
HAL Id: hal-00926146
https://hal.inria.fr/hal-00926146

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling linear chain streaming applications on
heterogeneous systems with failures

Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, Laurent Philippe

To cite this version:
Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, Laurent Philippe. Scheduling linear chain stream-
ing applications on heterogeneous systems with failures. Future Generation Computer Systems, Else-
vier, 2013, 29 (5), pp.1140-1151. �10.1016/j.future.2012.12.015�. �hal-00926146�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49695651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00926146
https://hal.archives-ouvertes.fr


Scheduling linear chain streaming applications

on heterogeneous systems with failures

Anne Benoita, Alexandru Dobrilab, Jean-Marc Nicodb, Laurent Philippeb
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Abstract

In this paper, we study the problem of optimizing the throughput of streaming
applications for heterogeneous platforms subject to failures. Applications are
linear graphs of tasks (pipelines), with a type associated to each task. The
challenge is to map each task onto one machine of a target platform, each
machine having to be specialized to process only one task type, given that every
machine is able to process all the types before being specialized in order to
avoid costly setups. The objective is to maximize the throughput, i.e., the rate
at which jobs can be processed when accounting for failures. Each instance can
thus be performed by any machine specialized in its type and the workload of
the system can be shared among a set of specialized machines.

For identical machines, we prove that an optimal solution can be computed
in polynomial time. However the problem becomes NP-hard when two machines
may compute the same task type at different speeds. Several polynomial time
heuristics are designed for the most realistic specialized settings. Simulation
results assess their efficiency, showing that the best heuristics obtain a good
throughput, much better than the throughput obtained with a random mapping.
Moreover, the throughput is close to the optimal solution in the particular cases
where the optimal throughput can be computed.

Keywords: heterogeneous computing, scheduling, throughput maximization,
failure, streaming applications, complexity results, linear programming.

1. Introduction

In this paper, we address the issue of mapping a linear chain of tasks that
processes a flow of jobs on heterogeneous resources subject to failures. Note
that the work can be extended to the more general case when the throughput
is not preserved all along the chain, i.e., the output throughput of the tasks of
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the pipeline may be smaller than their input throughput. This may arise for
instance in streaming applications, either because the task operates some kind
of selection on the input data, or when the task is not able to compute the
output, for instance because of failures. So we rather consider the issue of task
failures than machine failures.

A streaming application is composed of a flow of elementary jobs (job in-
stances of the same size). Each of these elementary jobs is in turn composed of
tasks, linked by precedence constraints. Thus, the platform must continuously
execute instances of elementary jobs. The objective is to map the tasks onto a
computational platform, consisting of several resources, in order to optimize the
job flow through the platform. The goal is therefore to maximize the number
of job output per time unit (the throughput), or equivalently, to minimize the
time between two output jobs (the period). The problem is rather simple when
the resources are homogeneous, but becomes more complex when considering
heterogeneous platforms. The originality of our work is that we assume that the
flow reduction may be linked to the tasks and/or to the processing resources.

The paper is organized as follows. We first define more precisely the context
and we give an overview of related work in Section 2. Then we present the
framework, define the failure model and formalize the optimization problems in
Section 3. An exhaustive study on the complexity of these problems is provided
in Section 4: we exhibit some particular polynomial problem instances, we prove
that the remaining problem instances are NP-hard, and we propose some linear
programming formulations to solve sub-problems. In Section 5, we design a set
of polynomial-time heuristics to solve the most general problem instance. In
Section 6, we conduct extensive simulations to assess the relative and absolute
performance of the heuristics. Finally, we conclude in Section 7.

2. Context and related work

In the past years, much attention has been paid to workflow applications
on the grid and several workflow management systems facilitate their execution
on the computing resources [27, 28]. We focus in this paper on linear chain
streaming applications, executed on computing grids. In this case, the resources
are distributed, heterogeneous, and may not be reliable enough to assume that
the failure rate can be ignored in the mapping strategy.

From the application point of view, we deal with coarse-grain streaming
applications. Applications are a linear graph of tasks (pipeline) with a type
associated to each task. In these streaming applications, a series of data enters
the pipeline and progresses from task to task until the final result is computed.
Examples of such applications are stream-processing applications composed of
processing elements as in [20], or pipelined query operators with precedence
constraints as in [7], or application based on stream programming as in [13].
An illustrating example of a streaming application is an image processing ap-
plication as presented in [15]. A stream of intra-vascular ultrasound images
are captured by a transducer at a specific rate and sent to the resources to be
processed before being displayed (see Figure 1). A similar application is the
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Synthetic Aperture Radar (SAR) [16], which creates 2D or 3D images from
radar signals gathered by a moving sensor. These images are then used to make
decisions. It is important to note that for such streaming applications, it is
more relevant to optimize the throughput rather than the total finish time.

...
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Figure 1: Application example.

The considered resources are typically dedicated execution resources grouped
in a distributed platform, a grid, on which we process either a batch of input
data. Each resource of the platform provides functions or services that are able
to handle a task type. As each task is typed it can only be processed on a
resource that implements its task type. In the case of computing resources this
model can be illustrated by Software as a Service (SaaS) based platforms [1].
The considered platforms are heterogeneous as the resources are usually not
uniform and thus the tasks are processed with different speeds.

Our aim is to efficiently map and schedule the applications onto the re-
sources. We target coarse-grain applications and platforms such that the cost
of communications is negligible in comparison to the cost of computations. In
the illustrating example, processing an image is indeed much more costly than
transferring an image. This is a complex problem (known in the literature as
multi-processor tasks [6, 14]) as the considered resources are heterogeneous. The
mapping defines which resource performs which task. So processing a stream-
ing application on the platform amounts to enter jobs on the platform and to
progress from resource to resource, following the task chain, until the final re-
sult is computed. After an initialization delay, a new job is completed every
period and it exits the pipeline. The period is therefore defined as the longest
cycle-time of a resource, and it is the inverse of the throughput that can be
achieved. The goal is to minimize the period, which is equivalent to maximiz-
ing the throughput, i.e., the number of final results that exit the system per
time unit. This approach is different from [7, 11] where pipelined query oper-
ators with precedence constraints are ordered to optimize a bottleneck metric,
the slowest stage in the pipeline and the selectivity of the operators. In our
case, the operation order is fixed and we target the operator mapping on the
resources.

Note that optimizing the schedule of a set of tasks on a heterogeneous plat-
form is complex (NP-hard most of the time), as we will show later in the paper.
Given that the optimization target in the throughput optimization and that the
tasks of a streaming application remain identical all along the execution, it is
worth to take the time to compute a static assignment before execution since
the execution parameters, and in particular the execution time of the tasks, do
not change during the streaming execution.
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Considering platforms such as grids, or clouds, implies to take failure pos-
sibilities into account. Failures cannot be ignored when applications last for a
long time. The failure rate is too high to assume that no fault will impact the
execution. In the grid context, failures may occur because of the nodes, but
they also may be related to the complexity of the service [18]. So we consider in
our problem that the type of a task affects its computation requirements and its
failure rate. This failure rate may also depend on the resource itself, platform
heterogeneity also assumes reliability heterogeneity.

Replication is often used to deal with failures in distributed systems [8, 23].
To ensure that a result is output the same execution is replicated among several
processors. However, a common property of our target platforms is that we
cannot use replication to overcome the faults. For streaming applications, it
is too costly to replicate each task (maybe several times if we want a high
warranty) and replication shrinks the throughput. Fortunately, losing a few jobs
may not be a big deal; for instance, the loss of some images in the illustrating
example will not alter the result, as far as the throughput is maintained. This
failure model is based on the Window-Constrained [24] model, often used in
real-time environment. In this model, only a fraction of the messages will reach
their destination: for y messages, only x (x ≤ y) of them will reach their
destination. The y value is called the Window. The losses are not considered
as a failure but as a guarantee: for a given network, a Window-Constrained
scheduling [26, 25] can guarantee that no more than x messages will be lost for
every y sent messages.

Other research work already focuses on streaming applications. It operates
on data sets but most of the time on homogeneous resources [19]. Other studies
as [22, 10] target workflow application scheduling on grids but more from a prac-
tical point of view. A comprehensive survey of pipelined workflow scheduling is
given in [2] but it does not tackle the fault tolerance issue. In [4] a computation
is considered to be faulty in case where data is lost. Replication is used to im-
prove the reliability of the system and to optimize two objective functions, the
latency and the reliability. This is different from the case tackled in this paper
as no throughput change along the pipeline is considered.

In this paper, we therefore solely concentrate on the problem of period min-
imization (i.e., throughput maximization), where extra jobs are processed to
account for failures. For instance, if there is a single task, mapped on a single
machine, with a failure rate of 1/2, a throughput of x jobs per unit time will be
achieved if the task processes 2× x jobs per time unit.

3. Framework and optimization problems

In this section, we define the problems that we tackle. First we present
the application, platform and failure models. Then we discuss the objective
function and the rules of the game before formally introducing the optimization
problems.
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3.1. Applicative framework

The application consists of a linear chain of n tasks, T1, T2, . . . , Tn as pre-
sented on Figure 2. A type is associated to each task as the same operation may
be applied several times to the same job. We have a set T of p task types with
n ≥ p, and a function t : {1, . . . , n} → T , which returns the task type from the
task number. Hence, t(i) is the type of task Ti.

A series of jobs enters the workflow and progresses from task to task until
the final result is computed. We note xi the average number of jobs processed
by task Ti to output one job out of the system. Note that xi+1 depends on xi

and on the failure rate of the machine processing Ti (see below).

Ti Ti+1 TnT1

x1 xi xnxi+1

Figure 2: Application model

3.2. Target platform

The target platform is distributed and heterogeneous. It consists of a set
M of m machines (a cell in the micro-factory or a host in a grid platform):
M = {M1,M2, . . . ,Mm}.

The task processing time depends on the machine that performs it. It takes
wi,u units of time to machine Mu to execute task Ti on one job. All the tasks
of the same type are processed in the same time on a given machine, i.e., if
t(i) = t(j), then wi,u = wj,u (for 1 ≤ u ≤ m). Moreover, each machine is
able to process all the task types. But, to avoid costly context or setup changes
during execution, the machines may be specialized to process only one task type.
Moreover, the machines are interconnected by a complete graph but we do not
take communication times into account as we consider that the processing time
is much greater than the communication time (coarse-grain applications).

Our goal is to assign tasks to machines so as to optimize some key perfor-
mance criteria. In some of the considered cases a task can be allocated to several
machines. We define q(i, u) as the quantity of task Ti executed by machine Mu;
if q(i, u) = 0, Ti is not assigned to Mu. Note that q(i, u) defines an allocation
function and for each task Ti we must have at least one q(i, u) > 0, meaning
that Ti is allocated to Mu.

Recall that xi is the average number of jobs processed by task Ti to output
one job out of the system. We must have, for each task Ti,

∑m
u=1 q(i, u) = xi,

i.e., enough jobs are processed for task Ti in the system.

3.3. Failure model

An additional characteristic of our framework is that failures may occur. It
may happen that a job (or data, or product) is lost (or damaged) while a task is
being executed on this job instance. For instance, a message will be lost due to
network contention. Note that we only deal with transient failures, as defined
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in [17]: the tasks are failing for some of the job instances. Therefore, we process
more jobs than needed, so that at the end, the required throughput is reached.
The failure rate of task Ti performed onto machine Mu is the percentage of
failure for this task and it is denoted fi,u. Therefore, if all jobs for task Ti are
executed on machine Mu, we have xi+1 = xi(1− fi,u).

Note that we do not consider permanent failures in this paper. Our goal is
to statically assign tasks to machines and, in that case, a permanent failure of
one machine implies to reconsider the whole assignment as this would lead to
a failure for all the remaining jobs to be processed and the inability to finish
them. This issue should rather be addressed by replication and has already been
studied, for instance in [5]. However, since the heuristics proposed in this paper
have a polynomial time complexity, they could be dynamically used to compute
a new assignment for the tasks in the case of a permanent failure.

3.4. Objective function

In our framework, several objective functions could be optimized. For in-
stance, one may want to produce a mapping of the tasks on the machines as
reliable as possible, i.e., minimize the number of products to input in the sys-
tem. Rather, we consider that losing one instance is not a big deal, and we
focus on a performance criteria, the throughput. The goal is to maximize the
number of instances that exit the system per time unit, making abstraction of
the initialization and clean-up phases. This objective is important when a large
number of instances must be processed. Note that we deal with the equivalent
optimization problem that minimizes the period, the inverse of the throughput.

One challenge is that we cannot compute the number xi of jobs that must
be processed by task Ti before allocating tasks to machines, since xi depends
on the failure rates incurred by the allocation. However, each task Ti has a
unique successor task Ti+1, and xi+1 is the amount of jobs needed by Ti+1 as
input. Since Ti is distributed on several machines with different failure rates,
we have

∑m
u=1 (q(i, u)× (1− fi,u)) = xi+1, where q(i, u)× (1− fi,u) represents

the amount of jobs output by the machine Mu if q(i, u) jobs are treated by that
machine. For each task, we sum all the instances treated by all the machines.

We are now ready to define the cycle-time ctu of machine Mu: it is the time
needed by Mu to execute all tasks Ti with q(i, u) > 0: ctu =

∑n
i=1 q(i, u) ×

wi,u. The objective function is to minimize the maximum cycle-time, which
corresponds to the period of the system: min(max1≤u≤m(ctu)).

3.5. Rules of the game

Different rules of the game may be enforced to define the allocation, i.e.,
the q(i, u) values. For one-to-many mappings, we enforce that one task can be
mapped onto several machines but one machine can only perform one task (or
a fraction of one task): ∀1 ≤ i, i′ ≤ n s.t. i 6= i′, q(i, u) > 0⇒ q(i′, u) = 0. For
instance, on Figure 3, we have an application graph with three tasks (a) that are
mapped onto the platform graph with four resources (b). The result is shown
in (c) where we can see that one machine can handle only one task: M1 and
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M2 are both processing T2, while M3 processes T1 and M4 processes T3. This
mapping is quite restrictive because we must have at least as many machines
as tasks. Note that a task can be split into several instances, as for T2 in the
example: part of the jobs are processed by M1, and the remaining jobs are
processed by M2.

2
1

2

3
2

11

3

(a) (b) (c)

M2 M3

M4M1

M3

M1 M4

M2

Figure 3: One-to-many mapping.
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Figure 4: Specialized mapping. t(1)=t(3)=t(5)=1 and t(2)=t(4)=2.
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Figure 5: General mapping. t(1)=t(3)=1, t(2)=t(4)=2 and t(5) = 3.

We relax this rule to define specialized mappings, in which several tasks of
the same type can be mapped onto the same machine: ∀1 ≤ i, i′ ≤ n s.t. t(i) 6=
t(i′), q(i, u) > 0 ⇒ q(i′, u) = 0. For instance, on Figure 4, we have five tasks
with types t(1) = t(3) = t(5) = 1 and t(2) = t(4) = 2. Machine M3 computes
task T1, therefore it can also execute T3 and T5 but not T2 and T4. As types
are not dedicated to machines, T5 can also be assigned to another machine, for
instance M1. Note that if each task has a different type, the specialized mapping
and the one-to-many mapping are equivalent.

Finally, general mappings have no constraints: any task (no matter the type)
can be mapped on any machine, as illustrated on Figure 5. Note that general
mappings can also be seen as a special case of specialized mappings, by assuming
that all tasks have the same type.
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3.6. Problem definition

We are now ready to formally define the optimization problems tackled in
this paper. The three important parameters are:
• the rules of the game: one-to-many (o2m), specialized (spe) or general
(gen) mapping;

• the failure model: f if failures are all identical on all the machines, fi if
the failure for a same task is identical on two different machines, fu if the
failure rate depends only on the machine, and the general case fi,u;

• the computing time: w if the processing times are all identical, wi if it
differs only from one task to another, wu if it depends only on the machine,
and wi,u in the general case.

Definition of MinPer(R,F,W ). Given an application and a target platform,
with a failure model F = {f |fi|fu|fi,u|∗} and computation times W = {w|wi|wu

|wi,u|∗}, MinPer(R,F,W ) finds a mapping, i.e., values of q(i, u) such that for
each task Ti (1≤ i≤n),

∑m
u=1 q(i, u) = xi, following rule R = {o2m|spe|gen|∗},

which minimizes the period of the application, max1≤u≤m

∑n
i=1 q(i, u)×wi,u.

For instance, MinPer(o2m, fi, wi) is the problem of minimizing the period
with a one-to-many mapping, where both failure rates and execution times
depend only on the tasks. Note that ∗ is used to express the problem with any
variant of the corresponding parameter; for instance, MinPer(∗, fi,u, w) is the
problem of minimizing the period with any mapping rule, where failure rates
are general, while execution times are all identical.

4. Complexity results

We assess the complexity of the different instances of the MinPer(R,F,W )
problem. First we provide the complexity of the problems with F = fi (Sec-
tion 4.1), and then we discuss the most general problems with F = fi,u (Sec-
tion 4.2). We do not address problems with F = fu in this paper as, in the
context of this study, the complexity of the considered tasks is the main failure
factor. Some results on these F = fu problems are presented in [3].

Even though the general problems are NP-hard, we show that once the
allocation of tasks to machines is known, we can optimally decide how to share
tasks between machines, in polynomial time (Section 4.3). Also, we give an
integer linear program to solve the problem (Section 4.4).

4.1. Complexity of the MinPer(∗, fi, ∗) problems

In this section, we focus on the MinPer(∗, fi, ∗) problems, and we first
show how these problems can be simplified. Indeed, in this case, the number of
products that should be computed for task Ti at each period, xi, is independent
of the allocation of tasks to machines. We can therefore ignore the failure
probabilities, and focus on the computation of the period of the application.

The following Lemma 1 allows us to further simplify the problem for the
most difficult instance of specialized mappings: tasks of similar type can be
grouped and processed as a single equivalent task.
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Lemma 1. For MinPer(spe, fi, wi) or MinPer(spe, fi, wu), there exists an
optimal solution in which all tasks of the same type are executed onto the same
set of machines, in equal proportions. Given the optimal mapping and its allo-
cation function q, we have:

∀1 ≤ i, j ≤ n with t(i) = t(j),
∃ αi,j ∈ Q such that ∀1 ≤ u ≤ m, q(i, u) = αi,j × q(j, u) .

(1)

Proof. Let OPT be an optimal solution to the problem, of period P . Let t be a
task type, and, without loss of generality, let T1, . . . , Tk be the k tasks of type t,
with k ≤ n, and letM1, . . . ,Mv be the set of machines specialized to type t in the
optimal solution OPT (i.e., they have been allocated only tasks from T1, . . . , Tk),
with v ≤ m. In the optimal solution, q(i, u) is the proportion of task Ti assigned
to machine Mu. For each task Ti, 1 ≤ i ≤ k, we have

∑

1≤u≤v q(i, u) = xi, and
for each machine Mu, 1 ≤ u ≤ v, we have

∑

1≤i≤k q(i, u)wi,u ≤ P , where wi,u

may be either wi or wu, depending upon the problem instance.
We build a new optimal solution, OPT ′, which follows Equation (1). The

proportion of task Ti assigned to machine Mu in this solution is q′(i, u), and
x∗ =

∑

1≤i≤k xi.
Let us start with theMinPer(spe, fi, wu) problem. We define q′(i, u) = xi

x∗
×

P
wu

. For task Ti,
∑

1≤u≤v q
′(i, u) ≥ xi

x∗
×

∑

1≤u≤v

∑

1≤i≤k q(i, u), by definition
of OPT , and therefore

∑

1≤u≤v q
′(i, u) ≥ xi: we have distributed all the work for

this task. Moreover, by construction,
∑

1≤i≤k q
′(i, u)wu = P : solution OPT ′

is optimal (its period is P ). We have built an optimal solution that satisfies
Equation (1), with αi,j = xi

xj
, by redistributing the work of each task on each

machine in equal proportion.
The reasoning is similar for the MinPer(spe, fi, wi) problem, except that

wi is now depending on the task, and therefore we define q′(i, u) = xi

wix∗
× P .

We still have the property that all the work is distributed, and the period of
each machine is still P . The only difference relies in the values of αi,j , which
are now also depending upon the wi: αi,j =

xi

xj
× wj

wi
.

For each problem instance, we have built an optimal solution that follows
Equation (1), therefore concluding the proof.

Corollary 1. For MinPer(spe, fi, wi) or MinPer(spe, fi, wu), we can group

all tasks of same type t as a single equivalent task T
(eq)
t such that

x
(eq)
t =

∑

1≤i≤n|t(i)=t

xi .

Then, we can solve this problem with the one-to-many rule, and deduce the
solution of the initial problem.

Proof. Following Lemma 1, we search for the optimal solution which follows
Equation (1). Since all tasks of the same type are executed onto the same set of
machines in equal proportions, we can group them as a single equivalent task.
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The amount of work to be done by the set of machines corresponds to the total
amount of work of the initial tasks, i.e., for a type t,

∑

1≤i≤n|t(i)=t xi.
The one-to-many rule decides on which set of machines each equivalent task

is mapped, and then we share the initial tasks in equal proportions to obtain
the solution to the initial problem: if task Ti is not mapped on machine Mu,
then q(i, u) = 0, otherwise

q(i, u) =
xi

x
(eq)
t(i)

×
P

wi|u
,

where wi|u = {wi | wu}, depending upon the problem instance.

We are now ready to establish the complexity of the MinPer(∗, fi, ∗) prob-
lems. Recall that n is the number of tasks, m is the number of machines, and
p is the number of types.

We start by providing polynomial algorithms for one-to-many and specialized
mappings with wi (Theorem 1 and Corollary 2). Then, we discuss the case of
general mappings, which can also be solved in polynomial time (Theorem 2).
Finally, we tackle the instances that are NP-hard (Theorem 3).

Theorem 1. MinPer(o2m, fi, wi) can be solved in polynomial time O(m ×
log n).

Proof. First, note that solving this one-to-many problem amounts to decide
on how many machines each task is executed (since machines are identical),
and then split the work evenly between these machines to minimize the period.
Hence, if Ti is executed on k machines, q(i, u) = xi

k , where Mu is one of these
k machines, and the corresponding period is xi

k × wi.
We exhibit a dynamic programming algorithm that computes the optimal

solution in polynomial time. We compute P (i, k), which is the period that can
be achieved to process tasks T1, . . . , Ti with k machines. The solution to the
problem is P (n,m), and the recurrence writes:

P (i, k) = min
1≤k′≤k

(

max
(

P (i− 1, k − k′),
xi

k′
× wi

))

,

with the initialization P (1, k) = xi

k × wi (we use all remaining machines to
process the last task), and P (i, 0) = +∞ (no solution if there are still some tasks
to process but no machine left). There are n×m values of P (i, k) to compute,
and the computation takes a time in O(m). Therefore, the complexity of this
algorithm is of order O(n×m2).

Note that it is also possible to solve the problem greedily. The idea is
to assign initially one machine per task (note that there is a solution only if
m ≥ n), sort the tasks by non-increasing period, and then iteratively add a
machine to the task whose machine(s) have the greater period, while there are
some machines available. Let gi be the current number of machines assigned
to task Ti: the corresponding period is xi

gi
× wi. At each step, we insert the

task whose period has been modified in the ordered list of tasks, which can
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be done in O(log n) (binary search). The initialization takes a time O(n log n)
(sorting the tasks), and then there are m − n steps of time O(log n). Since we
assume m ≥ n, the complexity of this algorithm is in O(m × log n). To prove
that this algorithm returns the optimal solution, let us assume that there is an
optimal solution of period Popt that has assigned oi machines to task Ti, while
the greedy algorithm has assigned gi machines to this same task, and its period
is Pgreedy > Popt. Let Ti be the task which enforces the period in the greedy
solution (i.e., Pgreedy = xiwi/gi). The optimal solution must have given at least
one more machine to this task, i.e., oi > gi, since its period is lower. This means
that there is a task Tj such that oj < gj , since

∑

1≤i≤n oi ≤
∑

1≤i≤n gi = m
(all machines are assigned with the greedy algorithm). Then, note that since
oj < gj , because of the greedy choice, xjwj/oj ≥ xiwi/gi (otherwise, the greedy
algorithm would have given one more machine to task Ti). Finally, Popt ≥
xjwj/oj ≥ xiwi/gi = Pgreedy, which leads to a contradiction, and concludes the
proof.

Corollary 2. MinPer(spe, fi, wi) can be solved in polynomial time O(n+m×
log p).

Proof. For the specialized mapping rule, we use Corollary 1 to solve the prob-
lem: first we group the n tasks by types, therefore obtaining p equivalent tasks,
in time O(n). Then, we use Theorem 1 to solve the problem with p tasks, in time
O(m× log p). Finally, the computation of the mapping with equal proportions
is done in O(n), which concludes the proof.

Theorem 2. MinPer(gen, fi, ∗) can be solved in polynomial time.

Proof. For the general case with wi,u, we solve the following (rational) linear
program, where the variables are P (the period), and q(i, u), for 1 ≤ i ≤ n and
1 ≤ u ≤ m.

Minimize P
subject to

(i) q(i, u) ≥ 0 for 1 ≤ i ≤ n, 1 ≤ u ≤ m
(ii)

∑

1≤u≤m q(i, u) = xi for each task Ti with 1 ≤ i ≤ n

(iii)
∑

1≤i≤n q(i, u)× wi,u ≤ P for each machine Mu with 1 ≤ u ≤ m

(2)

The size of this linear program is clearly polynomial in the size of the in-
stance, all n × m + 1 variables are rational, and therefore it can be solved in
polynomial time [21].

Finally, we prove that the remaining problem instances are NP-hard (one-to-
many or specialized mappings, with wu or wi,u). Since MinPer(o2m, fi, wu) is
a special case of all other instances, it is sufficient to prove the NP-completeness
of the latter problem.

Theorem 3. The MinPer(o2m, fi, wu) problem is NP-hard in the strong sense.
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Proof. We consider the following decision problem: given a period P , is there
a one-to-many mapping whose period does not exceed P? The problem is
obviously in NP: given a period and a mapping, it is easy to check in polynomial
time whether it is valid or not. The NP-completeness is obtained by reduction
from 3-PARTITION [12], which is NP-complete in the strong sense.

We consider an instance I1 of 3-PARTITION: given an integer B and 3n
positive integers a1, a2, . . . , a3n such that for all i ∈ {1, . . . , 3n}, B/4 < ai < B/2
and with

∑n
i=1 ai = nB, does there exist a partition I1, . . . , In of {1, . . . , 3n}

such that for all j ∈ {1, . . . , n}, |Ij | = 3 and
∑

i∈Ij
ai = B? We build the

following instance I2 of our problem with n tasks, such that xi = B for 1 ≤ i ≤ n
(fn = 1 − 1/B, and fi = 0 for 1 ≤ i < n). There are m = 3n machines with
wu = 1/au. The period is fixed to P = 1. Clearly, the size of I2 is polynomial
in the size of I1. We now show that I1 has a solution if and only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ i ≤ n, we assign task Ti to the
machines of Ii: q(i, u) = au for u ∈ Ii, and q(i, u) = 0 otherwise. Then, we have
∑

1≤u≤m q(i, u) =
∑

u∈Ii
au = B, and therefore all the work for task Ti is done.

The period of machine Mu is
∑

1≤i≤n q(i, u) × wu = au/au = 1, and therefore
the period of 1 is respected. We have a solution to I2.

Suppose now that I2 has a solution. Task Ti is assigned to a set of machines,
say Ii, such that

∑

u∈Ii
q(i, u) = B, and q(i, u) ≤ au for all u ∈ Ii. Since all the

work must be done, by summing over all tasks, we obtain q(i, u) = au, and the
solution is a 3-partition, which concludes the proof.

As a summary of the MinPer(∗, fi, ∗) problems study, we can state that the
MinPer(∗, fi, wi) problems can all be solved in polynomial time, as well as the
MinPer(gen, fi, ∗) problems. With wu the problem becomes NP-hard for one-
to-many and specialized mappings. This also provides the complexity for the
most general case of the wi,u problems, one-to-many and specialized mappings
are NP-hard since they can be reduced to the corresponding wu problems that
are NP-hard.

4.2. Complexity of the MinPer(∗, fi,u, ∗) problems

When we consider problems with fi,u instead of fi, we do not know in ad-
vance the number of jobs to be computed by each task in order to have one
job exiting the system, since it depends upon the machine on which the task is
processed. However, we are still able to solve the problem with general map-
pings, as explained in Theorem 4. For one-to-many and specialized mappings,
the problem is NP-hard with wu, since it was already NP-hard with fi in this
case (see Theorem 3). We prove that the problem becomes NP-hard with wi

in Theorem 5, which illustrates the additional complexity of dealing with fi,u
rather than fi. Results are summarized in Table 1.

Theorem 4. MinPer(gen, fi,u, ∗) can be solved in polynomial time.

Proof. We modify the linear program (2) of Theorem 2 to solve the case with
general failure rates fi,u. Indeed, constraint (ii) is no longer valid, since the xi
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are not defined before the mapping has been decided. It is rather replaced by
constraints (iia) and (iib):

(iia)
∑

1≤u≤m

q(n, u)× (1− fn,u) = 1 ;

(iib)
∑

1≤u≤m

q(i, u)× (1− fi,u) =
∑

1≤u≤m

q(i+ 1, u) for each Ti with 1 ≤ i < n .

Constraint (iia) states that the final task must output one job, while constraint
(iib) expresses the number of jobs that should be processed for task Ti, as a
function of the number for task Ti+1. There are still n×m+ 1 variables which
are rational, and the number of constraints remains polynomial, therefore this
linear program can be solved in polynomial time [21].

Theorem 5. The MinPer(o2m, fi,u, wi) problem is NP-hard.

Proof. We consider the following decision problem: given a period P , is there
a one-to-many mapping whose period does not exceed P? The problem is
obviously in NP: given a period and a mapping, it is easy to check in polynomial
time whether it is valid or not. The NP-completeness is obtained by reduction
from SUBSET-PRODUCT-EQ (SPE), which is NP-complete (trivial reduction
from SUBSET-PRODUCT [12]).

We consider an instance I1 of SPE: given an integer B, and 2n positive
integers a1, a2, . . . , a2n, does there exist a subset I of {1, . . . , 2n} such that
|I| = n and

∏

i∈I ai = B? Let C =
∏

1≤i≤2n ai.

We build the following instance I2 of our problem with 2n + 2 tasks, and
2n+2 machines, so that the mapping has to be a one-to-one mapping (i.e., one
task per machine). We ask whether we can obtain a period P = 1. Tasks T1 and
Tn+2 are such that they should be allocated to machines M2n+1 and M2n+2:
the other machines never successfully compute a job for these tasks. We have:
• w1 = B/C2 and wn+2 = 1/B;
• f1,2n+1 = fn+2,2n+2 = 0 for 1 ≤ u ≤ 2n+ 2 (i.e., no failures in this case);
• f1,u = fn+2,v = 1 for u 6= 2n+ 1 and v 6= 2n+ 2 (i.e., total failure in this
case).

The values of the failure probabilities mean that machine M2n+1 (resp. M2n+2)
never fails on task T1 (resp. Tn+2), while all the other machines always fail on
these tasks, i.e., the number of failed product is equal to the number of products
entering the machine. No final product is output if these tasks are mapped onto
such a machine.

For the other tasks (2 ≤ i ≤ n+ 1 and n+ 3 ≤ i ≤ 2n+ 2), we have:
• wi = 1/C2 (i.e., the period is always matched);
• fi,2n+1 = fi,2n+2 = 0 (i.e., no failure on M2n+1 and M2n+2);
• fi,u = 1− 1

a2
u
for 2 ≤ i ≤ n+ 1 and 1 ≤ u ≤ 2n;

• fi,u = 1− 1
au

for n+ 3 ≤ i ≤ 2n+ 2 and 1 ≤ u ≤ 2n.
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B
C2 →

1

C2
→ · · · →

1

C2
︸ ︷︷ ︸

→ 1
B →

1

C2
→ · · · →

1

C2
︸ ︷︷ ︸

T1 T2 . . . Tn+1 Tn+2 Tn+3 . . . T2n+2

Clearly, the size of I2 is polynomial in the size of I1. We now show that I1
has a solution if and only if I2 does.

Suppose first that I1 has a solution, I. We build the following allocation
for I2:
• T1 is mapped on M2n+1;
• T2 is mapped on M2n+2;
• for n+ 3 ≤ i ≤ 2n+ 2, Ti is mapped on a machine Mu, with u ∈ I;
• for 2 ≤ i ≤ n+ 1, Ti is mapped on a machine Mu, with u /∈ I.

Note first that because of the values of fi,u, the number of jobs to be computed
for a task never exceeds C2. Indeed, M2n+1 and M2n+2 never fail, and each
task is mapped onto a distinct machine Mu, with 1 ≤ u ≤ 2n, with a failure
probability fu = 1− 1

a2
u
or f ′

u = 1− 1
au

. Note that f ′
u ≤ fu (indeed, au ≥ 1 and

a2u ≥ au), and therefore, for a task Ti, the number of products to compute is
xi ≤

∏

1≤u≤2n 1/(1 − fu) =
∏

1≤u≤2n a
2
u = C2, see Section 3.4. Therefore, the

period of machinesM1, . . . ,M2n, which are processing a task Ti with wi = 1/C2,
is not greater than xi × wi = C2 × 1/C2 = 1 = P .

Now, we need to check the period of tasks T1 and Tn+2. For Tn+2, we have
xn+2 =

∏

n+2≤i≤2n+2 1/(1− fi,alloc(i)), where Malloc(i) is the machine on which
Ti is mapped. Therefore, xn+2 =

∏

u∈I au = B, since I is a solution to I1.
Since wn+2,2n+2 = 1/B, the period of machine M2n+2 is B × 1/B = 1 = P .
Finally, for T1, x1 =

∏

1≤i≤2n+2 1/(1−fi,alloc(i)) =
∏

u/∈I a
2
u×

∏

u∈I au. We have
∏

u/∈I a
2
u = (C/B)2, and therefore x1 = C2/B, and the period of machineM2n+1

is exactly 1 as well. We have a solution to I2.

Suppose now that I2 has a solution. It has to be a one-to-one mapping,
since there are no more machines than tasks. If T1 is not mapped on M2n+1,
or if Tn+2 is not mapped on M2n+2, the period of the corresponding machine is
at least 2P , and hence the solution is not valid. The other tasks are therefore
mapped on machines M1, . . . ,M2n. Let I be the set of n machines on which
tasks Tn+3, . . . , T2n+2 are mapped. The period for task Tn+2 is respected, and
therefore,

∏

u∈I au ×
1
B ≤ 1, and

∏

u∈I

au ≤ B .

Then, for the period of task T1, we obtain
∏

u/∈I a
2
u×

∏

u∈I au×
B
C2 ≤ 1, therefore

∏

u/∈I au × C × B
C2 ≤ 1, and finally

∏

u/∈I

au ≤
C

B
.
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Since
∏

u∈I au ×
∏

u/∈I au = C, the two inequalities above should be tight, and
therefore

∏

u∈I au = B, which means that I1 has a solution. This concludes the
proof.

As a summary the complexity results for the studied MinPer problems are
given in Table 1.

fi fi,u

wi wu or wi,u wi wu or wi,u

o2m or spe polynomial NP-hard NP-hard NP-hard
gen polynomial polynomial polynomial polynomial

Table 1: Complexity of the MinPer problems.

In the cases where the problem is NP-complete, the global mapping problem
can be split in two sub-problems: the allocation problem, i.e., how to decide the
machines that are allocated to each task, and the workload balancing, i.e., how
to share the tasks between these machines. The former problem can be solved
in polynomial time and we provide a linear program that solves it in the next
section. The first problem is more complex but we provide an integer linear
program to solve simple instances in Section 4.4.

4.3. Fixed allocation of tasks to machines

If the allocation of tasks to machines is known, then we can optimally decide
how to share tasks between machines, in polynomial time. We build upon the
linear program of Theorem 4, and we add a set of parameters: ai,u = 1 if Ti is
allocated to Mu, and ai,u = 0 otherwise (for 1 ≤ i ≤ n and 1 ≤ u ≤ m). The
variables are still the period P , and the amount of task per machine q(i, u). The
linear program writes:

Minimize P

subject to (i) q(i, u) ≥ 0 for 1 ≤ i ≤ n, 1 ≤ u ≤ m

(iia)
∑

1≤u≤m

q(n, u)× (1− fn,u) = 1

(iib)
∑

1≤u≤m

q(i, u)× (1− fi,u) =
∑

1≤u≤m

q(i+ 1, u) for 1 ≤ i < n

(iii)
∑

1≤i≤n

q(i, u)× wi,u ≤ P for 1 ≤ u ≤ m

(iv) q(i, u) ≤ ai,u × Fmax for 1 ≤ i ≤ n and 1 ≤ u ≤ m

(3)

We have added constraint (iv), which states that q(i, u) = 0 if ai,u = 0, i.e.,
it enforces that the fixed allocation is respected. Fmax =

∏

1≤i≤n max1≤u≤m fi,u
is an upper bound on the q(i, u) values, it can be pre-computed before running
the linear program. The size of this linear program is clearly polynomial in the
size of the instance, all n×m+1 variables are rational, and therefore it can be
solved in polynomial time [21].
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4.4. Integer linear program

The linear program of Equation (3) allows us to find the solution in polyno-
mial time, once the allocation is fixed. We also propose an integer linear program
(ILP) that computes the solution to the MinPer(spe, fi,u, wi,u) problem, even
if the allocation is not known. However, because of the integer variables, the
resolution of this program takes an exponential time. Note that this ILP can
also solve the MinPer(o2m, fi,u, wi,u): one just needs to assign a different type
to each task.

Compared to the linear program of the previous section, we no longer have
the ai,u parameters, and therefore we suppress constraint (iv). Rather, we
introduce a set of boolean variables, x(u, t), for 1 ≤ u ≤ m and 1 ≤ t ≤ p, which
is set to 1 if machine Mu is specialized in type t, and 0 otherwise. We then add
the following constraints:

(iva)
∑

1≤t≤p x(u, t) ≤ 1 for each machine Mu with 1 ≤ u < m ;

(ivb) q(i, u) ≤ x(u, ti)× Fmax for 1 ≤ i ≤ n and 1 ≤ u ≤ m .

Constraint (iva) states that each machine is specialized into at most one
type, while constraint (ivb) enforces that q(i, u) = 0 when machine Mu is not
specialized in the type ti of task Ti.

This ILP has n × m + 1 rational variables, and m × p integer variables.
The number of constraints is polynomial in the size of the instance. Note that
this ILP can be solved for small problem instances with a solver such as ILOG
CPLEX [9].

5. Heuristics

From the complexity study of Section 4, we are able to find an optimal map-
ping for several instances of the MinPer problem in polynomial time. General
mappings are however not feasible in some cases, since it involves reconfiguring
the machines between the execution of two tasks whose type is different. This
additional setup time may not be affordable. So we provide in this section prac-
tical solutions to solve the MinPer(spe, fi,u, wi,u) problem, which is NP-hard.
As this problem is the more general problem of the MinPer set of problems its
solutions can be adapted to the simpler instances.

We propose in this section a set of polynomial time heuristics that return
a specialized mapping. Since we are able to find the optimal solution once the
tasks are mapped onto the machines, the heuristics aims at building such an
assignment. Once the assignment is computed, we run the linear program of
Section 4.3 to obtain the optimal solution in terms of q(i, u). Note that for all
these algorithms, the memory complexity is the same, in O(m + n), since we
just have two tables, one for the machines and one for the tasks.

We briefly recall the notations used in the algorithms: n is the number of
tasks, p is the number of task types, m is the number of machines; for 1 ≤ i ≤ n
and 1 ≤ u ≤ m, t(i) is the type of task Ti, wi,u is the time taken by task Ti to
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be executed on machine Mu, and fi,u is the failure rate for machine Mu when
executing task Ti. As defined in the linear program, Ai is the set of machines
on which task Ti is executed. Also, we let UnAllocMachines be the set of
unallocated machines, that is iteratively completed as the algorithms advance,
and bestMu denotes the best machine in the current loop, with an execution
time execb and a failure rate rateb. When needed, MachineLoad is a table with
the current loads of each machine.

H1: Random heuristic. The first heuristic randomly assigns each task
to a machine when the allocation respects the task type of the chosen ma-
chine. This heuristic serves as a basis for comparison and assesses the interest
of providing smart solutions against random ones. For this algorithm, the time
complexity is O(mn): there is a loop over n tasks, and for each task, the algo-
rithm looks for a machine that respects the task type (in the worst case, it tries
all m machines).

The next three heuristics (H2, H3 and H4) are based on the same iterative
allocation process in two stages. In the first top-down stage, the machines are
assigned from task T1 to task Tn depending on their speed wi,u: the machine
with the best w1,u is assigned to T1 and so on. The motivation is that the
workload of the first task is larger than the last task because of the job failures
that arise along the pipeline. In the second bottom-up stage, the remaining
machines are assigned from task Tn to task T1 depending on their reliability fi,u:
the machine with the best fn,u is assigned to Tn and so on. The motivation
is that it is more costly to lose a job at the end of the pipeline than at the
beginning, since more execution time has been devoted to it. We iterate until
all of the machines have at least one task to perform.

H2: Without any penalization. The heuristic H2 is detailed on Al-
gorithm 1. The top-down stage assigns each task type to the fastest possible
machine. At the end of this stage, each task of the same type is assigned onto
the same machine, the fastest. Algorithm 1 loops on the task types sorted by
their order in the pipeline. The assigned machines are discarded from the list.
In the same way, the bottom-up stage assigns each task type to the same machine
starting from the more reliable one but in the reverse order of the pipeline. We
iterate on these two steps until all of the machines are specialized. The time
complexity of the H2 algorithm is O(m2p): there are two loops on the machine
numbers m, and one loop on the number of task types p.

H3: Workload penalization. The heuristic H3 is detailed on Algo-
rithm 2. The main difference between H3 and H2 is in the execution of the
top-down stage. In H3, each time a task is assigned to a machine, this machine
is penalized to take the processing load of this task into account. So the ma-
chine’s wi,u value is changed to wi,u × (k + 1), where k is the number of tasks
already mapped on the machine Mu. This implies that several machines can be
assigned to the same task type in this phase of the algorithm: if a machine is al-
ready loaded by several tasks, then we may find another lightly loaded machine
and assign it to this task type. The bottom-up stage has the same behavior as
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Algorithm 1: H2: Without any penalization.

UnAllocMachines← {1, ...,m};
while UnAllocMachines 6= ∅ do

for i = 1 to p /* top-down stage, on task types */

do

execb ← maxu{wi,u} ;
for u ∈ UnAllocMachines do

if wi,u < execb then

bestMu← u;
execb ← wi,u;

Ai ← Ai ∪ {MbestMu} ;
UnAllocMachines← UnAllocMachines \ {MbestMu} ;

for i = p to 1 /* bottom-up stage, on task types */

do

rateb ← maxu{fi,u};
for Mu ∈ UnAllocMachines do

if fi,u < rateb then

bestMu← u;
rateb ← fi,u;

Ai ← Ai ∪ {MbestMu};
UnAllocMachines← UnAllocMachines \ {MbestMu} ;
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Algorithm 2: H3: Workload penalization.

UnAllocMachines← {1, ...,m};
for u = 1 to m do

MachineLoad[u] = 0

while UnAllocMachines 6= ∅ do
for i = 1 to n /* top-down stage, on tasks */

do

execb ← maxu{wi,u} ;
for u ∈ UnAllocMachines ∪Ai do

if (wi,u × (MachineLoad[u] + 1)) < execb then

bestMu ← u;
execb ← wi,u;

MachineLoad[bestMu]←MachineLoad[bestMu] + 1;
Ai ← Ai ∪ {MbestMu} ;
UnAllocMachines← UnAllocMachines \ {MbestMu} ;

for i = p to 1 /* bottom-up stage, on task types */

do

rateb ← maxu{fi,u} ;
for Mu ∈ UnAllocMachines do

if f(i, u) < rateb then

bestMu← u;
rateb ← fi,u;

Ai ← Ai ∪ {Mu} ;
UnAllocMachines← UnAllocMachines \ {Mu} ;

for H2. The time complexity of the H3 algorithm is O(m2n): the most compu-
tationally intensive part of the algorithm is the top-down stage, with two loops
on the machine numbers m, and one loop on the number of tasks n.

H4: Cooperation work. The heuristic H4 is detailed on Algorithm 3. In
this heuristic, during the top-down stage, a new machine is assigned to each task.
The fastest machines are assigned first. So after this stage the assigned machines
are not shared between tasks. Note however that the linear program used to
optimize the load balance after the assignment stage will redistribute the tasks
on the machines afterwards. Then the bottom-up stage has the same behavior as
the heuristic H2. The time complexity of the H4 algorithm is O(m2n): the most
computationally intensive part of the algorithm is the top-down stage, with two
loops on the machine numbers m, and one loop on the number of tasks n.

H5: Focus on speed. Finally, H5 performs only a top-down stage,
repetitively. The heuristic H5 is detailed on Algorithm 4. It focuses only on the
speed by repeating the top-down stage previously presented for the H3 heuristic
until all the machines are allocated to at least one task. The time complexity
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Algorithm 3: H4: Cooperation work.

UnAllocMachines← {1, ...,m};
while UnAllocMachines 6= ∅ do

for i = 1 to n /* top-down stage, on tasks */

do

execb ← maxu{wi,u} ;
for u ∈ UnAllocMachines do

if wi,u < execb then

bestMu← u;
execb ← wi,u;

Ai ← Ai ∪ {MbestMu} ;
UnAllocMachines← UnAllocMachines \ {MbestMu} ;

for i = p to 1 /* bottom-up stage, on task types */

do

rateb ← maxu{fi,u} ;
for Mu ∈ UnAllocMachines do

if fi,u < rateb then

bestMu← u;
rateb ← fi,u;

Ai ← Ai ∪ {MbestMu};
UnAllocMachines← UnAllocMachines \ {MbestMu} ;
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of the H5 algorithm is O(m2n): the most computationally intensive part of the
algorithm is the top-down stage, with two loops on the machine numbers m,
and one loop on the number of tasks n.

Algorithm 4: H5: Focus on speed.

UnAllocMachines← {1, ...,m};
for u = 1 to m do

MachineLoad[u] = 0

while UnAllocMachines 6= ∅ do
for i = 1 to n /* top-down stage on tasks */

do

execb ← maxu{wi,u} ;
for u ∈ UnAllocMachines ∪Ai do

if (wi,u × (MachineLoad[u] + 1)) < execb then

bestMu ← u;
execb ← wi,u;

MachineLoad[bestMu]←MachineLoad[bestMu] + 1;
Ai ← Ai ∪ {MbestMu} ;
UnAllocMachines← UnAllocMachines \ {MbestMu} ;

6. Simulation results

In this section, we assess the performance of the five heuristics. Note that
there is no need to use or implement a simulator since the task allocations
can directly be computed by implementing the different heuristics in simple
programs.

The period returned by each heuristic is measured in ms as the wi,u values
used by the programs are given in ms. Recall that m is the number of machines,
p the number of types, and n the number of tasks. Each point in a figure is an
average value of 30 simulations, where the wi,u are randomly chosen between 100
and 1000ms, for 1 ≤ i ≤ n and 1 ≤ u ≤ m, unless stated otherwise. Similarly,
failure rates fi,u are randomly chosen between 0.2 and 10% (i.e., 1/500 and
1/10), unless stated otherwise.

6.1. Heuristic results compared to optimal solutions

In this set of simulations, the heuristics are compared to the integer linear
program that gives the optimal solution. The platform is such that m = 20,
p = 5 and 21 ≤ n ≤ 61. Figure 6 shows that the random heuristic H1 has
poor performance and so that not every simple algorithm could have reasonable
performance. This poor result is not limited to this particular simulation and
therefore, for visibility reasons, H1 does not appear in the remaining figures.
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Figure 6: Heuristics compared to the ILP.
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Figure 7: Normalized results without H1.

We focus in Figure 7 on the heuristics H2 to H5. The presented results
are normalized upon the linear program results. Most of the heuristics have
performance with a factor between 1.5 and 3.5 from the optimal solution and
the difference increases with the number of tasks. The algorithm behaviors are
moreover rather unstable, except for H2. This probably means that there is few
guarantee on the quality of the found solutions. This instability comes from the
low values taken for m and p. These values has been chosen because in this
configuration, although exponential, the linear program always finds a result.
For a platform with 20 machines and 10 types instead of 5, the percentage of
success of the linear program collapses to less than 50% for 61 tasks and the
comparison between the algorithms and the ILP is not meaningful.

In the remaining simulations, we concentrate on higher values of m and p to
limit the algorithms instability. We are however not able to compute optimal
results for these configurations.

6.2. General behavior of the heuristics

In a second set of simulations, we focus on the difference between having
more tasks than machines or the opposite. In Figure 8, we use platforms with
50 machines and 25 types of tasks and the number of tasks varies between 10 and
50. The results show that H2 is slightly less performing than the other heuristics
while it was the best in the previous simulations. This difference increases as the
number of types gets closer to the number of machines, as shown in Figure 9.

When the number of tasks is higher than the number of machines, H2 and
H4 become clearly the best heuristics (see Figure 10). Indeed, at the end of the
first allocation stage, H3 and H5 will almost have used all of the machines and
the second stage will thus not be decisive. This is why the lines of H3 and H5
are superimposed in this case.

To study the impact of the speed of the machines, we set a platform with
almost homogeneous machines (100 ≤ wi,u ≤ 200). Results are presented in
Figure 11 and shows that the homogeneity in terms of the machine speed does
not change the overall behavior of the heuristics. H2 and H4 are still the best
even if the gap with H3 and H5 is reduced.

To conclude with general behavior, we studied the impact of the number of
types with two sets of platforms with 40 machines and a number of tasks ranging
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Figure 8: m = 50, p = 25.
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Figure 9: m = 25, p = 15.

Heuristics with more machines than tasks.
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Figure 10: m = 50, p = 25.

Heuristics with more tasks than machines.
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Figure 11: m = 40, p = 30, 100 ≤ wi,u ≤ 200.

Homogeneous machines.

from 10 to 110. The number of task types is set to 5 for the first one (Figure 12)
and to 35 for the second one (Figure 13). When the number of types is small
compared to the number of machines (Figure 12), the opportunity to split groups
is high. In this case, H2 and H4 are the best heuristics because the workload is
shared among a bigger set of machines and not only on those that are efficient
for a given task. On the opposite, when the number of types is close to the
number of machines, the number of split tasks decreases. Indeed, each machine
must be specialized to one type. In the simulation shown in Figure 13, only 5
machines can be used to share the workload once each machine is dedicated to
a type. That explains why the performance of the heuristics are pretty much
alike.

6.3. Impact of the failure rate

In this last set of simulations, we study the impact of the failure rate on
the heuristics. Figures 14 and 15 show that when the failure rate is high (0 ≤
fi,u ≤ 30%), only H2 and H4 have a good performance. Remember that the
heuristics have two stages, the first one optimizes the wi,u and the second one
the fi,u. In the case of H3 and H5, the first stage does not encourage the reuse
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Figure 12: m = 40, p = 5.

Small number of types.
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Figure 13: m = 40, p = 35.

High number of types.

of a machine already assigned to a task (the penalization is high). Thus, in the
particular case of the platform set in Figures 14 and 15, H3 and H5 assign all
the machines at the end of their first stage and cannot optimize the failure in
the second stage because no more machine is available.
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Figure 14: m = 15, p = 5.

Failure 0 ≤ fi,u ≤ 10%.
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Figure 15: m = 15, p = 5.

Failure 0 ≤ fi,u ≤ 30%.

6.4. Detailed results per heuristic
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Figure 16: Heuristic H2.
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Figure 17: Heuristic H3.

To give a wider view of the algorithm behaviors depending on the number
of tasks and on the number of types, we provide 3D curves for H2 to H5. The
presented results are computed for m = 40. We can note that until 60 tasks the
algorithms are equivalent. Then if the number of tasks increases, H2 always gives
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Figure 18: Heuristic H4.
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Figure 19: Heuristic H5.

a shorter period unless the number of types is bigger than 25. H3 outperforms
H2 when the number of types is high. One of the reasons of this better behavior
may be that this algorithm uses a lower number of machines in the first stage.
So it leaves more machines to be assigned on the failure rate criterion and thus
achieves a better balance between speed and reliability. This remark is enforced
if we note that the performance of H2 deteriorates when the number of types
increases, leading to more machine assignments in the first case.

7. Conclusion

In this paper, we investigate the problem of maximizing the throughput of
coarse-grain pipeline applications where tasks have a type and are subject to
failures. We propose mapping strategies to solve the problem considering three
rules of the game: one-to-many mappings (each machine processes at most one
task), specialized mappings (several tasks of the same type per machine), or
general mappings. In any case, the jobs associated to a task can be distributed
upon the platform so as to balance workload between the machines. From
a theoretical point of view, an exhaustive complexity study is proposed. We
prove that an optimal solution can be computed in polynomial time in the
case of general mappings whatever the application/platform parameters, and in
the case of one-to-many and specialized mappings when the faults only depend
on the tasks, while the optimization problem becomes NP-hard in any other
cases. Since general mappings do not provide a realistic solution because of
not affordable setup times when reconfiguration occurs, we propose to solve the
specialized mapping problem by designing several polynomial heuristics. Also,
we give an integer linear programming formulation of the problem that allows
us to compute an optimal solution on small problem instances and to evaluate
the performance of these heuristics on such instances. The simulations show
that some heuristics return specialized mappings with a throughput close to
the optimal, and that using random mappings never gives good solutions. As
future work, we plan to investigate other objective functions, as the latency, or
other failure models in which the failure rate associated to the task and/or the
machine is correlated with the time to perform that task.
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