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1 Introduction

Tetris is a single player game in which the goal is to place random falling pieces onto a game board.
Each horizontal line completed is cleared from the board and scores points for the player [11]. It is a
very popular game with simple rules which requires, however, lots of practice and elaborate strategies
for human players to perform well. Although the rules of the Tetris are very simple, designing artificial
players is a great challenge for the artificial intelligence (AI) community.

For instance, Demaine et al. [10] proved the NP-Completeness of the offline version of the game!. In the
offline version a deterministic finite sequence of pieces is fixed, and the player knows the identity and
the order of all pieces that will be presented. The proof is based on a reduction between the 3-partition
problem and Tetris. Later, Breukelaar et al. [6] proposed a simpler proof of the this. Intuitively these
results on the off-line version of the game suggest that the on-line version, one in which the sequence is
not known in advance, is of at least the same difficulty if not more. Interestingly, Burgiel [7] showed that
it is impossible to win at Tetris in the sense that one cannot play indefinitely. There exist sequences of
pieces, although rare, that if they occur will end the game with probability one.

When formulated as a decision problem or a learning problem, the number of states of the system becomes
intractable. On the standard 10 x 20 game and 7 pieces, each cell in the board can be in 2 states (filled
or empty) the total number of states is thus 2'0%2 x 7 ~ 10°° which approaches 10% states. This large
state space cannot be explored directly, which pushes the need to use approximation mechanisms and thus
design sub-optimal strategies for artificial players.

All these challenges render the problem of designing artificial players very appealing for the AI community,
which addressed this problem in many publications using different techniques.

In this paper, we propose to use evolutionary algorithms to design artificial Tetris players. We discuss
recent results that provide very successful players scoring many millions of lines on average and compare
their performance with the best known artificial players. For that we will first, describe the problem
of learning Tetris strategies and review some of the existing literature on the subject (section 3) that
ranges from reinforcement learning to pure optimization and evolutionary algorithms. After which we will
describe how to apply evolutionary algorithms to learn such players (section 4), and how to reduce the
learning time which can be of a crucial concern. Each of our arguments is illustrated on different sets of
experiments. Finally, we conclude our discussion and present future ideas we intend to follow to improve
our findings.

LOne of the theorems in the paper states that maximizing the number of rows cleared in a Tetris game is NP-complete



2 The Tetris problem definition

In this section, we discuss the characteristics of the game of Tetris and the simplifications that are usually
considered when designing artificial controllers. We also describe the components of the decision function
that an agent uses to decide its actions.

Figure 1: On the left hand side, a sample game board (the wall). The size of the standard board is 10
squares wide and 20 squares tall. On the right hand side, the 7 Tetris pieces. From top to bottom and left
tO right “S??’ “Z’?, LCL”’ L((]??7 L(T’?, L(O?? a)1,1(1 4‘177.

In the game of Tetris, the player is faced with placing a randomly chosen piece (Fig. 1) on a 10 x 20 game
board at each iteration. Pieces can be translated from left to right and rotated. When a piece is placed
the player is faced with a new piece. When a row of the board is fully occupied, it is cleared and all pieces
above the row collapse by one row. The game ends when the height of the wall reaches the top of the
board. The aim of the player is to clear as many line as possible to delay the end of the game.

In the standard game, the pieces fall from the top of the game board with a certain speed that increases
with the game level. The player has to decide where to place the falling piece before it reaches the other
pieces in the board at which time it stops. The player has to plan its actions within this laps of time,
which gets shorter as the player advances in the game.

2.1 Game simplifications

In the existing literature addressing learning Tetris controllers, authors usually address a simplified version
of the problem where the dynamics of the falling pieces is not taken into account.

In the simplified version, the artificial player is given the current piece to place and the current state of the
board and it has to decide where to place the piece. A decision in this case is a rotation (the orientation
of the piece) and a translation (the column) to apply on the current piece. The player tests all possible
rotations and all possible translations and decides, based on a decision function, on the best decision to
take. Incidentally, this simplification does not affect the performance of artificial players on the original
game as their decisions are usually made well within the shortest laps of time a piece takes to fall.

Furthermore, except for few authors, most of the existing works address the so called “one piece strategies”,
where only the current piece is known and not the subsequent one, which is the case in the standard
game. As it will be clearer in few paragraphs the extension to the original game’s “two pieces strategy” is
straightforward.



2.2 The decision function

In general, a Tetris game-playing agent decides which action (rotation and translation) to choose at a
given state of the game based on the reward it will gain after performing that action. The agent chooses,
among the several possible actions, the one that will return the best outcome. This reward may be instant
i.e. at the next state of the game or delayed until the end of the game.

It is however difficult and sometimes not possible to judge the value of an action, and one way around this
is to judge the value of the state to which the action leads. Generally this is achieved using an evaluation
function that assigns numerical values to game states. The player then chooses among all possible actions
the one that leads to the best valued state.

3

Figure 2: The decision tree of an artificial Tetris player exploring all possible actions for the current piece
and evaluating all the outcomes.

Given the current piece to place, the agent will choose the decision that will give the “best board”, as
illustrated on Figure 2. When a piece is to be placed, the agent simulates and evaluates all the possible
boards that would result from all the possible moves of the piece, and then chooses the action that leads to
the best valued game board (greedy strategy). In a “two pieces strategy”, the player simulates two moves
(one for the current and one for the subsequent piece) and selects the best one for the current piece. In
this case the decision tree illustrated on Figure 2 is extended by an additional level.

Note that since the agent follows a greedy strategy, the evaluation function is the only component that
enters into the decision making process. Hence, designing a Tetris player amounts to designing an evalu-
ation function. Such a function should synthesize the game state giving high values to “good boards” and
low values to “bad” ones. In this context “good boards” are ones that increase the chance of clearing lines
in future moves.

We note s € S a state of the game, s represents the configuration of the board at a given time. The
evaluation function V : § — IR maps a state s to a number that estimates the value of the state s. Let us
also consider P the set of the seven pieces and A the set of all possible actions. An action is a rotation of
which there are 4 possibilities and a translation of which there are 10 possibilities? i.e. |A| < 40.

Further, we note a(p) € A an action applied to the piece p € P. We also note v : S x A — S the transition
function that maps a pair (s,a(p)), a state s and an action a(p), to a new state of the game after taking
action a for the piece p in state s.

The player’s decision function 7 (s, p) : S x P — A, will select the action with the highest valued outcome:

m(s,p) = a(p) = arg ar(gggAV(v(Sv a(p)))- (1)

2The actual number of possible actions may depend on the shape of the current pieces and the size of the game.



2.3 Feature functions

A state evaluation function V may be considered as mimicking the evaluation a human player makes
when deciding where to drop the piece. It should rank higher game states that increase the chance to
clear lines in subsequent moves. For example, such game boards should be low in height and should
contain few holes (empty squares). Since the set of all possible game states is too large to be considered, a
state is generally projected in a smaller set of features. These feature functions represent the most salient
properties of a given state. These properties may be the height of the wall, the number of holes, etc. In
the literature, many authors have introduced different features to synthesize different aspects of a game
state. A comprehensive review of these features can be found in [34].

The evaluation function V is a combination of these feature functions using generally a weighted linear
sum. If we let f; and w;, with ¢ = 1...n, denote the n feature functions and their respective weights.
Each f; maps a state s to a real value. The evaluation function V is then defined as:

V(o) =Y widils) @

Other combinations of evaluation functions are also possible. For example, Langenhoven et al. [22] use a
feed forward neural network to which the value of each feature function is an input node. Béhm et al. [5]
proposed exponential combinations where they considered the feature functions powered to given con-
stants.

In the remainder of this paper we consider eight features which are detailed on fig. 3. Six (f1.. ) of these
were introduced by Dellacherie [11], and two (f7 and fs) were introduced by [33].

(f1) (f2) (f3) (f1) (f5) (fo) (f7) (fs)

Figure 3: Features functions. (f;) Landing height: the height at which the current piece fell (8 in the
figure). (f2) Eroded pieces: the contribution of the last piece to the cleared lines time the number of
cleared lines (2 x 2 in the figure). (f3) Row transitions: number of filled cells adjacent to empty cells
summed over all rows (58 in the figure). (fs4) Column transition: same as (f3) summed over all columns
(45 in the figure) note that borders count as filled cells. (f5) Number of holes: the number of empty cells
with at least one filled cell above. (fs) Cumulative wells: the sum of the accumulated depths of the wells
((1+2+3)+1+1 on the figure). (f7) Hole depth: the number of filled cells above holes summed over all
columns. (fs) Row hole: the number of rows that contains at least one hole (8 in the figure).

3 Related work on designing Tetris players

This section presents some of the works that addresses the design of artificial Tetris players. As described
above, to design evaluation functions based controllers, one needs to select the set of feature functions,
the way to combine them into the evaluation function and the parameters of this combination.

In most of the literature on the subject, the first two steps are generally performed by the expert designer
and the only part left where learning algorithms are applied is the setting of the evaluation function’s
parameters. In other words, learning an artificial player for Tetris amounts to learning the correct set of



parameters of the evaluation function. This task has been performed using different methods, that is what
we will review briefly in the following.

3.1 Hand-tuning players

When the designer has enough insight about the desired behavior of the artificial Tetris player, it is
possible to tune the parameters of the evaluation function by hand and experimentation. Dellacherie [11]
proposed a set of six feature functions that were combined linearly (f1 ... fs in figure 3). He fixed the
combination weights by hand based on the importance he gave to the individual features. Interestingly
enough this controller was, until not long ago, one of the best performing ones, clearing 63 x 10* lines on
average.

3.2 Learning to play

Others have used machine learning methods to learn correct values of the weights of the feature functions.
Most of the works to this end use reinforcement learning algorithms. Although little success has been
achieved when compared to Dellacherie’s hand tuned player; it however, provides insights on the difficulty
of the task when the problem is formulated as a decision problem. In the following, we cite some of the
works designing Tetris controllers, using reinforcement learning. A more comprehensive review may be
found in Donald Carr’s thesis [§].

Among the first authors that addressed the problem of designing Tetris controllers, Tsitsiklis and Van
Roy [36] applied a feature based value iteration algorithm and reported a score of 30 cleared lines on
average. The algorithm operates in the space of features rather than in the state space where the problem
is intractable. Incidentally, the authors used only two features (the maximum height of the wall and the
number of holes). At the same time, Bertsekas and Tsitsiklis discuss in their book [3] the use of policy
iteration algorithms, more precisely the A-policy iteration algorithm. This algorithm iteratively refines a
policy (playing strategy) using simulations. The authors chose a set of 2w + 2 features where w is the
width of the game (22 features on the standard game). They extended Tsitsiklis and Van Roy’s features
with ones that represent the individual heights of each column and the differences of heights between
two adjacent columns, and reported average scores around 3200 = 20% lines. Later, on this same feature
set, Kakade [18] applied a natural policy gradient method and reported scores of 6800 cleared lines on
average. Farias and Van Roy [12] proposed to use linear programming for random constraints sampling
and reported scores of 4700 lines on average.

Finally, Lagoudakis et al. [21] proposed a reduced set of features with only ten: the maximum height, the
total number of holes, the sum of absolute height differences between adjacent columns, the mean height,
and the change of these quantities in the next step, plus the change in score and a constant term. Using
these features, the authors applied the least square policy iteration algorithm and reported scores between
1000 and 3000 lines on average. On this same feature set, Thiery and Scherrer [35] used the least square-
A-policy iteration algorithm, a generalization of the aforementioned A-policy in which the algorithm uses
a linear approximation of the state space and reported scores of 800 lines.

3.3 Optimizing players

Some authors considered the problem differently and proposed to set the parameters of the evaluation
function using optimization techniques. For instance, Szita and Lorincz [31] applied the noisy cross en-
tropy method algorithm (NCE) [9] to optimize the weights of the features introduced by [3] and reported
a score of 35 x 107 +36%. The algorithm treats the problem as a search in the space of all possible weight
vectors (IR22) for the one that maximizes the average score. Initially random, the search point is moved
according to a normal distribution at each step. Incidentally, this method closely resembles evolution
strategies [27, 2, 4], with some differences in the step-size update rule.

More recently Thiery and Scherrer [33] used the same NCE algorithm to optimize the weights proposed
by Dellacherie and other weights they proposed. They reported the impressive score of 35 x 10 4 20%



lines on average. Furthermore, the authors give a review of the existing works on learning Tetris players
and argue on the difficulty to compare different players using different interpretation of the game since
small implementation differences may lead to large discrepancies in the final score. They also provide a
simulator of the game that implements most of the features that exist in the literature so that algorithms
can be compared on the same basis. The work presented here uses the same simulator.

3.4 Evolving players

In the same spirit of the work above, some authors propose to optimize the parameters of the evaluation
function using evolutionary computation.

To our knowledge Siegel and Chaffee [29] were the first to propose such a design method that uses genetic
programming [20]. Though their work focuses on improving the speed of evolved programs, they used the
game of Tetris as an illustrative application and reported a mean score of 74 over 20 runs®. Llima [23] used
genetic algorithms to optimize the weights of the artificial player proposed on the GNU Xtris simulator.
The evaluation function uses six features: the maximum height of the wall, the number of holes, the
depth at which the current piece is dropped, the length of the frontier between empty and filled squares?,
cumulative wells (fg in figure 3) and the sum of the depths of all places where a long piece (I) would be
needed. The evolved controller scores 5 x 10* on average.

Furthermore, Bohm et al. [5] used an evolutionary algorithm to design Tetris players for which the authors
proposed new features along with Dellacherie’s features and three different evaluation functions: a linear
combination as in equation (2), an exponential combination and exponential with displacement. The
last two functions rate differently differences in heights when the board is low than when it is high,
reflecting the fact that the height of the wall is less critical when the wall is at the bottom of board. The
authors considered the two piece game for which they reported scores in the millions lines. More recently,
Langenhoven et al. [22] proposed to use particle swarm optimization (PSO) [19] to optimize the weights
of a feed forward neural network used as an evaluation function. The values of the feature functions are
inputs to the network of which the output is the value of the state. The PSO algorithm is used to optimize
the weights of the neural network. The authors reported scores around 15 x 10% lines on average.

4 Evolution strategies to learn Tetris

In this work, we propose to use evolutionary algorithms, more specifically an evolution strategy [27, 2, 4]
to learn the weights of an evaluation function for a Tetris player using the features of figure 3. We will
begin by introducing briefly evolution strategies (ES), and the variant we use here: the covariance matrix
adaptation evolution strategy (CMA-ES) [14, 15] and will then detail how we proceed to evolve artificial
Tetris players.

4.1 The CMA evolution strategy

The covariance matrix adaptations evolution strategy is an evolutionary algorithm that operates in con-
tinuous search spaces, where the objective function f can be formulated as follows:

% = argmax f(x) with f:R" — R.

It can be thought of as continuously updating a search point m € IR" that is the centroid of a normally
distributed population. The progress of the search point controls how the search distribution is updated
over time to help the convergence of the algorithm.

Algorithm 1 describes the general procedure of CMA-ES. At each iteration, the algorithm samples A points
(the offspring) from the current distribution (line 5) : x!™" ~ m* + o'z} and zt ~ N (0,C*) (i = 1--- 1)),

3To be more precise their artificial player does not use an evaluation function, the evolved programs use strategies of their own
discovered through evolution.
4For one empty square surrounded by filled squares, the value of the frontier is 4.



where C! is the covariance matrix and o > 0 is a global step-size. The u < X best of the sampled points
(the parents) are recombined by a weighted average (line 11) where wy > -+ > w, > 0 and Y i jw; =1
to produce the new centroid m*+!.

Algorithm 1 Procedure (u/u, \)-CMA-ES
Require: (A, m, o, f, n)

1: Begin

2 = [N2],m’:=m, 0" :=0,C’:=Lt:=1,p =pl =0

3: repeat

4: fori:=1toXdo

5: zt ~ N; (0, C") {Sample and evaluate offspring}

6: X; = mt+at><z§

7: f(x;) := eval(x;)

8  end for

9:  mft =3 w;x; {Recombine p best offspring, f(x1:2) < ... < f(xua)}

tH1_

10: pithi= (1= ¢o) Pl 4+ /¢o (2 = Co) fhess (Ct)% maitmt {Update o}

t4+1

11 tHl . gt (c_g ( lps" |l 71))
7 TP Evenn .
12: PZ—H = (1 - Cc)Pi +vee (2 - CC) Mcom a:m’ {Update C}
T

13 CHLi= (1= ¢,) O+ Septt (p) T e, (1 51 ) X0 wi (2, (2L,)"
4: t:=t+1
15: until stopping_criterion
16: return m’
17: End

Adaptation of the search distribution in CMA-ES takes place in two steps, first updating the mutation
step and then updating the covariance matrix. The step-size adaptation is performed using a cumulative
step-size adaptation [26], where the evolution path accumulates an exponentially fading path® of the mean
m! (line 13) where the backward time horizon is determined by c;!. The adaptation of the covariance
matrix C* takes into account the change of the mean (rank-1 update), and the successful variations in
the last generation (rank-u update) (respectively lines 16 and 17). An in depth discussion on setting the

parameters Cy, dy, Cey fhosss Mooy Ceo and their recommended values can be found in [13].

4.2 Some considerations

An important aspect of using evolutionary computation in problem solving is to gather as much informa-
tion about the problem as possible to have some insight on the shape of the search space, exploit it and
tune the algorithm to perform better. In the following we give some ideas about the shape of the search
space we are addressing.

4.2.1 Weights normalization

Since the evaluation function (equation 2) is a linear combination, let us consider two actions a; and as
to place a piece p in state s such that V(sy = vy(s,a1(p)) > V(s2 = 7(s, az2(p)).

Then Y7, wifi(s1) > Y i wifi(s2). If we view w; and f;(+) as the coordinate of vectors w and f(-), we
have w- f(s1) > w- f(s2) where “.” denotes the dot product. Let w = Ty then lwl|jw- f(s1) > ||wl|jw- f(s2)
or - f(s1) > w - f(s2). This shows that multiplying a weight vector by a constant will not change the
ranking of the decisions. In other words, all vectors ¢ x w, with ¢ constant are equivalent with respect to
the decisions of the player.

This is important to consider since it states that all the points of the search space that fall on the n
dimensional line passing through w will have the same fitness value. This phenomenon may reduce the

5The comparison of the travelled path with a path under random selection is used to adjust the step-size.



performance of an evolutionary strategy that bases the adaptation of the step size and the adaptation of
the covariance matrix on the progress of the search points, using path accumulation.

Experiments show that in this case the step sizes do not converge and keep increasing, which suggests that
the algorithm is following an unattainable moving target. This behavior is illustrated on figure 4 where
both the coordinate-wise step sizes and the solution (m') diverge.

One way, that we propose, to avoid such a behavior, is to add a slight modification to the algorithm to
limit the search to weight vectors of unit length thus bounding the search space to the surface of the unit
hyper-cube. After the sampling step (line 5 of algorithm 1), the vectors are normalized. Our experiments
show that this procedure significantly improves the convergence of the algorithm.
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Figure 4: Divergence of the coordinate-wise step sizes in log-scale (left) and the solution variables (right).
Typical run without normalization.

4.2.2 Fitness landscape

One other feature of the search space worth mentioning is linked to the score distribution of a Tetris player.
As stated above, the score of a Tetris player follows an exponential distribution. As a consequence, each
point of the fitness landscape is a random variable. On stochastic objective functions, the fitness values
of each individual follow a usually unknown distribution. On such problems, one cannot rely on a single
evaluation of the offspring which is usually not a reliable measure, but needs to make several ones and
compute statistics to estimate the true fitness.

In algorithms that rely only on the ranking of the population, as it is the case for CMA-ES, ranking based
on fitness values is not appropriate if the variability of the values is not taken into account. In such cases
the ranking may not be correct and may lead to poorly selected parents.

There is a thriving literature on methods to tackle these class of fitness landscapes [17]. For example [13]
proposes UH-CMA-ES which, among other things, increases the population variance when a change in
the ranking of the population is detected i.e. when noise is detected. Others [30, 28] proposed methods to
reduce the number of evaluations applicable when the distribution of the noise in the fitness function is of
a particular type.

In section 5, we will describe more elaborate methods to reduce the number of evaluations, for the time
being we will present a simple version of the learning strategy that estimates the fitness by averaging over
fixed number of evaluations.

A candidate solution is evaluated (line 6 of the algorithm1) by playing a certain number of games and its
fitness value is the average score. Furthermore, since selection is based on ranking, if the offspring plays
different games their ranking may be flawed. In order to provide a coherent ranking of the offspring, we
evaluate them on the same series of games. At each iteration, a series of independent games (random
seeds) are drawn randomly and each individual of the X offspring plays the same games. This way we can
assess of the offspring’s performance on the same setting.



4.3 Illustrative experiments

The experiments we conducted are divided in two parts: a learning phase and an evaluation phase. In
the learning phase, the weights of the player’s strategy are learned using CMA-ES. The player’s strategy
is then evaluated on a series of games which assess its performance. The games were simulated on the
MDPTeris platform®. All the expriments were repeated 50 times and the curves represent median values.

Before going into further details, we begin by discussing the score distribution of the game of Tetris. Due
to the stochastic nature of the game, the score histogram of an artificial player using a fixed strategy
follows an exponential distribution. This observation was confirmed experimentally by [31] where the
authors argue that this distribution is an exponential distribution with 0.95 probability. Furthermore [33]
extends the analysis and derives a way to compute confidence intervals of the empirical average score of
the player:

lw—pl _ 2

fr T VN

where i is the average score of the player, p is the expected score and N is the number of games on
which we average. Therefore when we compute the average score over 100 games, the confidence intervals
is +20% with probability 0.95. This is important for the remaining, since comparing different players
solely on their average score does not make sense if they fall within the same confidence intervals. In the
remaining, all the scores presented are the average of 100 games and thus have to be considered within
20%, unless otherwise stated.

In our experiments, a learning episode goes as follows: starting with a zero vector (m® = 0) and given
an initial step size (typically o = 0.5), we run the algorithm for a fixed number of generations, in the
presented experiments 50 iterations. At the end of one run we record the mean vector produced and
we repeat this procedure for a certain number of times typically 20, thus ending with 20 mean vectors.
Finally, the average of these mean vectors is the player’s strategy we evaluate.

This experimental protocol is different from what is generally used in the literature. Often authors choose
the best vector of one run as the player’s strategy, which in our sense is not reliable due the nature of the
score distribution. In our experiment, the fitness of each individual is the average of 100 games. As it is
shown on the left of Figure 5 the fitness of the mean and the best individual fall within the 20% confidence
interval. Furthermore, using our experimental protocol enables to reproduce experiments.

4.4 Comments
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Figure 5: (Left) Fitness of the centroid (m), the best search point (z1.)) and the step size (o) scaled up
by 10? to fit on the figure. (Right) Weights of the features function (components of mean vector m)

6MDPTetris is available at http://mdptetris.gforge.inria.fr
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Figures 5 and 6 illustrate the behavior of the algorithm during a typical learning session. On the left of
Figure 5 is given the fitness of the centroid (mean) of the population with the fitness of the best search
point. The left hand side of Figure 5 shows also the evolution of the step size (). A decreasing value shows
that the algorithm reduces its steps as it approaches the optimum, which suggests that the adaptation
procedure works. This can be further supported by Figure 6, on which the eigenvalues of the covariance
matrix also converge as do the coordinate-wise standard deviations.

Lastly, the right part of Figure 5 illustrates the evolution of the centroid of the population, each curve
corresponds to a weight of the player’s strategy. Most of the weights stabilize except for 4 and 5 (at the
bottom of the curve) which seem to follow the opposite path, when one increases the other decreases and
vice versa. This behavior is under investigation.

The results presented in Table 1 summarize the scores of players obtained using CMA-ES on Dellacherie’s
features [11] and Thiery’s [33] features. As explained in section 4.3, these players are the mean of the
weights vectors obtained by running 20 times CMA-ES. The scores are compared with the scores of the
hand fixed weights from [11] obtained on the simulator we used, and the scores reported by [33].

Table 1: Scores of the players obtained by the CMA-ES.

CMA-ES [11] [33]
Size fi..6 fi..8 fi..6 fi..6 fi.8
10x16 4.7x10° 8.7x10° 2.5x10° 5.3x10° 9.1x10°
1020 16.6x10% 36.3x10° 6.6x10° 17x10° 35x10°

As we can see on Table 1, the player learned on CMA-ES performs better than the player using hand
fixed weights on both games sizes. On the other hand, it performs equivalently with the one learned on
NCE, the average score is higher on the 10x20 game however it falls within the same confidence interval.
Similarly, NCE scores higher on the 10x16 game, but taking into account the confidence interval the
scores are equivalent.

When the game size is small enough, an optimal policy may be computed. This has been done by Thiery
and Scherrer [32] on the board of size 5x5 using the value iteration algorithm. On this configuration, they
reported a mean score of 13.840.6% lines measured over 10° games. Interestingly we observe a similar
average score (13.83974) on the controller learned on this game configuration. This suggest that players
learned by CMA-ES are very close to the optimal player on the board of size 5x5. Using Dellacherie’s
features we obtain slightly lower average scores (13.2959).
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5 Tetris is hard to learn !

Although a fascinating research question, designing artificial players for the game of Tetris can be a
frustrating experience. This is due to different facts of the game. For instance, evaluating a decent player
can take many hours on a modern computer which makes experiments on methods that rely on extensive
evaluations such as evolutionary computation very time consuming. Furthermore, when candidate players
learn better strategies throughout their evolution, the games last longer. On good players like the ones we
present here, learning can last weeks on a state of the art desktop computer. Therefore the sensible thing
which many authors often do is to adapt their algorithms to reduce the evaluation time.

One way to do so, is to reduce the number of games the player plays during the evaluation step. This
however is not desirable since the estimation of the fitness of the player is less accurate. There are few
methods to reduce the length of the evaluation time. In the following, we describe two, which helped
us reduce drastically the length of our experiments. The first method changes the rules of the game to
make it harder to play which consequently pushes the players to loose faster thus reducing the length of
the evaluations. The second method reduces the number of games played such that only the necessary
number of games for an accurate evaluation is played. Incidentally, both these methods can be combined.

5.1 Reducing the game length

To reduce the length of the games some authors have reduced the board size. When the board is smaller,
the player looses faster. For example Bohm et al. [5] evaluated players on games of size 6 x 12 during the
learning process. Doing so reduces significantly the learning time however, our experiments showed that
players learned on smaller game sizes do not scale up with others learned on larger ones.

We compared two players, one learned on a 10 x 20 game and the other on a 6 x 12 game. When tested
on a 10 x 20 game, the one that learned on this game size performs better (36.3 x10° versus 17 x10°).
We drew the same observation for other smaller size except for 10 x 16 where the players seem to perform
similarly. We think that learning on smaller games may specialize the players for that game size and does
not enable them to generalize to larger games.

Rather than learning on smaller games, we propose a different approach to shorten the evaluation time,
let the player learn on “harder games” of size 10 x 20. These games can be obtained by increasing the
probability at which “Z” and “S” pieces appear (figure 1). These pieces are the hardest to place and are the
ones that push the player to produce many holes in the board. Increasing their probabilities reduces the
game length significantly and the learning time on a 10 x 20 game drops from months to hours.

Table 2 summarizes the scores of players learned on smaller games (size 6 x 12) and players learned on
harder games (probability % for “Z” and “S”) on games of size 10 x 16 and 10 x 20. The results show that
a better way to reduce the learning time is to increase the probability of “Z” and “S” pieces.

Table 2: Learning on smaller vs. learning on harder games.
Game size Smaller games Harder games
10 x 16 8.79x10° 8.7x10°
10 x 20 17x10° 36.3x 10°

5.2 Reducing the number of evaluation

As we argued in section 4.2.2, evaluating the offspring population should be done on multiple games
since the fitness function follows an exponential distribution. However, in this case the evaluation time of
the population is increased and can lead to long experiments. In this section we describe how to reduce
significantly the number of evaluations needed to evaluate the fitness of the population while preserving
the accuracy of the population ranking.

In order to reduce the number of re-evaluations, we need to disregard all those that are not necessary and
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that do not improve the information we have on the offspring fitness. In other words reevaluations are not
wasted on poorly performing individuals once these are detected.

One way to perform this is to take into account confidence bounds around the estimated fitness value
using racing methods [24, 1, 25]. These methods adapt the number of evaluations dynamically until the
algorithm reaches a reliable ranking in the population. [16] proposed to use such methods on evolution
strategies and reported some success on different machine learning problems. These methods reevaluate
only individuals that are statistically indistinguishable from each other i.e. individuals whose confidence
intervals (CI) around the mean fitness overlap.

Reevaluation in this case is used to reduce the confidence intervals. Once enough individuals with non
overlapping intervals are found, the procedure stops. When the distribution of the fitness function is not
known, this confidence intervals are computed using empirical methods using for example Hoeffding or
Bernstein bounds which will be described below.

5.2.1 Computing confidence bounds

The racing procedure we propose to use is inspired from [16]. At each iteration of Algo 1, the A offspring
undergo multiple evaluations until either : 1) p outstanding individuals get out of the race, in which case
we are sure (with probability (1 — §)) that they are distinct. Or 2) the number of evaluations reaches some
upper limit 74;,,;+ in which case the evaluation budget is exhausted. Furthermore, the upper bound 7;,:¢
is adjusted by the algorithm. If the actual number of evaluations necessary to distinguish p individuals is
less than the limit 74,4, this one is reduced:

Timat := max(1/arimit, 3) (3)

with a > 1, and 3 is the minimum number of evaluations. On the other hand if 7;;,,;; evaluations where
not enough to distinguish p individuals, then r;,;: is increased:

Tlimit = MI0(Q Timit, Tmaz) (4)
where 7,42 is @ maximum number of evaluations. Initially 7+ = 3 and it is adapted at each iteration
of Algo 1 using the above two rules.

After r re-evaluations, the empirical bounds c¢;, around the mean fitness of each individual )A(m =
=30y fI(xi) where i = 1... )\, are computed with:

_ log (2np) — log (4)
chy = o2 )

using the Hoeffding bound and

b A
Ci,r = 0Oir

\/2 log (3nb)rf log (9) n 3R10g (3nb)rf log (9)

(6)

using Bernstein.

) N2
Where ny, < Argimie is the number of evaluations in the current race, 61-2,T = % Z;Zl (fJ (x;) — Xm) is the

standard deviation of the fitness for individual z;, and (1 — ¢) is the level of confidence we fix. R = |a — b|
such that the fitness values of the offspring are almost surely between a and b. These two constants are
problem dependent.

After each evaluation in the race the lower bounds {b; , and the upper bounds ub; , around the mean of
each offspring are updated to the tightest values:

1,7

lbi,T = max (lbiﬂ__l, Xiﬂ_ — Ch/b)
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and R
ubi » = min (lbiyr,l, X+ C%b)

Beside the above empirical bounds, there exists for the game of Tetris estimated bounds on the mean
score of the player [34] which we also used in the racing procedure. We have:

X - X|/X <2/vn (7)

with probability 0.95, where X is the average score of the player on n games and X is the expected score.
In the remainder we will refer to this bound as the Tetris bound.

5.3 Illustrative experiments

In the following, we present few experiments in different settings to compare the effect of the racing
procedures described above and a version that does not use racing as well. In all experiments the initial
search point zy was drawn randomly with ||zo]] = 1 and the initial step-size 09 = 0.5. We let the
algorithm run for 25 iterations (improvements for larger values were not noticeable), we set 7y, = 100
and § = 0.05. As in the previous section there are eight feature functions in the evaluation function
therefore the dimension of the search space is n = 8. CMA-ES parameters ¢, do, Ce, fhersy feo a0d Cep
were set to their default values as presented in [13].

In order to reduce the learning time, we adopt the same scheme as presented above and evaluate the
offspring on harder games, in which “S” and “Z” appear four times more frequently than in the standard
game.

The algorithm maximizes the score of the game i.e. the fitness function is the average of lines scored by
a search point on a number of games. When racing is applied, this number of games can go from 3 to
Tmaz- When it is not applied, it is 7,4, The initial bounds a and b used to compute R (eq. 6) were fixed
experimentally to a = 150 and b = 2000.

Finally, as described in the previous section, offspring are normalized and at each iteration a series of 7,4
independent games (random seeds) are drawn randomly such that each individual of the A offspring plays
the same series of games.

5.4 Comments

The effect of racing is clear on the learning time of the algorithm. The number of evaluations is indeed
reduced without a loss of performance. Figure 7 on the right shows the fitness function of the mean vector
(the centroid of the distribution) for the different racing procedures and without racing. All algorithms
reach the same performance at different evaluation costs. Hoeffding bounds perform the best, reaching the
performance for the smallest evaluation time, followed by Tetris bounds and Bernstein. Figure 7 on the
left shows the median rate of evaluations (7jm+ being 100%) used in the races. With Tetris bounds this
number of evaluations is reduced at the beginning of the learning process and increases towards the end
reaching r;mq¢. For Hoeffding bounds the number of evaluations oscillates between 7;,,,; and lower values.
Finally, Bernstein bounds were not efficient compared to Hoeffding bounds, the number of evaluations is
not reduced and at each race each individual is evaluated 7y;,,;+ times. This is due to the fact that the
standard deviation of the fitness is of the same order of its average. This is the case for Tetris, the standard
deviation of the score distribution is almost equal to its mean. In other words o7j ¢ is large compared to R
in equation 6. When this is the case, Hoeffding bounds are tighter than Bernstein’s, and this is the case
in all our experiments.

Recall that ry;,:; is adapted using equations 3 and 4 and is initially set to 3, which explains why in the
right of Figure 7, Bernstein races used less evaluations than in the case without racing.

We noticed also that there is a large variability in the racing procedure. Figure 8 shows the rate of
evaluation out of 7y, of all 50 runs for Hoeffding and Tetris bounds.
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Figure 7: On the left, the number of evaluations with racing using different bounds versus iterations. On
the right, log of the fitness of the mean vector m’ versus the number of evaluations. Median values over
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races (left). Using Tetris bounds (right)

It is interesting to notice that the racing procedures reduce the number of evaluations early in the process
and do not perform as well at the end. At this stage the racing procedure cannot distinguish between the
offspring and selection is made only based on the fitness values (averaged over the ry;,; reevaluation).
The CI around the offspring’s fitness overlap indicating that they perform equally well. This also suggests
(see below) that the ranking of the offspring might not be correct. Incidentally, this corresponds to the
time where the convergence of step-sizes start to “flatten” (Figures 10 and 11).

The effect of the population size on the racing procedure can be seen on Figure 9 where is shown the
number of evaluations out of 7y, for different population sizes. Apparently increasing the population
size reduces the number of evaluations within the race using Hoeffding bounds. On the other hand the
opposite can be seen when using Tetris bounds.

Furthermore the population size does not effect the performance of the algorithms, the median value of
the mean vector fitness reaches similar values for different population sizes. This is the case for both Tetris
and Hoeffding bounds (figures 10 and 11).

Figure 12 shows the effect of the confidence value on the evaluation time. It presents four setting with
different confidence (1 —¢) levels. Using Hoeffding bounds, if we reduce the confidence value the algorithm
stops earlier. This is the expected behavior: reducing the confidence reduces the bounds and races are
decided faster. On the other hand, Bernstein bounds are not affected at all. The races are not able to
distinguish statistical differences between the offspring even with low confidence values.

In order to assess the results of the racing procedure, we test the learned players on a standard game” and
compare the scores with previously published scores. We follow the same scheme as in Sec. 4.3 to construct
the player. We record the last mean vector m! of each run of the algorithm and compute the mean of all
these vectors (in our setting 50). This is merely a convention and others are possible®. The score of
a player is the average score on 100 games. Taking into account variability of the score distribution, a
confidence bound of £20% is to be taken into account (see equation 7).

6 Further thoughts and considerations

One other aspect we are interested in is the nature of the learned weight vectors and consequently the
strategies. Surprisingly, we notice that even thought the search space (fitness function) is noisy, which
suggests a hard optimization problem, the learned vectors throughout different independent experiments
seem close to each other. In other words the algorithm converges toward the “same” region of the search
space. This is more noticeable in the case of features fi... fg than for the case of features fi... fs.

7A game of size 10 x 20 with all seven pieces equally probable.
80ne could also choose the best performing vector out of the whole set. However testing them all on a reasonable number of

games might be long. For example testing one player on 10 games took 15 hours on a 2 Ghz CPU.
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Figure 13 shows a series of learned vectors produced by 20 independent runs using box and whiskers
plot. In the case of the feature set f; ... fs the quartiles are larger, which suggests that the corresponding
weights did not converge. This said, the average vector (the solid line) for which the score is given in
Table 1 performs well.

Furthermore, even though both feature sets share features fi ... fg, the learned weights for these features
do not converge to the same values in both experiments. This behavior suggests that features f7 and fg
conflicts somehow with f; and f5. This is purely speculative since these features measure different things,
however this phenomenon should be further investigated.

If we compare the learned vectors with the vectors provided by Dellacherie [11] and Thiery [33], we notice
that on some features our vectors have similar weights. Although we cannot compare directly these
vectors since they were produced using different experimental protocols’. However, on the one hand this
observation further supports our previous argument stating that the search space may not be extremely
multimodal'®. On the other hand, it was interesting to realize that some of the weights our vectors learned
are close to the weights that an expert has fixed by hand. Though our player performs better than his
when tested (table 1), the major differences in the weights resides in features f4 and f5 that Dellacherie
weights respectively higher and lower than CMA-ES. The same conclusion can be drawn from Figure 13
between the weights learned using CMA-ES and NCE, on which they seem very close.

77

Finally, if we consider values of the weights obtained we notice that the algorithm produces a “sensible
playing strategy. It minimizes the landing height (f1), the number of transitions from filled to empty
vertically and horizontally (fs, f1), the number of holes (f5) and the number of rows with holes (fs).
It also minimizes the depth of the wells (fs) and the depth of the holes (f7). The only feature that is
maximized is the number of eroded pieces (f2) which is directly related to the number of lines scored.
Furthermore, features f; and fs were considered by the algorithm as more important than the others
without considering fs.

7 Conclusions

The game of Tetris is probably among the few games that are popular worldwide and designing artificial
players is a very challenging question. Our aim in this paper is to show that evolutionary computation
can be applied to design good strategies for the game of Tetris that can compete with the best reported
players. The player strategy uses a feature-based game evaluation function to evaluate the best moves for

9Recall that our vectors are averaged over several runs (section 4.3) which is not the case for [33] and also not the case for [11]
since they were fixed by hand
10This argument may only be valid for these sets of features.
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a given state and which is optimized using the CMA evolution strategy.

We have shown that by analyzing the shape of the search space, we were able to adapt the algorithm to
converge better in this particular case. We also discuss how to reduce the length of the games which serves
greatly when running lengthy learning algorithms. The racing procedures presented allow to learn very
good player at a fraction of the learning cost.

We think that designing good artificial players should not rely only in optimizing the weights of a set of
features, but also in choosing good feature functions. In fact our different experiments showed us that
for the feature set presented here, we have probably obtained the best player and further improvements
will not be significant if we take into account confidence intervals. Improvements could be achieved using
better feature functions, ones that synthesize the game better. An interesting research question would be
to devise algorithms to learn new feature functions rather than only learn the weights.
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