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aControl System Department of GIPSA-Lab, University of Grenoble, St. Martin d’Héres, 38402 France
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Abstract

Adaptive feedforward broadband vibration (or noise) compensation is currently used when a correlated

measurement with the disturbance (an image of the disturbance) is available. Most of the active vibration

control systems feature an internal ”positive” mechanical feedback between the compensation system and

the reference source (a correlated measurement with the disturbance). Such systems have often also a feed-

back control loop for reducing the effect of disturbances. Therefore the adaptive feedforward compensation

algorithms should take into account this structure. For stability reasons the adaptation algorithms requires

the implementation of a filter on observed data or a filtering of the residual acceleration in order to satisfy

some passivity conditions. The paper proposes new algorithms for the adaptive feedforward compensation

in this context with both filtering of data and of the residual acceleration and using an ”Integral + Propor-

tional” (IP) adaptation as a means for accelerating the transients as well as for relaxing the positive real

conditions required by the stability analysis. The paper also shows that the main interest in filtering the

residual acceleration is to shape in the frequency domain the power spectral density (PSD) of the residual

acceleration. The algorithms have been applied to an active vibration control (AVC) system and real time

results illustrating the advantages of the proposed algorithms are presented.

Keywords: active vibration control, adaptive feedforward compensation, RS controller, adaptive control,

hybrid feedforward-feedback compensation, parameter estimation

List of acronyms

ANC Active noise control IP-PAA “Integral + proportional” parameter adaptation

ANVC Active noise and vibration control algorithm

AVC Active vibration control O.D.E. Ordinary differential equation

EFR Equivalent feedback representation PAA Parameter adaptation algorithm

FIR Finite impulse response PRBS Pseudo random binary sequence

FULMS Filtered-u least mean squares PSD Power spectral density

IIR Infinite impulse response SHARF Simplified hyperstable adaptive recursive filter

IP ”Integral + proportional” SPR Strictly positive real (transfer function)

1. Introduction

Adaptive feedforward for broadband disturbance compensation is widely used when a well correlated

with the disturbance signal (image of the disturbance) is available ([1–4]). However, in many systems, there
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is a positive mechanical coupling between the feedforward compensation system and the measurement of

the image of the disturbance. This often leads to the instability of the system.

In the context of this inherent ”positive” feedback, the adaptive feedforward compensator should min-

imize the effect of the disturbance while simultaneously assuring the stability of the internal positive feed-

back loop.

An approach discussed in the literature is the analysis in this new context of existing algorithms for

adaptive feedforward compensation developed for the case without feedback. An attempt is made in [5]

where the asymptotic convergence in a stochastic environment of the so called ”Filtered-U LMS” (FULMS)

algorithm is discussed. Further results on the same direction can be found in [6]. The authors use the

Ljung’s ODE method ([7]) for the case of a scalar vanishing adaptation gain. Unfortunately this is not

enough because nothing is said about the stability of the system with respect to initial conditions and when

a non vanishing adaptation gain is used (to keep adaptation capabilities). The authors assume that the

positive feedback does not destabilize the system.

A stability approach to develop appropriate adaptive algorithms in the context of internal positive feed-

back is discussed in [8] and [9]. In [9] there is also an experimental comparison of various algorithms for

IIR adaptive compensators in the presence of the internal positive feedback.

Combining adaptive feedforward compensation with feedback control has been considered as an issue

to further improve the performance of the adaptive feedforward compensation alone. Several references are

available, such as [10–12]. While various procedures for designing the fixed feedback controller can be

considered, it is clear that an improvement of the global performance can be obtained. Unfortunately, there

is a strong interaction between the presence of this local feedback controller and the stability conditions for

the adaptive feedforward compensations algorithms. One of the important observations resulting from the

analysis developed in this paper, is that the stability conditions for the adaptive feedforward compensation

are highly influenced by the design of the feedback loop. This interaction is further enhanced when the

internal positive coupling is present. The major practical consequence is that the filters used in order to

assure the stability conditions for the adaptive feedforward compensation will depend upon the elements of

the feedback compensation loop built around the secondary path and upon the parameters of the positive

internal feedback loop.

Another important issue in adaptive feedforward compensation is the design of filters either on the

observed variables of the feedforward compensator or on the residual acceleration in order to satisfy positive

realness conditions on some transfer functions. In [9] based on the work done by [13], it was shown that

for small adaptation gains (slow adaptation) the violation of the positive real conditions in some frequency

regions is acceptable, provided that in the average, the input-output product associated with this transfer

function is positive. It is in fact a signal dependent condition.

However, the problem of removing or relaxing the positive real condition can be also approached by

adding a proportional adaptation to the widely used integral adaptation. While this approach is known in

adaptive control [14, 15], it has not been used apparently in the context of adaptive feedforward compensa-

tion. One other effect of the ”Integral + Proportional” (IP) adaptation is that of speeding up the transients

of the adaptation error.

A subject of debate in the context of adaptive feedforward compensation was the choice between filter-

ing the data or filtering the residual acceleration (error) in order to satisfy the positive realness conditions

required by the stability analysis (in the presence of the internal positive feedback or not). Some of the

references discussing this issue are [16–19]. As it will be shown, the reason to use one of the two options

is related to the criterion which is minimized and to the presence or not of unstable zeros in the secondary

path. The filtering of the residual error will affect the PSD of the residual error. There are a number of situ-
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ations where shaping the residual error in the frequency domain is very useful. A more detailed discussion

on the various implications of both types of filtering will be done later in this paper.

From the user point of view and taking into account the type of operation of adaptive disturbance

compensation systems, one has to consider two modes of operation of the adaptive schemes:

• Adaptive operation. The adaptation is performed continuously with a non vanishing adaptation gain

and the feedforward compensator is updated at each sampling.

• Self-tuning operation. The adaptation procedure starts either on demand or when the performance is

unsatisfactory. A vanishing adaptation gain is used.

Scalar adaptation gains are used in some algorithms for adaptive feedforward compensation, but most

of the recent algorithms use RLS type matrix adaptation gains able to cover both self tuning and adaptive

operations. In the context of the absence of internal feedback, [17] gives a detailed comparison of the two

types of adaptation gain. A quite similar comparison in the presence of the internal positive feedback can

be found in [9]. Although not detailed in this paper, it is important to keep in mind that the time varying

adaptation gains associated with RLS type algorithms require the use of a UD factorization for implemen-

tation in real time in order to avoid numerical errors due to round off errors [14, 20]. The complexity of the

algorithms has been one of the reasons why initially algorithms using a scalar adaptation gain have been

used. It turns out that using an array type implementation strongly reduces the complexity of algorithms us-

ing RLS type matrix adaptation gain. This is very pertinently shown in the context of adaptive feedforward

compensation in [21].

The objectives of the paper are:

• To introduce the IP adaptation algorithm for adaptive feedforward compensation;

• To introduce new algorithms allowing simultaneously the filtering of the observation vector and/or

the filtering of the residual error;

• To make a stability analysis in the presence of internal positive feedback and local linear feedback;

• To provide the rationale for the choice of various filters used in adaptive feedforward compensation;

• To provide a general form for the adaptive feedforward compensation algorithms which includes

as particular cases (almost) all adaptive feedforward IIR compensator algorithms available in the

literature.

The main contributions of this paper are:

• Analysis of the interaction between the local feedback loop and the adaptive feedforward compensa-

tion in the presence of an internal positive feedback coupling;

• Development and analysis of a general algorithm for adaptive feedforward compensation in the pres-

ence of an internal positive coupling and a local feedback controller using both filtering of the ob-

servations and of the residual error and an Integral + Proportional Parameter Adaptation Algorithm

(IP-PAA);

• Enhancement of the role of the desired performance criterion in the design of specific algorithms;

• Enhancement of the use of proportional adaptation to relax the positive real conditions;

• Comparison of the new algorithms with some existing algorithms;

• Application of the algorithms to an active vibration control system featuring internal positive me-

chanical coupling.
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The paper is organized as follows. The experimental setup is described in Section 2. The system

representation and feedforward and feedback compensator structures are given in Section 3. The algorithms

for adaptive feedforward compensation are developed in Section 4 and analyzed in Section 6. A discussion

of the various algorithms is presented in Section 5. The problem of SPR relaxation is discussed in Section 7.

In Section 8, a comparison with other algorithms from the literature is done. Section 9 presents experimental

results obtained on the AVC system described in Sectin 2.

2. An Active Vibration Control System Using an Inertial Actuator

Figure 1: The AVC system used for experimentations - photo.
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Figure 2: An AVC system using an adaptive feedforward and a fixed feedback compensation scheme.

Figures 1 and 2 represent an AVC system using a measurement correlated with the disturbance and

an inertial actuator for reducing the residual acceleration. The structure is representative for a number of

situations encountered in practice.

The system consists of 5 metallic plates (in dural of 1.8 Kg each one) connected by springs. The plates

M1 and M3 are equipped with inertial actuators. The one on M1 serves as disturbance generator (inertial

actuator 1 in Figure 2), the one on M3 serves for disturbance compensation (inertial actuator 2 in Figure 2).

The system is equipped with a measure of the residual acceleration (on plate M3) and a measure of the

image of the disturbance made by an accelerometer posed on plate M1.
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Figure 3: Feedforward AVC: in open loop (a), with RS controller and adaptive feedforward compensator (b).

The path between the disturbance (in this case, generated by the inertial actuator on top of the structure),

and the residual acceleration is called the global primary path. The path between the measure of the

image of the disturbance and the residual acceleration (in open loop) is called the primary path and the

path between the inertial actuator for compensation and the residual acceleration is called the secondary

path. When the compensator system is active, the actuator acts upon the residual acceleration, but also

upon the measurement of the image of the disturbance (a positive feedback). The measured quantity ŷ1(t)
will be the sum of the correlated disturbance measurement w(t) obtained in the absence of the feedforward

compensation (see Figure 3(a)) and of the effect of the actuator used for compensation.

The disturbance is the position of the mobile part of the inertial actuator (see Figures 1 and 2) located

on top of the structure. The input to the compensator system is the position of the mobile part of the inertial

actuator located on the bottom of the structure.

The corresponding block diagrams in open loop operation and with the hybrid (feedback-feedforward)

compensation system are shown in Figures 3(a) and 3(b), respectively. In Figure 3(b), ŷ1(t) denotes the

effective output provided by the measurement device and which will serve as input to the adaptive feedfor-

ward filter N̂ . The control signal û(t), resulting from the difference between the output of the feedforward

filter denoted by û1(t) and the output of the feedback controller, is applied to the actuator through an ampli-

fier. The transfer function G (the secondary path) characterizes the dynamics from the control signal to the

residual acceleration measurement(e0(t)) (amplifier + actuator + dynamics of the mechanical system). The

transfer function D between w(t) and the measurement of the residual acceleration (in open loop operation)

characterizes the primary path.

The coupling between the control signal û(t) and the measurement ŷ1(t) through the compensator

actuator is denoted by M . As indicated in Figure 3(b), this coupling is a ”positive” feedback. This unwanted

coupling raises problems in practice (source of instabilities) and makes the analysis of adaptive (estimation)
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algorithms more difficult. The system shown in Figure 3(b) can be represented in the standard feedback

form shown in Figure 4 (for details see Section 3).

Figure 4: Feedback representation of the system shown in Figure 3(b).

At this stage it is important to mention that very reliable models of the various paths can be obtained by

system identification techniques in the absence of the feedforward and feedback filters.

3. Basic Equations and Notations

The different blocks of the AVC system (Figure 3(b)) are described in this section. The primary path is

characterized by the asymptotically stable transfer operator

D(q−1) =
BD(q

−1)

AD(q−1)
, (1)

where1

BD(q
−1) = bD1 q

−1 + ...+ bDnBD
q−nBD = q−1B∗

D(q
−1), (2)

AD(q
−1) = 1 + aD1 q

−1 + ...+ aDnAD
q−nAD . (3)

The unmeasurable value of the output of the primary path (when the compensation is active) is denoted

x(t).
The secondary path is characterized by the asymptotically stable transfer operator

G(q−1) =
BG(q

−1)

AG(q−1)
, (4)

where

BG(q
−1) = bG1 q

−1 + ...+ bGnBG
q−nBG = q−1B∗

G(q
−1), (5)

AG(q
−1) = 1 + aG1 q

−1 + ...+ aGnAG
q−nAG . (6)

The positive feedback coupling is characterized by the asymptotically stable transfer operator

M(q−1) =
BM (q−1)

AM (q−1)
, (7)

where

BM (q−1) = bM1 q−1 + ...+ bMnBM
q−nBM = q−1B∗

M (q−1), (8)

1Throughout the paper, the notation X(q−1) = x0 + q−1X∗(q−1) will be used. Usually, x0 will either be 1 or 0.
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AM (q−1) = 1 + aM1 q−1 + ...+ aMnAM
q−nAM . (9)

BG, BM , and BD have a one step discretization delay. The identified models of the secondary path and

of the positive feedback coupling are denoted Ĝ and M̂ , respectively, and their numerators and denomina-

tors B̂G, ÂG, B̂M and ÂM .

The equations associated with the feedback system representation shown in Figure 4 are:

[

e0(t)
ŷ1(t)

]

=

[

P11 P12

P21 P22

] [

w(t)
û(t)

]

=

[

D G
1 M

] [

w(t)
û(t)

]

, (10)

û(t) = KT ŷ(t), (11)

K = [N̂ , −K]T , (12)

ŷT (t) = [ŷ1(t), y2(t)] = [ŷ1(t), e
0(t)], (13)

where e0(t) is the performance variable to be minimized (residual acceleration), ŷ1(t) is the measured

variable (image of the disturbance), w(t) is the disturbance (w(t) = W (q−1)s(t)), and û(t) is the control

input2.

The optimal feedforward filter (unknown) is defined by

N(q−1) =
R(q−1)

S(q−1)
, (14)

where

R(q−1) = r0 + r1q
−1 + ...+ rnR

q−nR , (15)

S(q−1) = 1 + s1q
−1 + ...+ snS

q−nS = 1 + q−1S∗(q−1). (16)

The estimated feedforward filter is denoted by

N̂(q−1) =
R̂(q−1)

Ŝ(q−1)
. (17)

The vector of optimal feedforward filter parameters is

ΘT = [s1, . . . snS
, r0, . . . rnR

]T (18)

and the vector of estimated feedforward filter parameters is

Θ̂T (t) = [ŝ1(t), . . . ŝnS
(t), r̂0(t), . . . r̂nR

(t)]T . (19)

The fixed feedback controller K, computed on the basis of the model Ĝ to reject broadband disturbances

on the output e0(t), is characterized by the asymptotically stable transfer function

K(q−1) =
BK(q−1)

AK(q−1)
, (20)

where

BK(q−1) = bK0 + bK1 q−1 + ...+ bKnBK
q−nBK , (21)

2If w(t) is not measured P21 = 0. If there is no internal positive coupling M = 0.
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AK(q−1) = 1 + aK1 q−1 + ...+ aKnAK
q−nAK . (22)

The input of the feedforward filter (called also reference) is denoted by ŷ1(t) and it corresponds to the

measurement provided by the primary transducer (force or acceleration transducer in AVC or a microphone

in ANC). In the absence of the compensation loop (open loop operation), ŷ1(t) = w(t). The output of the

feedforward compensator is denoted by û1(t+ 1) = û1(t+ 1|Θ̂(t+ 1)) (a posteriori output)3.

The measured input to the feedforward filter can also be written as

ŷ1(t+ 1) = w(t+ 1) +
B∗

M (q−1)

AM (q−1)
û(t), (23)

where

û = û1(t)− u2(t), (24)

û1(t) and u2(t) are the outputs given by the adaptive feedforward and the fixed feedback compensator,

respectively. û is the effective input sent to the control actuator.

The a priori output of the estimated feedforward filter is given by

û01(t+ 1) = û1(t+ 1|Θ̂(t)) = −Ŝ∗(t, q−1)û1(t) + R̂(t, q−1)ŷ1(t+ 1)

= Θ̂T (t)Φ(t) =
[

Θ̂T
S (t), Θ̂

T
R(t)

]

[

Φŷ1(t)
Φû1

(t)

]

(25)

where Θ̂T (t) has been given in (19) and

ΦT (t) = [−û1(t), . . . − û1(t− nS + 1), ŷ1(t+ 1), ŷ1(t), . . . ŷ1(t− nR + 1)]

= [ΦT
û1
(t), ΦT

ŷ1
(t)] (26)

is called the observation vector.

In the context of this paper, fixed feedback compensators K will be considered. The input to the

feedback compensator is given by the performance variable, therefore y2(t) = e0(t). Its output will be

u2(t) = K · y2(t).
The unmeasurable value of the output of the primary path (when the compensation is active) is denoted

x(t). The a priori output of the secondary path is denoted ẑ0(t+1) = ẑ(t+1|Θ̂(t)) while its input is û(t).
One has

ẑ0(t+ 1) =
B∗

G(q
−1)

AG(q−1)
û(t) =

B∗

G(q
−1)

AG(q−1)
û(t|Θ̂(t)). (27)

The measured residual acceleration (or force) satisfies the following equation

e0(t+ 1) = x(t+ 1) + ẑ0(t+ 1). (28)

The filtered a priori adaptation error is defined as

ν0(t+ 1) =ν(t+ 1|Θ̂(t)) (29)

=ε0(t+ 1) +

n1
∑

i=1

vBi ε(t+ 1− i)−

n2
∑

i=1

vAi ν
0(t+ 1− i), (30)

3In adaptive control and estimation the predicted output at t+ 1 can be computed either on the basis of the previous parameter

estimates (a priori, time t) or on the basis of the current parameter estimates (a posteriori, time t+ 1).
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where

ε0(t+ 1) = ε(t+ 1|Θ̂(t)) = −e0(t+ 1) = −x(t+ 1)− ẑ0(t+ 1) (31)

and

ε(t+ 1) = ε(t+ 1|Θ̂(t+ 1)) = −e(t+ 1) = −x(t+ 1)− ẑ(t+ 1) (32)

are also called, respectively, the a priori and the a posteriori unfiltered adaptation errors.

The coefficients vXi , X ∈ {B, A}, are the coefficients of an IIR filter, with all poles and zeros inside

the unit circle, acting on the adaptation error

V (q−1) =
BV (q

−1)

AV (q−1)
, (33)

where

XV (q
−1) = 1 + q−1X∗

V (q
−1) = 1 +

nj
∑

i=1

vXi q−i, X ∈ {B, A}. (34)

The filtered a posteriori unmeasurable (but computable) adaptation error is given by

ν(t+ 1) = ν(t+ 1|Θ̂(t+ 1)) = ε(t+ 1) +

n1
∑

i=1

vBi ε(t+ 1− i)−

n2
∑

i=1

vAi ν(t+ 1− i), (35)

with ε(t+ 1) given in (32).

The a posteriori value of the output of the secondary path ẑ(t+ 1) (dummy variable) is given by

ẑ(t+ 1) = ẑ(t+ 1|Θ̂(t+ 1)) =
B∗

G(q
−1)

AG(q−1)
û(t|Θ̂(t+ 1)). (36)

For compensators with constant parameters: ν0(t) = ν(t), ε0(t) = ε(t), e0(t) = e(t), ẑ0(t) = ẑ(t),
û0(t) = û(t).

Remark: when V (q−1) = 1 (the adaptation error is not filtered) the a priori and the a posteriori

adaptation errors will have respectively the forms

ν0(t+ 1) = ν(t+ 1|Θ̂(t)) = ε(t+ 1|Θ̂(t)) = −e0(t+ 1) = −x(t+ 1)− ẑ0(t+ 1) (37)

and

ν(t+ 1) = ν(t+ 1|Θ̂(t+ 1)) = ε(t+ 1|Θ̂(t+ 1)) = −e(t+ 1) = −x(t+ 1)− ẑ(t+ 1). (38)

4. Development of the Algorithms

The algorithms for adaptive feedforward compensation in the presence of a feedback controller will be

developed under the following hypotheses:

H1) The signal w(t) is bounded, i.e.,

|w(t)| ≤ α, ∀t (0 ≤ α < ∞) (39)

(which is equivalent to say that s(t) is bounded and W (q−1) in Figure 3 is asymptotically stable).
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H2) Perfect matching condition - There exists a filter N(q−1) of finite dimension such that

N(z−1)

1−N(z−1)M(z−1)
G(z−1) = −D(z−1) (40)

and the characteristic polynomials:

• of the ”internal” positive coupling loop

P (z−1) = AM (z−1)S(z−1)−BM (z−1)R(z−1), (41)

• of the closed loop (G-K)

Pcl(z
−1) = AG(z

−1)AK(z−1) +BG(z
−1)BK(z−1), (42)

• and of the coupled feedforward-feedback loop

Pfb−ff = AMS[AGAK +BGBK ]−BMRAKAG (43)

are Hurwitz.

H3) Deterministic context - The effect of the measurement noise upon the measured residual error is ne-

glected.

H4) The primary path model D(z−1) is unknown and constant.

Once the algorithms are developed under these hypotheses, H2 and H3 will be removed and the algorithms

will be analyzed in this modified context.

A first step in the development of the algorithms is to establish a relation between the errors on the

estimation of the parameters of the feedforward filter (with respect to the optimal values) and the measured

unfiltered adaptation error ǫ(t+ 1). This is summarized in the following lemma.

Lemma 1. Let the system be described by eqs. (1) - (36). Under hypotheses H1, H2, H3, and H4, using

a feedforward compensator N̂ with constant parameters, one has:

ε(t+ 1|Θ̂) =
AM (q−1)AG(q

−1)AK(q−1)G(q−1)

Pfb−ff (q−1)

[

Θ− Θ̂
]T

Φ(t), (44)

where Θ (the vector of parameters of the optimal filter N assuring perfect matching) is given by (18),

Θ̂T = [ŝ1, ... ŝnS
, r̂0 ... r̂nR

] =
[

Θ̂T
S , Θ̂

T
R

]

(45)

is the vector of constant estimated parameters of N̂ , and Φ(t) has been defined in (26).

The proof is this lemma has been given in [22]4. The results of Lemma 1 can be easily particularized to

the case without internal positive feedback or without a feedback controller.

Filtering the vector Φ(t) with an asymptotically stable filter L(q−1) = BL

AL
, eq. (44) for Θ̂ = constant

leads to

ε(t+ 1|Θ̂) =
AM (q−1)AG(q

−1)AK(q−1)G(q−1)

Pfb−ff (q−1)L(q−1)

[

Θ− Θ̂
]T

Φf (t) (46)

4However, one should take into account that a change of notations has been done with respect to [22]. The following enu-

meration gives the correspondance in notation between the present article and [22]: w(t) ↔ d(t), û1(t) ↔ ŷ1(t), û(t) ↔ ŷ(t),
ŷ1(t) ↔ û(t), and e0(t) ↔ χ0(t).
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with

Φf (t) = L(q−1)Φ(t) (47)

and filtering ε(t+ 1|Θ̂) through the filter V (q−1) one gets

ν(t+ 1|Θ̂) =
AM (q−1)AG(q

−1)AK(q−1)G(q−1)V (q−1)

Pfb−ff (q−1)L(q−1)

[

Θ− Θ̂
]T

Φf (t). (48)

Eq. (48) will be used to develop the adaptation algorithms, neglecting for the moment the non-commutativity

of the operators when Θ̂ is time varying (however an exact algorithm can be derived in such cases - see

[14]). Replacing the fixed estimated parameters by the current estimated parameters, eq. (46) becomes the

equation of the a posteriori residual filtered adaptation error ν(t+ 1) (which is computed)

ν(t+ 1) =
AM (q−1)AG(q

−1)AK(q−1)V (q−1)

Pfb−ff (q−1)L(q−1)
G(q−1)

[

Θ− Θ̂(t+ 1)
]T

Φf (t). (49)

Eq. (49) has the standard form for an a posteriori adaptation error ([14]), which suggests to use the

following IP-PAA:

Θ̂I(t+ 1) = Θ̂I(t) + ξ(t)FI(t)Ψ(t)ν(t+ 1), (50a)

Θ̂P(t+ 1) = FP(t)Ψ(t)ν(t+ 1), (50b)

ε(t+ 1) =
ε0(t+ 1)

1 +ΨT (t)(ξ(t)FI(t) + FP(t))Ψ(t)
, (50c)

ν(t+ 1) = ε(t+ 1) +

n1
∑

i=1

vBi ε(t+ 1− i)−

n2
∑

i=1

vAi ν(t+ 1− i), (50d)

FI(t+ 1) =
1

λ1(t)



FI(t)−
FI(t)Ψ(t)ΨT (t)FI(t)
λ1(t)
λ2(t)

+ΨT (t)FI(t)Ψ(t)



 , (50e)

FP(t) = α(t)FI(t), FI(0) = γ(0) · I, α(t) > −0.5, (50f)

F(t) = ξ(t)FI(t) + FP(t) (50g)

ξ(t) = 1 +
λ2(t)

λ1(t)
ΨT (t)FP(t)Ψ(t), (50h)

Θ̂(t+ 1) = Θ̂I(t+ 1) + Θ̂P(t+ 1), (50i)

1 ≥ λ1(t) > 0, 0 ≤ λ2(t) < 2, FI(0) > 0, (50j)

Ψ(t) = Φf (t), (50k)

where ν(t + 1) is the generalized filtered adaptation error (see also Section 3 for more details), λ1(t) and

λ2(t) allow to obtain various profiles for the matrix adaptation gain F(t) ([14]), and γ(0) is a positive scalar

value. By taking λ2(t) ≡ 0 one obtains a constant adaptation gain matrix and choosing FI = γI, γ > 0
one gets a scalar adaptation gain). For α(t) ≡ 0, one obtains the algorithm with integral adaptation gain

introduced in [9].

For the adaptive operation, a FI(t) with constant trace can be obtained by automatically computing

λ1(t) and λ2(t) at each sampling period as a function of the newly computed trace of the “Integral” adapta-

tion matrix, tr(FI(t)), and the desired constant trace, tr(FI0). In this case, a design parameter αF = λ1(t)
λ2(t)
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(chosen equal to 1 in Section 9) is also used. The equations are given below:

λ1(t) =
tr(FI(t))

tr(FI0)
, λ2(t) =

λ1(t)

αF

. (51)

Note also that eq. (50e) is obtained from

FI
−1(t+ 1) = λ1(t)FI

−1(t) + λ2(t)Ψ(t)ΨT (t), (52)

using the matrix inversion lemma ([14]).

5. Discussion of the algorithms

There are a number of major choices:

• ”Integral” or ”Integral + Proportional” adaptation;

• Matrix or Scalar adaptation gain;

• Constant or Time Varying adaptation gain;

• Filtering of the regressor vector or of the residual error (or both);

• Type of filter.

Some reasons to use one or another choice are given bellow (they result from the analysis of the algorithms

which will be detailed in the subsequent sections):

• IP adaptation offers, in general, improved transients and leads to a relaxation of SPR conditions for

stability;

• In general time varying matrix adaptation gains offer better results than constant scalar adaptation

gain. However, it requires significantly more computer power;

• Filtering of the observation vector is in our opinion the best choice for assuring the SPR stability

conditions;

• Filtering of the residual error allows to introduce a frequency weighting on the criterion to be mini-

mized;

• Filtering of the residual error can be used also for satisfying the SPR condition but only if the sec-

ondary path has stable zeros (in the example considered in this paper the secondary path has unstable

zeros). However, this will introduce a frequency weighting in the criterium to be minimized not

necessarily coherent with the objectives.

In Table 1, several versions of the algorithms particularized for various choices of V and L are given.

In the last line of Table 1,

P̂fb−ff = ÂM Ŝ
[

ÂGAK + B̂GBK

]

− B̂M R̂AKÂG (53)

is an estimation of the characteristic polynomial of the coupled feedforward-feedback loop computed on

the basis of available estimates of the parameters of the filter N̂ .

For the Algorithms III , several options for updating P̂fb−ff can be considered:

• Run one of the Algorithms I or II for a certain time to get estimates of R̂ and Ŝ;

• Run a simulation (using the identified models);

• Update P̂fb−ff at each sampling instant or from time to time using Algorithm III (after a short

initialization horizon using one of the Algorithms I or II).

12



Regressor filtering Error filtering Double filtering

Alg. Filter L (V = 1) Alg. Filter V (L = 1) Alg. Filters (V and L)

IL L = Ĝ IV V = 1
Ĝ

ILV L = Ĝ, V 6= 1

IIL L = Ĝ

1+ĜK
IIV V = 1+ĜK

Ĝ
IILV L = Ĝ

1+ĜK
, V 6= 1

IIIL L = ÂM ÂGAK

P̂fb−ff

Ĝ IIIV V =
P̂fb−ff

ÂM ÂGAKĜ
IIILV L = ÂM ÂGAK

P̂fb−ff

Ĝ, V 6= 1

Table 1: Adaptation algorithms with regressor vector and/or residual error filtering.

6. Analysis of the Algorithms

6.1. Deterministic case

The equation for the a posteriori adaptation error has the form

ν(t+ 1) = H(q−1)
[

Θ− Θ̂(t+ 1)
]T

Ψ(t) (54)

where

H(q−1) =
AMAGAK

Pfb−ff

GV

L
, Ψ = Φf . (55)

Neglecting the non-commutativity of the time varying operators, one has the following result

Theorem 1. Assuming that eq. (54) represents the evolution of the a posteriori adaptation error and that

the IP-PAA (50) is used, one has:

lim
t→∞

ν(t+ 1) =0 (56)

lim
t→∞

[ν0(t+ 1)]2

1 +Ψ(t)TF(t)Ψ(t)
=0 (57)

||Ψ(t)|| is bounded (58)

lim
t→∞

ν0(t+ 1) =0 (59)

for any bounded initial conditions Θ̂(0), ν0(0), F(0), provided that

H ′(z−1) = H(z−1)−
λ2

2
, max

t
λ2(t) ≤ λ2 < 2, ∀t (60)

is a SPR transfer function.

The proof5 of (56) is given in Appendix A. For (57), (58), and (59), the proof follows [9, 23] and is

omitted.

It should be observed that the PAA with ”Integral + Proportional” adaptation gain presented here, is a

generalization of that given in Theorem 3.2 of [9]. Note also that P(t), Q(t), S(t), and R(t) used in the

proof of Appendix A are generalized forms of those used in the proof of the theorem mentioned above for

”Integral” PAA.

5ν0(t+ 1) is computed using Θ̂(t) = Θ̂I(t).
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The proof of [24] for IP adaptation with time varying integral adaptation gain is given for ξ(t) = 1
λ1(t)

+
λ2(t)
λ1(t)

ΨT (t)FP(t)Ψ(t). To the knowledge of the authors, the proof for ξ(t) = 1 + λ2(t)
λ1(t)

ΨT (t)FP(t)Ψ(t)
is presented here for the first time.

Remark: Consider eq. (49) with V (q−1) = 1. Neglecting the non-commutativity of time varying

operators it can be written as

ν(t+ 1) =[Θ− Θ̂(t+ 1)]TΦ′

f (t), (61)

Φ′

f (t) =
AM (q−1)AG(q

−1)AK(q−1)G(q−1)

Pfb−ff (q−1)
Φ(t). (62)

If one would like to minimize a one step ahead quadratic criterion

J(t+ 1) = ν2(t+ 1) (63)

using the gradient technique [14], one gets

1

2

∂J(t+ 1)

∂Θ̂(t+ 1)
= −Φ′

f (t)ν(t+ 1). (64)

Using Algorithm IIIL, eq. (50a) can be viewed as an approximation of the gradient (F = γI =
const, α(t) = 0, ξ(t) = 1, for the gradient technique). For constant adaptation gain, λ2(t) ≡ 0 and the

strict positive realness on H ′(z−1) implies at all the frequencies

− 900 < ∠
AM (e−jω)BG(e

−jω)AK(e−jω)

Pfb−ff (e−jω)
− ∠

ÂM (e−jω)B̂G(e
−jω)AK(e−jω)

P̂fb−ff (e−jω)
< 900. (65)

Therefore the interpretation of the SPR condition of Theorem 1 is that the angle between the direction

of adaptation and the direction of the inverse of the true gradient should be less than 900. For time-varying

adaptation gains the condition is sharper since in this case Re{H(e−jω)} should be larger than λ
2 at all

frequencies.

Remark: Algorithms III allow almost always to satisfy the SPR condition provided that good estima-

tions of M and G are available.

6.2. Effect of the measurement noise (The stochastic case - perfect matching)

The details of the analysis in this context is given in Appendix B. The conclusion is that in the presence

of measurement noise, provided that one uses a decreasing adaptation gain, convergence of the parameters

towards the optimal ones with probability 1 is assured under the same SPR conditions as in the deterministic

case (provided that a wide band disturbance is acting on the system).

6.3. The case of non-perfect matching

If N̂(t, q−1) does not have the appropriate dimension, there is no chance to satisfy the perfect matching

condition. Two problems are of interest in this case:

1. The boundedness of the residual error

2. The bias distribution in the frequency domain

14



6.3.1. Boundedness of the residual error

Results from [25, 26] can be used to analyze the boundedness of the residual error. The following

assumptions are made:

1. There exists a reduced order filter N̂ , characterized by the unknown polynomials Ŝ (of order nS)

and R̂ (of order nR), for which the polynomials given in eqs. (41)-(43), where S and R have been

replaced by Ŝ and R̂, are Hurwitz.

2. The output of the optimal filter satisfying the matching condition can be expressed as

û1(t+ 1) = −
[

Ŝ∗(q−1)û1(t)− R̂(q−1)ŷ1(t+ 1) + η(t+ 1)
]

, (66)

where η(t+ 1) is a norm bounded signal.

Using the results of [25, Theorem 4.1, pp. 1505-1506] and assuming that w(t) is norm bounded, it

can be shown that all the signals are norm bounded under the passivity condition (60), where P̂fb−ff is

computed now with the reduced order estimated filter.

6.3.2. Bias distribution

Using the Parseval’s relation, the asymptotic bias distribution of the estimated parameters in the fre-

quency domain can be obtained, starting from the expression of ν(t), by taking into account that the algo-

rithm minimizes (almost) a criterion of the form lim
N→∞

1
N

∑N
t=1 ν

2(t).

The bias distribution (for Algorithm IIILV ), taking into account eq. (40) is given by

Θ̂∗ = argmin
Θ̂

∫ π

−π

∣

∣V (e−jω)
∣

∣

2
·

[

∣

∣SNM (e−jω)
∣

∣

2
∣

∣

∣
N(e−jω)− N̂(e−jω)

∣

∣

∣

2
·

·

∣

∣

∣

∣

∣

1

1− N̂(e−jω)M(e−jω) +K(e−jω)G(e−jω)

∣

∣

∣

∣

∣

2
∣

∣G(e−jω)
∣

∣

2
Φw(ω) +Φn(ω)



 dω (67)

where SNM = 1
1−NM

is the output sensitivity function of the internal closed loop for the optimal controller

and Φw(ω) and Φn(ω) are the spectral densities of the disturbance and measurement noise.

From (67) one concludes that a good approximation of N(q−1) will be obtained in the frequency region

where Φw is significant and where G(q−1) has a high gain (usually G(q−1) should have high gain in the

frequency region where Φw is significant in order to counteract the effect of w(t)). However, the quality

of the estimated N̂(q−1) will be affected also by the output sensitivity function of the internal closed loop

N − M . Clearly, the introduction of the filter V (q−1) on the adaptation error will shape the frequency

distribution of the error.

7. Relaxing the Positive Real Condition

7.1. Averaging theory for the relaxation of the SPR condition

It is possible to relax the SPR conditions taking into account that:

1. The disturbance (input to the system) is a broadband signal;

2. Most of the adaptation algorithms work with a low adaptation gain.
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Under these two assumptions, the behavior of the algorithm can be well described by the ”averaging

theory” developed in [7, 13] (see also [14]). When using the averaging approach, the basic assumption of

a slow adaptation holds for small adaptation gains (constant and scalar in [13], i.e., λ2(t) ≡ 0, λ1(t) = 1;

matrix and time decreasing asymptotically in [7, 14], i.e., lim
t→∞

λ1(t) = 1, λ2(t) = λ2 > 0 or scalar and

time decreasing).

In the context of averaging, the basic condition for stability is that

lim
N→∞

1

N

N
∑

t=1

Φ(t)H ′(q−1)ΦT (t) =
1

2

∫ π

−π

Φ(ejω)[H ′(ejω) +H ′(e−jω)]ΦT (e−jω)dω > 0 (68)

be a positive definite matrix (Φ(ejω) is the Fourier transform of Φ(t)).
One can view (68) as the weighted energy of the observation vector Φ. Of course the SPR sufficient

condition upon H ′(z−1) (see eq. (60)) allows to satisfy this condition. However in the averaging context

it is only needed that (68) is true which allows that H ′ be non positive real in a limited frequency band

(for more details see [9]). This explains why Algorithms I and II will work in practice in most of the

cases. While the stability of the system can be guaranteed the performance may be not very good. In this

paper, another approach for the relaxation of the SPR condition is given, which can be used especially in the

initialisation stages ( when using Algorithms I or II). The motivation for this is provided in the following

subsection.

7.2. Relaxing the positive real condition by IP adaptation

The adaptive system formed by eq. (54) and the adaptation algorithm (50) admits an equivalent feedback

representation (EFR) for λ1(t) ≡ 1, λ2(t) ≡ 0 (constant adaptation gain). The stability condition of eq. (60)

(in this case H ′(z−1) = H(z−1)) is a direct consequence of the passivity of the equivalent feedback path,

since if the feedback path is passive, it is enough that the equivalent linear feedforward path is SPR (see

[14]). However, this condition is only sufficient. There is an additional ”excess” of passivity in the feedback

path (which depends upon the adaptation gains and on the magnitude of Ψ(t)) which can be transferred to

the linear feedforward block in order to relax the SPR condition. This idea was prompted out in the context

of recursive identification by Tomizuka and results have been given for the case of integral adaptation and

for the case when the equivalent linear feedforward path is characterized by an all poles (no zeros) transfer

function (see [15]). These results have been extended in [14] for ”Integral + Proportional” adaptation with

constant adaptation gain.

In what follows, the results of [14, 15] will be extended to the case of linear equivalent feedforward paths

characterized by a poles-zeros transfer function and taking into account the presence of the proportional

adaptation which increases significantly the reserve of passivity of the equivalent feedback path.

Theorem 2. The adaptive system described by eq. (54) and eqs. (50) for λ2(t) ≡ 0 and λ1(t) ≡ 1 is

asymptotically stable provided that:

T1) There exists a gain K such that H
1+KH

is SPR,

T2) The adaptation gains FI and FP(t) and the observation vector Ψ(t) satisfy either

t1
∑

t=0

[

ΨT (t− 1)

(

1

2
FI + FP(t− 1)

)

Ψ(t− 1)−K

]

ν2(t) ≥ 0 (69)

for all t1 ≥ 0 or

ΨT (t)

(

1

2
FI + FP(t)

)

Ψ(t) > K > 0, (70)
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Reference

Adaptation Adaptation gain Filtering Taking into account

IP I Matrix Scalar
Regressor

vector

Residual

error

Local

feedback

Internal

feedback

Present paper yes yes yes yes yes yes yes yes

[9] no yes yes yes yes no no yes

[22] no yes yes yes yes no yes yes

[8] no yes no yes no no no yes

FULMS no yes no yes yes no no yes

SHARF [16] no yes no yes no yes no no

[17] no yes yes no yes yes no no

Table 2: Comparison of algorithms for adaptive feedforward compensation in AVC with mechanical coupling.

for all t ≥ 0.

The proof of this theorem is given in Appendix C.

8. Comparison with Other Algorithms

The IP adaptation in the context of adaptive feedforward compensation is introduced for the first time the

present paper. Only algorithms dedicated to IIR feedforward compensators will be considered. Algorithms

dedicated to FIR feedforward compensators are a special case of those dedicated to IIR compensator and

will not be discussed here.

The algorithms introduced in this paper are compared with the algorithms presented in [9], [8], [17], the

FULMS ([5]), and the SHARF ([16]). Table 2 gives a synthetic comparison. Detailed comparison can be

done using Tables D.3 and D.4 from Appendix D, where all the algorithms are summarized.

9. Experimental Results

9.1. Objective of the experiments

The experiments considered in this paper concern the system described in Section 2. For the case of

”Integral” adaptation and in the presence of internal feedback, reference [9] provides extensive experimental

evaluation of the algorithms and comparison with other ”Integral” algorithms considered in [5] and [8]. The

benefit of adding local feedback is studied theoretically and experimentally in [22]. The objectives of the

experiments to be presented in this paper are to illustrate (i) the advantages of using IP adaptation and (ii)

the rationale for using filtering on the regressor and/or the filtering on the residual error (these are the two

major novelties of this paper).

9.2. System identification

The experiments are conducted on a system with internal positive feedback and with or without local

feedback. A detailed view of the mechanical structure used for the experiments has been given in Figure

1. The methodology used for parametric identification of the mechanical structure’s paths is similar to that

of [9, 26, 27]. The sampling frequency is 800 Hz.

The secondary and reverse paths have been identified in the absence of the feedforward compensator

(see Figure 3(b)) using as excitation signal a PRBS generated by a 10 bit shift register and a frequency
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Figure 5: Frequency characteristics of the primary, secondary and reverse paths

divider p = 4 applied at the input of the amplifier feeding the inertial actuator used for compensation6 (see

Figures 1 and 2). For the secondary path, G(q−1), the output is the residual acceleration measurement, e(t).
For the reverse path, M(q−1), the output is the signal delivered by the primary transducer (accelerometer)

ŷ(t).
The estimated orders of the model for the secondary path are nBG

= 14, nAG
= 14. The best results, in

terms of validation, have been obtained with the Recursive Extended Least Square method. The frequency

characteristic of the secondary path is shown in Figure 5, solid line. It features several very low damped

vibration modes. The first vibration mode is at 44 Hz with a damping of 0.0212, the second at 83.8 Hz
with a damping of 0.00961, the third one at 115 Hz with a damping of 0.00694. There is also a pair of low

damped complex zeros at 108 Hz with a damping of 0.021. As a consequence of the double differentiator

behavior, a double zero at z = 1 is also present.

For the reverse path M(q−1), the model’s complexity has been estimated to be nBM
= 13, nAM

= 13.

The frequency characteristic of the reverse path is shown in Figure 5 (dotted line). There are several very

low damped vibration modes at 45.1 Hz with a damping of 0.0331, at 83.6 Hz with a damping of 0.00967,

at 115 Hz with a damping of 0.0107 and some additional modes in high frequencies. There are two zeros

on the unit circle corresponding to the double differentiator behavior. The gain of the reverse path is of the

same order of magnitude as the gain of the secondary path up to 150 Hz, indicating a strong feedback in

this frequency zone.

The primary path has been identified in the absence of the feedforward compensator using w(t) as an

input and measuring e(t). The disturbance s(t) was a PRBS sequence (N=10, frequency divider p=2). The

estimated orders of the model are nBD
= 26, nAD

= 26. The frequency characteristic is presented in Figure

5 (dashed line) and may serve for simulations and detailed performance evaluation. Note that the primary

path features a strong resonance at 108 Hz, exactly where the secondary path has a pair of low damped

complex zeros (almost no gain). Therefore one can not expect good attenuation around this frequency.

9.3. Design of the feedback controller

The objective of the feedback RS controller K is to reduce the disturbance effect on the residual accel-

eration (e0(t)) where the secondary path G has enough gain and without using the correlated measurement

6It was first verified with p = 2 that there are no significant dynamics around 200 Hz and then p = 4 has been chosen in order

to enhance the power spectral density of the excitation in low frequencies while keeping a reasonable length for the experiment.

18



ŷ1(t). To do this, the problem has been formulated as an H∞ problem by using the appropriate weight-

ing functions. This minimization problem has been solved using pole placement with sensitivity function

shaping techniques presented in [28], by following these steps

• The poles of the negative feedback loop formed by the secondary path and the controller K have

been selected as those of the open loop (poles of G) with the observation that the poles at 83.8 Hz
and 115 Hz have been damped to 0.1 and 0.02 respectively;

• The loop has been opened in low and high frequencies by choosing HR(q
−1) = (1 + q−1)(1− q−1)

as a fixed part of the controller numerator;

• 15 real auxiliary robustness poles, at 0.3, have been added such that: nPcl
≤ nAG

+ nBG
+ nHR

+
nHS

+ d− 1 = 29.

Figure 6 shows the performance of the feedback controller with respect to the open loop. A 13 dB of

global attenuation is obtained.

9.4. Broadband disturbance rejection with feedback controller and various filtering

The adaptive feedforward filter structure for all of the experiments has been nR = 3, nS = 4 (total

of 8 parameters). This complexity does not allow to verify the ”perfect matching condition” (not enough

parameters). A PRBS excitation on the global primary path will be considered as the disturbance.

Several experiments have been conducted allowing to understand the effects of the various choices:

• I adaptation with filtering of the regressor;

• IP adaptation with filtering of the regressor;

• IP adaptation with filtering of the regressor and of the adaptation error.

For the adaptive operation7 the Algorithms IL and ILV have been used with scalar adaptation gain

(λ1(t) = 1, λ2(t) = 0)8. The experiments have been carried out by first applying the disturbance in open

loop during 50 sec and after that, closing the loop with the adaptive feedforward algorithms in the presence

of the fixed feedback controller. The experiments have been run over a 1500 sec time period.

Time domain results obtained on the AVC system with only an ”Integral” PAA are shown in Figure 7.

Figure 8 shows the time domain result obtained using the IP-PAA. The advantage of using an IP-PAA is an

overall improvement of the transient behavior. A variable α(t) in the PAA has been chosen, starting with

an initial value of 200 and linearly decreasing to 100 (over a horizon of 25 sec).

In Figure 9, in addition to the IP-PAA a filtering of the adaptation error using V (q−1) = 1− 0.9q−1 has

been introduced, using Algorithm ILV (which introduces a weight in high frequencies). In this case, α(t)
has been initialized at 200 and was linearly decreased to 10 over a horizon of 950 sec.

A comparison of the PSDs obtained with the three adaptive algorithms is presented in Figure 10. One

observes an improvement of the attenuation given by the IP-PAA algorithm with adaptation error filtering

and no degradation with respect to the open loop in high frequencies, which is coherent with the V (q−1)
filter that has been used. It has to be mentioned that for the PSDs only the last ten seconds of the 1500 sec

experiments have been taken into account.

It is clear that ”Integral + Proportional” adaptation gives better results than only ”Integral” adaptation

and that using a filtering of the adaptation error can also have a good effect.

7Algorithms IV - IIIV can not be used in our case since the secondary path has unstable zeros.
8Note that Algorithm IL uses the same filtering as the FuLMS algorithm.
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Figure 7: Real time results obtained with Algorithm IL using ”Integral” scalar adaptation gain.

9.5. Broadband disturbance rejection using only the feedforward adaptive filter

As it turns out, in the hybrid case, the positive real condition was satisfied even with Algorithm IL
in the frequency region from 0 to 300 Hz, which under the slow adaptation gain assumption is enough

to guarantee the stability of the system taking also into consideration the frequency characteristics of the

disturbance (Figure 10, open loop). In this subsection, the case without fixed feedback compensator is

considered. The objective is to show that the SPR condition can be relaxed in a more general case when this

is an issue.

In the absence of the feedback controller, BK(q−1) = 0 and AK(q−1) = 1, and with no filtering of the

adaptation error, V (q−1) = 1, eq. (55) for Algorithm IL becomes

H(q−1) =
AMG

PĜ
. (71)

The advantage of using an IP-PAA is an overall improvement of the transient behavior despite the fact

that the SPR condition on H(q−1) is not satisfied as shown in Figure 11 (the SPR condition is not satisfied

around 83 Hz and around 116 Hz). Note that Figure 11 corresponds to an estimation of this transfer function

assuming Ĝ = G, M̂ = M and P = AM Ŝ−BM R̂ in which the parameters of R̂ and Ŝ have been obtained

by running the adaptation algorithm for 1500 sec. A variable α(t) in the PAA has been chosen, starting
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Figure 8: Real time results obtained with Algorithm IL using ”Integral + Proportional” scalar adaptation gain.

0 500 1000 1500
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Plant output using broadband disturbance adaptive compensation after 50 sec

Time [sec]

R
es

id
ua

l a
cc

el
er

at
io

n 
[V

]

 

 

Figure 9: Real time results obtained with Algorithm ILV using ”Integral + Proportional” scalar adaptation gain and adaptation

error filtering.

with an initial value of 200 and linearly decreasing to 100 (over a horizon of 25 sec). The most important

objective has been to improve the performance during the initial transient period, thus a large value for α(t)
has been used at start decreasing to smaller values so that parameter variations could be reduced in the end,

thus obtaining better global attenuations.

Figure 12 shows the comparison between I and IP adaptation over an horizon of 1500 sec. Figure 13

is a zoom of Figure 12 covering only the first 30 sec after the introduction of the adaptive feedforward

compensator. It is clear that IP adaptation gives better results on a long run. The effect in the initial phase

of the adaptation, Figure 13, is an acceleration of transients. It can be observed that the adaptation error

is limited, to the interval [−0.3, 0.3], 10 sec faster when using IP-PAA than when using basic integral

adaptation.

10. Conclusions

The paper has considered the situation occurring in adaptive feedforward compensation when there

exists a positive internal feedback coupling and a feedback controller. The introduction of a feedback

controller on one hand modifies the stability conditions and on the other hand can improves significantly

the performances of the adaptive feedforward compensation schemes. The paper has considered algorithms
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Figure 10: Power spectral density of the adaptive filters.
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Figure 11: Phase of estimated H(z−1) for Algorithm IL.

which simultaneously use filtering of the regressor vector (used in the adaptation algorithm) and filtering of

the residual error (adaptation error). It was shown and verified experimentally that the filters on the residual

error can be used for shaping the PSD of the residual error. The paper has introduced integral+ proportional

adaptation algorithms in the context of the adaptive feedforward compensation, which allow to relax the

positive real conditions for stability and improve the performance. Most of the algorithms used in adaptive

feedforward compensation appear as particular case of the algorithms introduced in this paper.

Appendix A. Proof of the A Posteriori Adaptation Error’s Asymptotic Stability in Theorem 1

Proof. From eqs. (50) and (54), one can obtain the equivalent feedback representation (EFR) described by:
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Figure 12: Real time results obtained with Algorithm IL using (a) ”Integral” scalar adaptation gain and (b) ”Integral + Propor-

tional” scalar adaptation gain over 1500 sec.
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Figure 13: Real time results obtained with Algorithm IL using (a) ”Integral” scalar adaptation gain and (b) ”Integral + Propor-

tional” scalar adaptation gain.

ν(t+ 1) = −

(

H(z−1)−
λ2

2

)

ȳe2(t) (A.1)

Θ̃I(t) = Θ̂I(t)−Θ, (A.2)

Θ̃I(t+ 1) = Θ̃I(t) + ξ(t)FI(t)Ψ(t)

(

ν(t+ 1)−
λ2

2
ȳe2(t)

)

, (A.3)

ȳe2(t) = ΨT (t)Θ̃I(t) +ΨT (t)F(t)Ψ(t)

(

ν(t+ 1)−
λ2

2
ȳe2(t)

)

, (A.4)

The feedforward path (eq. (A.1)) is characterized by a SPR transfer function (see eq. (60)). It can be

shown, using the results of [24], that the equivalent feedback path described by eqs. (A.3) and (A.4) satisfies

the Popov inequality (passive block). For this we need the results [24, Theorem 1] and [24, Lemma 2].

23



Considering the following change of notations:

A(t) = I, B(t) = ξ(t)FI(t)Ψ(t), C(t) = ΨT (t), D(t) = ΨT (t)F(t)Ψ(t), (A.5)

it can be sown that the equivalent feedback path is passive, i.e., one satisfies [24, Lemma 2], by choosing:

P(t) = FI
−1(t), (A.6)

Q(t) = [1− λ1(t)]FI
−1(t), (A.7)

S(t) = [1− λ1(t)]Ψ(t), (A.8)

fFI
(t)

def
= ΨT (t)FI(t)Ψ(t), fFP

(t)
def
= ΨT (t)FP(t)Ψ(t), (A.9)

R(t) = [2− λ1(t)]fFI
(t) +

λ2
2(t)

λ1(t)
fFI

(t)f2
FP

(t)+

+ λ2(t)f
2
FP

(t) + 2
λ2(t)

λ1(t)
fFI

(t)fFP
(t) + 2fFP

(t). (A.10)

Appendix B. Algorithms Analysis. The Stochastic Case - Perfect Matching

There are two sources of measurement noise, one acting on the primary transducer which gives the

correlated measurement with the disturbance and the second acting on the measurement of the residual

error (force, acceleration). For the primary transducer, the effect of the measurement noise is negligible

since the signal to noise ratio is very high. The situation is different for the residual error where the effect

of the noise can not be neglected.

In the presence of the measurement noise (n(t)), the equation of the a posteriori residual error becomes

ν(t+ 1) = H(q−1)
[

Θ− Θ̂(t+ 1)
]T

Ψ(t) + V (q−1)n(t+ 1). (B.1)

The O.D.E. method [7] can be used to analyse the asymptotic behavior of the algorithm in the presence

of noise. Taking into account the form of equation (B.1), one can directly use [14, Theorem 4.1] or [25,

Theorem B1].

The following assumptions will be made:

1. λ1(t) = 1 and λ2(t) = λ2 > 0;

2. Θ̂(t) generated by the algorithm belongs infinitely often to the domain DS :

DS , {Θ̂ : P̂ (z−1) = 0 ⇒ |z| < 1}

for which stationary processes

Ψ(t, Θ̂) ,Ψ(t)|
Θ̂(t)=Θ̂=const

ν(t, Θ̂) =ν(t)|
Θ̂(t)=Θ̂=const

can be defined;

3. n(t) is a zero mean stochastic process with finite moments and independent of the sequence w(t).
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From (B.1) for Θ̂(t) = Θ̂, one gets

ν(t+ 1, Θ̂) = H(q−1)
[

Θ− Θ̂
]T

Ψ(t, Θ̂) + V (q−1)n(t+ 1). (B.2)

Since Ψ(t, Θ̂) depends upon w(t) only, one concludes that Ψ(t, Θ̂) and n(t+ 1) are independent. There-

fore, using [14, Theorem 4.1] it results that if

H ′(z−1) =
AMAGAK

Pfb−ff

GV

L
−

λ2

2
(B.3)

is a SPR transfer function, one has Prob{ lim
t→∞

Θ̂(t) ∈ DC} = 1, where DC = {Θ̂ : ΨT (t, Θ̂)(Θ− Θ̂) =

0}. If furthermore ΨT (t, Θ̂)(Θ − Θ̂) = 0 has a unique solution (richness condition), the condition that

H ′(z−1) be SPR implies that Prob{ lim
t→∞

Θ̂(t) = Θ} = 1.

Appendix C. Proof of Theorem 2

Proof. One needs first the following result:

Lemma 2. Given the discrete transfer function

H(z−1) =
B(z−1)

A(z−1)
=

b0 + b1z
−1 + . . .+ bnB

z−nB

1 + a1z−1 + . . .+ anA
z−nA

, (C.1)

under the hypothesis:

H5) H(z−1) has all its zeros inside the unit circle,

H6) b0 6= 0,

there exists a positive scalar gain K such that H
1+KH

is SPR.

Proof of Lemma 2. To analyse the strict positive realness of this transfer function, one has to check first that

it’s real part is strictly positive. We then have:

Re{
H(z−1)

1 +K ·H(z−1)
} =

K · Re{H}2 + Re{H}+K · Im{H}2

(1 +K · Re{H})2 + (K · Im{H})2
. (C.2)

In eq. (C.2), the denominator is always strictly positive. Thus, the strict positive realness is satisfied if

K is chosen such that the numerator of eq. (C.2) is also strictly positive. This is always true if K satisfies

the relation

K >−
Re{H(e−jω)}

Re{H(e−jω)}2 + Im{H(e−jω)}2
, 0 ≤ ω ≤ π · fS ,

fS being the sampling frequency.

Next, the stability of H/(1 +KH) is analyzed. Under hypothesis H6, the poles of H/(1 +KH) are

given by the roots of the polynomial

P (q−1) = 1 +

∑nA

p=1 apq
−p +K

∑nB

m=1 bmq−m

1 +Kb0
(C.3)
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and assuming K large enough such that Kbm ≫ ap,

∀m ∈ {1, . . . , nB}, p ∈ {1, . . . , nA}, P (q−1) ∼=

∼=

{

1 +
∑nB

m=1
bm
b0
q−m if nB ≥ nA,

1 +
∑nB

m=1
bm
b0
q−m +

∑nA

p=nB+1
ap

1+Kb0
q−p if nB < nA.

Thus for nB ≥ nA, the poles and the zeros of H/(1 + KH) become identical when K → ∞. For

nB < nA, in addition to the poles identical to the zeros of B(q−1), nA − nB poles appear that go to zero

as K → ∞. The hypothesis H5 has been introduced to assure the stability of the direct path when H6 is

satisfied. Hypothesis H6 is necessary since if b0 = 0, H/(1 +KH) becomes unstable for large K.

-

+
+

+

+

-

-

+

+

ΨT (t) ξ(t)FIΨ(t)
Θ̃I(t+ 1)

ΨT (t)FPΨ(t)

Figure C.14: Equivalent feedback representation of the PAA with ”Integral + Proportional” adaptation with constant integral

adaptation gain.

Using the above property, the EFR of the adaptive feedback system given by the eqs. (50) and (54) for

λ2(t) ≡ 0, λ1(t) ≡ 1 (constant adaptation gain) can be represented as in Figure C.14, where K has been

chosen such that H
1+KH

is SPR and

Θ̃I(t) = Θ̂I(t)−Θ, (C.4)

ν(t+ 1) = −
H(z−1)

1 +KH(z−1)
ye2(t), (C.5)

Θ̃I(t+ 1) = Θ̃I(t) + ξ(t)FIΨ(t)ν(t+ 1), (C.6)

ye2(t) = ΨT (t)Θ̃I(t) + (ΨT (t)F(t)Ψ(t)−K)ν(t+ 1), (C.7)

ue2(t) = ν(t+ 1) (C.8)

For the stability, it remains to show that the new equivalent feedback path is passive.

The proof is similar to that of [14, Theorem 3.3, pp. 109)] where Lemma 3.3 (pp. 110) is replaced by

Lemma 2 of this paper. However, the details of the proof of Theorem 3.3 in [14] are not given. For the sake

of completeness, the details of the proof of Theorem 2 are given next.

The proof is done by using [24, Theorem 1]. The adaptive system can be rearranged into the one given

in Figure C.14. Under condition T1, the linear feedforward block from ue1(t) to ν(t+ 1) is SPR.

Given the choice in adaptation gain (λ2(t) ≡ 0, λ1(t) ≡ 1), the necessary condition for asymptotic

stability is only that the time-varying feedback block belongs to the class N(0) and, therefore, its input-
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output product verifies Popov’s inequality

t1
∑

t=0

ye2(t)ue2(t) =

t1
∑

t=0

ȳe2(t)ue2(t)−K

t1
∑

t=0

u2e2(t) ≥ −γ20 . (C.9)

It should be observed that with the current choice of λ2(t) ≡ 0, λ1(t) ≡ 1, one obtains ξ(t) = 1 from

eq. (50h).

Taking into consideration eqs. (A.3) and (A.4)

ȳe2(t)ue2(t) = ȳe2(t)ν(t+ 1) =Θ̃T
I (t+ 1)Ψ(t)ν(t+ 1)+

+ΨT (t)FP(t)Ψ(t)ν2(t+ 1). (C.10)

The first term in the right hand side can be further expressed as (see also Lemma 3.2 of [14])

Θ̃T
I (t+ 1)Ψ(t)ν(t+ 1) = Θ̃T

I (t+ 1)FI
−1Θ̃I(t+ 1)− Θ̃T

I (t+ 1)FI
−1Θ̃I(t). (C.11)

On the other hand

[Θ̃I(t+ 1)− Θ̃I(t)]
TFI

−1[Θ̃I(t+ 1)− Θ̃I(t)] =Θ̃T
I (t+ 1)FI

−1Θ̃I(t+ 1) + Θ̃T
I (t)FI

−1Θ̃I(t)−

− 2Θ̃T
I (t+ 1)FI

−1Θ̃I(t) ≥ 0, (C.12)

from which, using (52) and (A.3), results

Θ̃T
I (t+ 1)FI

−1Θ̃I(t) =
1

2
Θ̃T

I (t+ 1)FI
−1Θ̃I(t+ 1)+

+
1

2
Θ̃T

I (t)FI
−1Θ̃I(t)−

1

2
ΨT (t)FIΨ(t)ν2(t+ 1). (C.13)

Substituting the last equation back into (C.11) and using (52)

Θ̃T
I (t+ 1)Ψ(t)ν(t+ 1) =

1

2
Θ̃T

I (t+ 1)FI
−1Θ̃I(t+ 1)−

−
1

2
Θ̃T

I (t)FI
−1Θ̃I(t) +

1

2
ΨT (t)FIΨ(t)ν2(t+ 1), (C.14)

and summing up from t = 0 to t1, one gets

t1
∑

t=0

ye2(t)ν(t+ 1) =
1

2
Θ̃T

I (t1 + 1)FI
−1Θ̃I(t1 + 1)+

+

t1
∑

t=0

ΨT (t)

(

1

2
FI + FP(t)

)

Ψ(t)ν2(t+ 1)−

−K

t1
∑

t=0

ν2(t+ 1)−
1

2
Θ̃T

I (0)FI
−1Θ̃I(0). (C.15)

From eq. (C.15) and the fact that FI is positive definite, concludes that

t1
∑

t=0

ye2(t)ue2(t) ≥ −
1

2
Θ̃T

I (0)FI
−1Θ̃I(0) (C.16)

as long as K satisfies condition T2 of the theorem, thus Popov’s inequality is satisfied and the adaptive

system is asymptotically stable.
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Appendix D. Summary of Various Algorithms

Tables D.3 and D.4 give the details of various algorithms mentioned throughout the paper.

Paper (Matrix gain) Paper (Scalar gain) [9] (Matrix gain)[9] (Scalar gain)

Adap. gain (50e)-(50g)

FI(t) = γ(t)I (50e)-(50g) FI(t) = γ(t)I
FP(t) = α(t)FI(t) FP = 0 F(t) = FI(t)

F(t) = FI(t) + FP(t)

λ2(t) 0 ≤ λ2(t) < 2 = 0 0 ≤ λ2(t) < 2 = 0

λ1(t) 0 < λ1(t) ≤ 1 0 < λ1(t) ≤ 1 0 < λ1(t) ≤ 1 0 < λ1(t) ≤ 1

ξ(t) = 1 + λ2(t)
λ1(t)

ΨT (t)FP(t)Ψ(t) 1 1 1

Prop. gain α(t) > −0.5 α(t) > −0.5 α(t) = 0 α(t) = 0

ν(t+ 1) = ε(t+ 1) +B∗

V ε(t)− ε(t+ 1) +B∗

V ε(t)− ε(t+ 1) ε(t+ 1)
−A∗

V ν(t) −A∗

V ν(t)

ε(t+ 1) = ε0(t+1)
1+ΨT (t)F(t)Ψ(t)

Ψ(t) =
LΦ(t) LΦ(t)

LIL = Ĝ; LIIL = Ĝ

1+ĜK
; LIIIL = ÂM ÂGAK

P̂fb−ff

Ĝ L2 = Ĝ; L3 =
ÂM

P̂
Ĝ

P̂fb−ff = ÂM Ŝ
[

ÂGAK + B̂GBK

]

− B̂M R̂AKÂG P̂ = ÂM Ŝ − B̂M R̂

K = BK

AK
BK = bK1 z−1 + . . . , AK = 1 + aK1 z−1 + . . . BK = 0, AK = 1

G = BG

AG
BG = bG1 z

−1 + . . . , AG = 1 + aG1 z
−1 + . . .

M = BM

AM
BM = bM1 z−1 + . . . , AM = 1 + aM1 z−1 + . . .

Table D.3: Comparison of algorithms for adaptive feedforward compensation in AVC with mechanical coupling.

SHARF [16] [8] (Scalar gain) FULMS (Scalar gain) [17]

Adap. gain
FI = γI, FP = 0 FI = γI, FP = 0 FI(t) = γ(t)I (50e)-(50g)

F = FI F = FI F(t) = FI(t) FP = 0

λ2(t) = 0 = 0 = 0 0 ≤ λ2(t) < 2

λ1(t) = 1 = 1 0 < λ1(t) ≤ 1 0 < λ1(t) ≤ 1

ξ(t) = 1 1 1 1

Prop. gain α(t) = 0 α(t) = 0 α(t) = 0 α(t) = 0

ν(t+ 1) = ε(t+ 1) +B∗

V ε(t) ε(t+ 1) ε(t+ 1) ε0(t+ 1) +B∗

V ε(t)

ε(t+ 1) = ε0 ε0(t+1)
1+ΨT (t)FI(t)Ψ(t)

ε0 ε0(t+1)
1+ΨT (t)F(t)Ψ(t)

Ψ(t) = Φ(t) Φ(t) LΦ(t), L = Ĝ LΦ(t), L = Ĝ

K = BK

AK
BK = 0, AK = 1

G = BG

AG

BG = bG1 z
−1 + . . . BG = 1, AG = 1 BG = bG1 z

−1 + . . .
AG = 1 + aG1 z

−1 + . . . or G = SPR AG = 1 + aG1 z
−1 + . . .

M = BM

AM
BM = 0, AM = 1 BM = bM1 z−1 + . . . , AM = 1 BM = 0, AM = 1

Table D.4: Comparison of algorithms for adaptive feedforward compensation in AVC with mechanical coupling.
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