we conclude that the
map (ψT /T ) converges to the map s→ −(1− s)λ̄ in Lθ((δ, 1)×T

d) for any θ ≥ 1 and any δ ∈ (0, 1).
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