
HAL Id: hal-00926638
https://hal.inria.fr/hal-00926638

Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithm Portfolios for Noisy Optimization: Compare
Solvers Early

Marie-Liesse Cauwet, Jialin Liu, Olivier Teytaud

To cite this version:
Marie-Liesse Cauwet, Jialin Liu, Olivier Teytaud. Algorithm Portfolios for Noisy Optimization: Com-
pare Solvers Early. Learning and Intelligent Optimization Conference, Feb 2014, Florida, United
States. �hal-00926638�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49695223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00926638
https://hal.archives-ouvertes.fr

Algorithm Portfolios for Noisy Optimization:

Compare Solvers Early

Marie-Liesse Cauwet, Jialin Liu, and Olivier Teytaud

TAO, INRIA-CNRS-LRI, Univ. Paris-Sud,
91190 Gif-sur-Yvette, France
firstname.lastname@lri.fr

https://tao.lri.fr

Abstract. Noisy optimization is the optimization of objective functions
corrupted by noise. A portfolio of algorithms is a set of algorithms
equipped with an algorithm selection tool for distributing the compu-
tational power among them. We study portfolios of noisy optimization
solvers, show that different settings lead to different performances, obtain
mathematically proved performance (in the sense that the portfolio per-
forms nearly as well as the best of its algorithms) by an ad hoc selection
algorithm dedicated to noisy optimization. A somehow surprising result
is that it is better to compare solvers with some lag; i.e., recommend the
current recommendation of the best solver, selected from a comparison
based on their recommendations earlier in the run.

1 Introduction

Given an objective function, also termed fitness function, from a domain D ∈ R
d

to R, numerical optimization or simply optimization, is the research of points,
also termed individuals or search points, with approximately optimum (e.g. min-
imum) objective function values.

Noisy optimization is the optimization of objective functions corrupted by
noise. Black-box noisy optimization is the noisy counterpart of black-box op-
timization, i.e. functions for which no knowledge about the internal processes
involved in the objective function can be exploited.

Algorithm Selection (AS) consists in choosing, in a portfolio of solvers, the
one which is (approximately) most efficient on the problem at hand. AS can
mitigate the difficulties for choosing a priori the best solver among a portfolio of
solvers. This means that AS leads to an adaptive version of the algorithms. In
some cases, AS outperforms all individual solvers by combining the good prop-
erties of each of them (with information sharing or with chaining, as discussed
later). It can also be used for the sake of parallelization or parameter tuning. In
this paper, we apply AS to the black-box noisy optimization problem.

1.1 Noisy optimization

Noisy optimization is a key component of machine learning from supervised
learning to unsupervised or reinforcement learning; it is also relevant in stream-

ing applications. The black-box setting is crucial in reinforcement learning where
gradients are difficult and expensive to get; direct policy search [31] usually boils
down to (i) choosing a representation and (ii) black-box noisy optimization.

Order-zero methods, including evolution strategies [6] and derivative-free op-
timization [11] are natural solutions in such a setting; as they do not use gra-
dients, they are not affected by the black-box scenario. However, the noise has
an impact even on such methods [3, 28]. Using surrogate models [20] reduces the
impact of noise by sharing information over the domain. Surrogate models are
also a step towards higher order methods; even in black-box scenarios, a Hessian
can be approximated thanks to observed fitness values.

[12, 29] have shown that stochastic gradient by finite differences (finite dif-
ferences at each iteration or by averaging over multiple iterations) can provide
tight convergence rates (see tightness in [9]) in the case of an additive noise
with constant variance. [13] has also tested the use of second order information.
Algorithms such as evolution strategies[19] are efficient (log-linear convergence
rate) with variance decreasing to zero around the optimum. We will consider
a parametrized objective function (Eq. 6), with some parameter z such that
z = 0 corresponds to a noise variance Θ(1) in the neighborhood of the optimum;
whereas large values of z correspond to noise variance quickly decreasing to 0
around the optimum.

In this paper, our portfolio will be made of the following algorithms: (i) an
evolution strategy; (ii) a first-order method using gradients estimated by finite
differences (two variants included); (iii) a second-order method using a Hessian
matrix approximated also by finite differences. We present these methods in
more details in Section 2.

Simple regret criterion. In the black-box setting, let us define :

– xn the nth search point at which the objective function (also termed fitness
function) is evaluated;

– x̃n the point that the solver recommends as an approximation of the optimum
after having evaluated the objective function at x1, . . . , xn (i.e. after spending
n evaluations from the budget).

Some algorithms make no difference between xn and x̃n, but in a noisy opti-
mization setting the difference usually matters.

The simple regret for noisy optimization is expressed in terms of objective
function values, as follows:

SRn = E (f(x̃n)− f(x∗)) , (1)

where f : D 7→ R is a noisy fitness function and x∗ minimizes x 7→ Ef(x). SRn

is the simple regret after n evaluations; n is then the budget.
The slope of the simple regret is then defined as

lim sup
n

log(SRn)

log n
. (2)

For example, the gradient method proposed in [12] (approximating the gradient
by finite differences) reaches a simple regret slope −1 on sufficiently smooth

problems, for an additive centered noise, without assuming variance decreasing
to zero around the optimum.

1.2 Algorithm selection

Combinatorial optimization is probably the most classical application domain
for algorithm selection [23]. However, machine learning is also a classical test
case for algorithm selection [32]; in this case, algorithm selection is sometimes
referred to as meta-learning [1].

No free lunch. [34] claims that it is not possible to do better, on average
(uniform average) on all optimization problems from a given finite domain to
a given finite codomain. This implies that no algorithm selection can improve
existing algorithms on average on this uniform probability distribution of prob-
lems. Nonetheless, reality is very different from a uniform average of optimization
problems, and algorithm selection does improve performance in many cases.

Chaining and information sharing. Algorithm chaining [7] means switch-
ing from one solver to another during the portfolio optimization run. More gener-
ally, an hybrid algorithm is a combination of existing algorithms by any means
[33]. This is an extremal case of sharing. Sharing consists, more generally, in
sending information from some solvers to other solvers; they communicate in
order to improve the overall performance.

Static portfolios & parameter tuning. A portfolio of algorithms is usu-
ally static, i.e. combines a finite number of given solvers. SatZilla is probably
the most well known portfolio method, combining several SAT-solvers [25]. [27]
has pointed out the importance of having “orthogonal” solvers in the portfolio,
so that the set of solvers is not too large, but covers as far as possible the set of
possible solvers. [35] combines algorithm selection and parameter tuning; param-
eter tuning can be viewed as an algorithm selection over a large but structured
space of solvers. We refer to [23] and references therein for more information
on parameter tuning and its relation to algorithm selection; this is beyond the
scope of this paper.

Fair or unfair sharing of computation budgets. In [26], different strate-
gies are compared for distributing the computation time over different solvers.
The first approach consists in running all solvers during a finite time, then se-
lecting the best performing one, and then keep it for all the remaining time.
Another approach consists in running all solvers with the same time budget in-
dependently of their performance on the problem at hand. Surprisingly enough,
they conclude that uniformly distributing the budget is a good and robust strat-
egy. The situation changes when a training set is available, and when we assume
that the training set is relevant for the future problems to be optimized; [21],
using a training set of problems for comparing solvers, proposes to use 90% of
the time allocated to the best performing solver, the other 10% being equally
distributed among other solvers. [14, 15] propose 50% for the best solver, 25% for
the second best, and so on. Some selection solvers[15, 2] do not need a separate
training phase, and performs entirely online solver selection; a weakness of this
approach is that it is only possible when a large enough budget is available, so

that the training phase has a minor cost. At the moment, the case of portfolios
of noisy optimization solvers has not been discussed in the literature.

Restart strategies. A related problem is the restart of stochastic strategies:
when should we restart a local optimization solver ? Deciding if an optimization
solver should “restart” is related to deciding if we should switch to another
optimization solver; this is relevant for our continuous optimization case below.
[18, 10, 30] propose strategies which are difficult to apply in a black-box scenario,
when the optimum fitness value is not known.

Parallelism. Portfolios can naturally benefit from parallelism; however, the
situation is different in the noisy case, which is highly parallel by nature (as
noise is reduced by averaging multiple resamplings); we refer to [17] for more on
parallel portfolio algorithms (though not on the noisy optimization case).

Cooperation and information sharing. A crucial question in portfolio
algorithms is how to make different solvers in the portfolio cooperate, instead of
just competing. Knowledge sharing has been shown to provide great improve-
ments in domains where a concise information (such as inconsistent assignments
in satisfiability problems) can save up a huge computation time [17]; it is not
easy to see what type of information can be shared in noisy optimization. Al-
ready established upper bounds on possible fitness values (in minimization) can
help for deciding restarts as detailed above; good approximate solutions can also
be shared, possibly leading to a diversity loss. We will investigate in this paper
the sharing of current approximate solutions.

Bandit literature. During the last decade, a wide literature on bandits [24,
4, 8] have proposed many tools for distributing the computational power over
stochastic options to be tested. The application to our context is however far
from being straightforward. In spite of some adaptations to other contexts (time
varying as in [22] or adversarial [16, 5]), maybe due to deep differences such as
the very non-stationary nature of bandit problems involved, these methods did
not, for the moment, really found their way to selection algorithms.

In this paper, we will focus on (i) designing an orthogonal portfolio (ii) dis-
tributing the budget nearly equally over possible solvers (iii) possibly sharing
information between the different solvers.

1.3 Outline of this paper

Section 2 introduces several noisy optimization solvers. Section 3 explains the
portfolio algorithm we applied on top of it. Section 4 provides experimental
results.

2 Noisy optimization solvers

Following [27], we will focus on selecting a portfolio of solvers with some “orthog-
onality”, i.e. as different as possible from each other. We selected two extremal
cases of Fabian’s algorithm [12], a self-adaptive evolutionary algorithm with re-
samplings, and a variant of Newton’s algorithm adapted for noisy optimization.
These solvers are more precisely defined in Algs. 2, 3, 1.

3 Algorithms and analysis

3.1 Definitions and Notations

In all the paper, N∗ = {1, 2, 3, . . . }. Let f : D → R be a noisy function. f is a
random process, and equivalently it can be viewed as a mapping (x, ω) 7→ f(x, ω),
where

– the user can only choose x;
– and a random variable ω is independently sampled at each call to f .

For short, we will keep the notation f(x); the reader should keep in mind that
this function is stochastic. A black-box noisy optimization solver, here referred to
as a solver, is a program which aims at finding the minimum x∗ of x 7→ Ef(x),
thanks to multiple black-box calls to the unknown function f . The portfolio
algorithm, using algorithm selection, has the same goal, and can use M different
given solvers; a good algorithm selection tool should ensure that it is nearly as
efficient as each of the individual solvers, for any problem in some class of interest.
If X is a random variable, then (X(1), X(2), . . .) denotes a sample of independent
identically distributed random variables, copies of X. Let k : N∗ → N

∗ be a non-
decreasing function, called lag function, such that for all n ∈ N

∗, k(n) ≤ n. For
any i ∈ {1, . . . ,M}, x̃i,n denotes the point

– that the solver number i recommends as an approximation of the optimum
(see Section 1.1 for more on the difference between evaluated and recom-
mended search points);

– after this solver has spent n evaluations from the budget.

Similarly, the simple regret given by Eq. 1 corresponding to solver number i
after n evaluations, is denoted by SRi,n.

For n ∈ N
∗, i∗n denotes the solver chosen by the selection algorithm after n

function evaluations per solver.
Another important concept is the two kinds of terms in the regret of the

portfolio.
Definition : Solvers’ regret. The solvers’ regret with index n, denoted

SRSolvers
n , is the minimum simple regret among the solvers after n evaluations

each, i.e SRSolvers
n := min

i∈{1,...M}
SRi,n.

Definition : Selection regret. The selection regret with index n, denoted
by SRSelection

n includes the additional regret due to mistakes in choosing among
these M solvers, i.e SRSelection

n := E
(

f(x̃i∗n,n
)− f(x∗)

)

.

3.2 Simple Case : Uniform Portfolio NOPA

We present a simple noisy optimization portfolio algorithm (NOPA) which does
not apply any sharing and distributes the computational budget equally over the
noisy optimization solvers. Consider an increasing sequence r1, . . . , rn, . . . with

values in N
∗. These numbers are iteration indices, at which the M recommen-

dations from the M solvers are compared. Consider a sequence s1, . . . , sn, . . .
with values in N

∗; ∀n ∈ N
∗, sn is the number of resamplings of f(x̃i,n), ∀i ∈

{1, . . . ,M} at iteration rn; these resamplings are used for comparing these rec-
ommendations. More precisely, NOPA works as follows:

– Iteration 1: one evaluation for solver 1, one evaluation for solver 2, . . . , one
evaluation for solver M .

– Iteration 2: one evaluation for solver 1, one evaluation for solver 2, . . . , one
evaluation for solver M .

– . . .
– Iteration r1: one evaluation for solver 1, one evaluation for solver 2, . . . , one

evaluation for solver M .
– Selection Algorithm: Evaluate X = {x̃1,k(r1), . . . , x̃M,k(r1)}, each of them

s1 times; for m ∈ {r1, . . . , r2 − 1}, the recommendation of the selection
algorithm is x̃i∗r1 ,m

with i∗r1 = argmin
i∈{1,...,M}

∑s1
ℓ=1 f(x̃i,k(r1))

(ℓ).

– Iteration r1 + 1: one evaluation for solver 1, one evaluation for solver 2, . . . ,
one evaluation for solver M .

– . . .
– Iteration r2 − 1: one evaluation for solver 1, one evaluation for solver 2, . . . ,

one evaluation for solver M .
– Iteration r2: one evaluation for solver 1, one evaluation for solver 2, . . . , one

evaluation for solver M .
– Selection Algorithm: Evaluate X = {x̃1,k(r2), . . . , x̃M,k(r2)}, each of them

s2 times; for m ∈ {r2, . . . , r3 − 1}, the recommendation of the selection
algorithm is x̃i∗r2 ,m

with i∗r2 = argmin
i∈{1,...,M}

∑s2
ℓ=1 f(x̃i,k(r2))

(ℓ).

– . . .
– Iteration rn: one evaluation for solver 1, one evaluation for solver 2, . . . , one

evaluation for solver M .
– Selection Algorithm: Evaluate X = {x̃1,k(rn), . . . , x̃M,k(rn)}, each of them

sn times; for m ∈ {rn, . . . , rn+1 − 1}, the recommendation of the selection
algorithm is x̃i∗rn ,m with i∗rn = argmin

i∈{1,...,M}

∑sn
ℓ=1 f(x̃i,k(rn))

(ℓ).

Please note that

– Stable choice of solver: The selection algorithm follows the recommenda-
tion of the same solver i∗rt at all iterations in {rt, . . . , rt+1 − 1}.

– Use of solvers’ current recommendations: But for such iteration indices
m and p in {rt, . . . , rt+1−1}, the portfolio does not necessarily recommends
the same point because possibly x̃i∗rt ,m

6= x̃i∗rt ,p
.

– Please note that, in this algorithm, we compare, at iteration rn, recom-
mendations chosen at iteration k(rn); and this comparison is based on sn
resamplings.

Effect of the lag: due to k(.), we compare recommendations from earlier

iterations. This is somehow surprising, because the optimum solver at iteration

k(n) might be different from the optimum solver at iteration n. However, the key
point, in this algorithm, is that comparing recommendations at iteration k(rn) is
much cheaper than comparing recommendations at iteration rn. This is because
at iteration k(rn), points are not that good, and therefore can be compared with
a budget smaller than rn - which is necessary for not wasting evaluations.

We see that there are two kinds of evaluations:

– Portfolio budget: this corresponds to the M evaluations per iteration, ded-
icated to running the M solvers (one evaluation per solver and per iteration).

– Comparison budget (algorithm selection step): this corresponds to
the sn evaluations per solver. This is a key difference with deterministic
optimization; in deterministic optimization, this budget is zero as the exact
fitness value is readily available.

We have Mrn evaluations in the portfolio budget for the rn first iterations. We
will see below conditions under which the other costs can be made negligible,
whilst preserving the same regret as the best of the M solvers.

3.3 Theoretical analysis : The log(M)-shift

Main property: regret of NOPA. Let (rn)n∈N∗ and (sn)n∈N∗ be some se-

quences as in Section 3.2. Assume that :

– ∀x ∈ D, V ar f(x) ≤ 1;
– for some positive sequence (ǫn)n∈N∗ , almost surely, there exists some n0 ∈ N

∗

such that :

∀n ≥ n0, SRSolvers
k(rn) < min

i 6∈ argmin
j∈{1,...,M}

SRj,k(rn)

SRi,k(rn) − 2ǫn; (3)

and ∀n ≥ k(rn0), argmin
i∈{1,...,M}

SRi,n = argmin
i∈{1,...,M}

SRi,n+1. (4)

Then, almost surely there exists some n0 such that for any n > n0, NOPA has

simple regret SRSelection
rn equal to SRSolvers

rn with probability at most 1 − M
snǫ2n

after en = rn ×M × (1 +
∑n

i=1
si
rn
) evaluations.

Corollary 1 : Asymptotic case.
Under assumptions above and if snǫ

2
n → ∞ for some sequence ǫn satisfying

Eq. 3, and 1
rn

∑n
i=1 si = o(1), then the regret SRSelection

m of the portfolio after

Mm(1 + o(1)) evaluations is at most SRSolvers
m with probability converging to 1

as m → ∞.

Corollary 2 : the log(M) shift.
Let r > 1 and r′ > 0, ∀n ∈ N

∗, the following parametrization satisfies the

assumptions of Corollary 1 for some sequence ǫn = Θ(1n) satisfying Eq. 3:

– rn = n1+2r+r′ ,

– sn = n2r and

– k(n) = ⌈n1/(1+2r+r′)⌉.

Notice that the comparison budget (sum of the sn) increases polynomially,
slower than the portfolio budget. Moreover, in the case of a constant variance
noise, typical rates are SRn scaling as O(1/n) (see e.g. [12, 9, 29]). Hence, with
these parameters or others parameters which satisfy the assumptions of Corol-
lary 1, on classical log-log graphs (x-axis: log(number of evaluations); y-axis:
log(simple regret)), cf Eq. 2, the portfolio should perform similarly to the best
solver, within the log(M) shift on the x-axis.

Remark on Corollary 2: Corollary 2 holds under assumption Eq. 3. This
means that the two best solvers have a difference of order 1/n. In order to
get similar results when solvers are very close to each other (ǫn smaller), it is
necessary to use a slower k function.

Proof of the main property:
First, notice that the total number of evaluations, up to the construction of x̃i∗rn ,rn

at iteration rn, is: M(rn+
∑n

i=1 si) whereas each solver has spent rn evaluations.

Let us denote Ês [f(x)] the empirical evaluation of E [f(x)] over s resam-

plings, i.e. Ês [f(x)] :=
1
s

∑s
j=1 (f(x))

(j)
.

By Chebyshev’s inequality,

P (|E
[

f(xi,k(rn))
]

− Êsn

[

f(xi,k(rn))
]

| > ǫn) ≤
V ar

[

f
(

xi,k(rn)

)]

snǫ2n
≤

1

snǫ2n
.

By union bound,

P (∃i ∈ {1, . . . ,M}; |E
[

f(xi,k(rn))
]

− Êsn

[

f(xi,k(rn))
]

| > ǫn) ≤
M

snǫ2n
.

With notation i∗ = i∗rn := argmin
i∈{1,...,M}

Êsn

[

f(x̃i,k(rn))
]

, it follows that, with prob-

ability 1− M
snǫ2n

:

E
[

f(x̃i∗,k(rn))
]

≤ Êsn

[

f(x̃i∗,k(rn))
]

+ ǫn;

E
[

f(x̃i∗,k(rn))
]

≤ Êsn

[

f(x̃j,k(rn))
]

+ ǫn, ∀j ∈ {1, . . . ,M};

E
[

f(x̃i∗,k(rn))
]

≤ E
[

f(x̃j,k(rn))
]

+ 2ǫn, ∀j ∈ {1, . . . ,M};

E
[

f(x̃i∗,k(rn))
]

− E [f(x∗)] ≤ min
j∈{1,...,M}

SRj,k(rn) + 2ǫn;

SRi∗,k(rn) < min
i 6∈ argmin

j∈{1,...,M}

SRj,k(rn)

SRi,k(rn). (5)

By Eqs. 3 and 5, i∗ ∈ argmin
i∈{1,...,M}

SRi,k(rn) with probability 1− M
snǫ2n

, by Eq. 4,

i∗ ∈ argmin
i∈{1,...,M}

SRi,rn .

3.4 Real world constraints & introducing sharing

Real world introduces various constraints. Most solvers do not allow you to
run one single fitness evaluation at a time, so that it becomes difficult to have

exactly the same number of fitness evaluations per solver. We will here adapt
the algorithm above for such a case; an additional change is the possible use of
“Sharing” options (i.e. sharing information between the different solvers). The
proposed algorithm is as follows:

– Iteration 1: one iteration for solver 1, one iteration for solver 2, . . . , one
iteration for solver M .

– Iteration 2: one iteration for each solver which received less than 2 evalua-
tions.

– . . .
– Iteration i: one iteration for each solver which received less than i evaluations.
– . . .
– Iteration r1: one iteration for each solver which received less than r1 evalu-

ations.
– Selection Algorithm: Evaluate X = {x̃1,k(r1), . . . , x̃M,k(r1)}, each of

them s1 times; the recommendation of NOPA is x̃i∗,m for iterations m ∈
{r1, . . . , r2 − 1}, where i∗ = argmin

i∈{1,...,M}

∑s1
j=1 f(x̃i,k(r1))

(j). If sharing is en-

abled, all solvers receive x̃i∗,r1 as next iterate.
– Iteration r1 +1: one iteration for each solver which received less than r1 +1

evaluations.
– . . .
– Iteration r2: one iteration for each solver which received less than r2 evalu-

ations.
– Selection Algorithm: Evaluate X = {x̃1,k(r2), . . . , x̃M,k(r2)}, each of

them s2 times; the recommendation of NOPA is x̃i∗,m for iterations m ∈
{r2, . . . , r3 − 1}, where i∗ = argmin

i∈{1,...,M}

∑s2
j=1 f(x̃i,k(r2))

(j). If sharing is en-

abled, all solvers receive x̃i∗,r2 as next iterate.
– . . .
– Iteration rn: one iteration for each solver which received less than rn evalu-

ations.
– Selection Algorithm: Evaluate X = {x̃1,k(rn), . . . , x̃M,k(rn)}, each of

them sn) times; the recommendation of NOPA is x̃i∗,m for iterations m ∈
{rn, . . . , rn+1 − 1}, where i∗ = argmin

i∈{1,...,M}

∑sn
j=1 f(x̃i,k(rn))

(j). If sharing is

enabled, all solvers receive x̃i∗,rn as next iterate.

4 Experimental results

For our experiments below, we use four noisy optimization solvers and portfolio
of these solvers with and without information sharing:

– Solver 1: Fabian’s solver, as detailed in Alg. 3, with parametrization γ = 0.1,
a = 1, c = 100. This variant will be termed Fabian1.

– Solver 2: Another Fabian’s solver with parametrization γ = 0.49, a = 1,
c = 2. This variant will be termed Fabian2.

– Solver 3: A version of Newton’s solver adapted for black-box noisy optimiza-
tion (gradients and Hessians are approximated on samplings of the objective
function), as detailed in Alg. 1, with parametrization B = 1, β = 2, A = 100,
α = 4. For short this solver will be termed Newton.

– Solver 4: A self-adaptive evolution strategy with resampling as explained in
Alg. 2, with parametrization λ = 10d, µ = 5d, K = 10, ζ = 2 (in dimension
d). This solver will be termed RSAES (resampling self-adaptive evolution
strategy).

– Portfolio: Portfolio of solvers 1, 2, 3, 4. Functions are k(n) = ⌈n0.1⌉, rn = n3,
sn = 15n2 at iteration n.

– P.+Sharing: Portfolio of solvers 1, 2, 3, 4, with information sharing enabled.
Same functions.

We approximate the slope of the linear convergence in log-log scale by the log-
arithm of the average simple regret divided by the logarithm of the number of
evaluations.

Experiments have been performed on

f(x) = ||x||2 + ||x||zN (6)

with N a Gaussian standard noise. The results in dimension 2 and dimension
15 are shown in Table 1.

We see on these experiments:

– that the portfolio algorithm successfully reaches almost the same slope as
the best of its solvers;

– that for z = 2 the best algorithm is the second variant of Fabian (consistently
with [12]);

– that for z = 1 the approximation of Newton’s algorithm performs best;
– that for z = 0 the first variant of Fabian’s algorithm performs best (consis-

tently with [12]);
– that the sharing has little or no impact.

5 Conclusion

We have seen that noisy optimization provides a very natural framework for port-
folio methods. Different noisy optimization algorithms have extremely different
rates on different test cases, depending on the noise level, on the dimension. We
show mathematically and empirically a log(M) shift when usingM solvers, when
working on a classical log-log scale (classical in noisy optimization). Contrarily
to noise-free optimization (where a log(M) shift would be a trivial result), such
a shift is not so easily obtained in noisy optimization.

Importantly, it is necessary, for getting the log(M) shift, that:

– the selection algorithm compares old recommendations (and selects a solver
from this point of view),

– the portfolio recommends the current recommendation of this selected solver.

Sharing information in portfolios of noisy optimization algorithms is not so easy.
A further work consists in identifying relevant information for sharing; maybe
the estimate of the asymptotic fitness value of a solver is the most natural in-
formation for sharing; if a fitness value A is already found and a solver claims
that it will never do better than A we can stop its run and save up computa-
tional power. This should allow better than the log(M) shift. Another further
work is the extension beyond simple unimodal objective functions; the crucial
assumption for our result is that the best algorithm does not change too often,
this might not always be the case.

References

1. D. W. Aha. Generalizing from case studies: A case study. In Proceedings of the
9th International Workshop on Machine Learning, pages 1–10. Morgan Kaufmann
Publishers Inc., 1992.

2. W. Armstrong, P. Christen, E. McCreath, and A. P. Rendell. Dynamic algorithm
selection using reinforcement learning. In International Workshop on Integrating
AI and Data Mining, pages 18–25, 2006.

3. D. V. Arnold and H.-G. Beyer. A general noise model and its effects on evo-
lution strategy performance. IEEE Transactions on Evolutionary Computation,
10(4):380–391, 2006.

4. P. Auer. Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research, 3:397–422, 2003.

5. P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged
casino: the adversarial multi-armed bandit problem. In Proceedings of the 36th
Annual Symposium on Foundations of Computer Science, pages 322–331. IEEE
Computer Society Press, Los Alamitos, CA, 1995.

6. H.-G. Beyer. The Theory of Evolutions Strategies. Springer, Heidelberg, 2001.
7. J. Borrett, E. P. K. Tsang, and C. C. Sq. Towards a formal framework for com-

paring constraint satisfaction problem formulations, 1996.
8. S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits

problems. In ALT, pages 23–37, 2009.
9. H. Chen. Lower rate of convergence for locating the maximum of a function. Annals

of statistics, 16:1330–1334, Sept. 1988.
10. V. A. Cicirello and S. F. Smith. The max k-armed bandit: A new model of ex-

ploration applied to search heuristic selection. In Proceedings of the 20th National
Conference on Artificial Intelligence, pages 1355–1361. AAAI Press, 2005.

11. A. Conn, K. Scheinberg, and L. Toint. Recent progress in unconstrained nonlinear
optimization without derivatives, 1997.

12. V. Fabian. Stochastic Approximation of Minima with Improved Asymptotic Speed.
Annals of Mathematical statistics, 38:191–200, 1967.

13. V. Fabian. Stochastic Approximation. SLP. Department of Statistics and Proba-
bility, Michigan State University, 1971.

14. M. Gagliolo and J. Schmidhuber. A neural network model for inter-problem adap-
tive online time allocation. In 15th International Conference on Arti
cial Neural Networks: Formal Models and Their Applications, pages 7–12. Springer,
2005.

15. M. Gagliolo and J. Schmidhuber. Learning dynamic algorithm portfolios. vol-
ume 47, pages 295–328, 2006.

16. M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approxima-
tion algorithm for matrix games. Operations Research Letters, 18(2):53–58, Sep
1995.

17. Y. Hamadi. Search: from Algorithms to Systems. PhD thesis, Université Paris-Sud,
2013.

18. E. Horvitz, Y. Ruan, C. P. Gomes, H. A. Kautz, B. Selman, and D. M. Chickering.
A bayesian approach to tackling hard computational problems. In Proceedings
of the 17th Conference in Uncertainty in Artificial Intelligence, pages 235–244.
Morgan Kaufmann Publishers Inc, 2001.

19. M. Jebalia, A. Auger, and N. Hansen. Log-linear convergence and divergence of
the scale-invariant (1+1)-es in noisy environments. Algorithmica, pages 1–36, 2010.
online first.

20. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments. a
survey, ieee transactions on evolutionary computation, vol. 9, no. 3, pp. 303 317.
2005.

21. S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Al-
gorithm selection and scheduling. In 17th International Conference on Principles
and Practice of Constraint Programming, pages 454–469, 2011.

22. L. Kocsis and C. Szepesvari. Discounted-ucb. In 2nd Pascal-Challenge Workshop,
2006.

23. L. Kotthoff. Algorithm selection for combinatorial search problems: A survey.
CoRR, abs/1210.7959, 2012.

24. T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6:4–22, 1985.

25. E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham. Under-
standing random sat: beyond the clauses-to-variables ratio. In M. Wallace, editor,
Principles and Practice of Constraint Programming CP 2004, LLNCS 3258, vol-
ume 3258 of Lecture Notes in Computer Science, pages 438–452. Springer Berlin /
Heidelberg, 2004.

26. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified
boolean formulas. Constraints, 14(1):80–116, 2009.

27. H. Samulowitz and R. Memisevic. Learning to solve qbf. In Proceedings of the
22nd National Conference on Artificial Intelligence, pages 255–260. AAAI, 2007.

28. B. Sendhoff, H.-G. Beyer, and M. Olhofer. The influence of stochastic quality
functions on evolutionary search, in recent advances in simulated evolution and
learning, ser. advances in natural computation, k. tan, m. lim, x. yao, and l. wang,
eds. world scientific, pp 152-172. 2004.

29. O. Shamir. On the complexity of bandit and derivative-free stochastic convex
optimization. CoRR, abs/1209.2388, 2012.

30. M. J. Streeter, D. Golovin, and S. F. Smith. Restart schedules for ensembles of
problem instances. pages 1204–1210. AAAI Press, 2007.

31. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
Press., Cambridge, MA, 1998.

32. P. E. Utgoff. Perceptron trees: A case study in hybrid concept representations. In
National Conference on Artificial Intelligence, pages 601–606, 1988.

33. V. Vassilevska, R. Williams, and S. L. M. Woo. Confronting hardness using a
hybrid approach. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pages 1–10. ACM, 2006.

34. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr. 1997.

35. L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Hydra-mip: automated al-
gorithm configuration and selection for mixed integer programming. In RCRA
Workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion at the International Joint Conference on Artificial Intel-
ligence (IJCAI), 2011.

Algorithm 1 Newton algorithm with gradient and Hessian approximated by
finite differences and revaluations.
1: Parameters: a dimension d ∈ N

∗, A > 0, B > 0, α > 0, β > 0, ǫ > 0
2: Input: ĥ← identity matrix, an initial x1 ∈ R

d

3: n← 1
4: while (true) do
5: Compute

σn = A/nα

6: Evaluate the gradient g at xn by finite differences, averaging over ⌈Bnβ⌉ samples
at distance Θ(σn) of xn

7: for i = 1 to d do

8: Evaluate hi,i by finite differences at xn + σei and xn − σei, averaging each
evaluation over ⌈Bnβ⌉ resamplings

9: for j = 1 to d do

10: if i == j then

11: Update ĥi,j using ĥi,i = (1− ǫ)ĥi,i + ǫhi,i

12: else

13: Evaluate hi,j by finite differences thanks to evaluations at each of xn ±
σei ± σej , averaging over ⌈Bnβ/10⌉ samples

14: Update ĥi,j using ĥi,j = (1− ǫ
d
)ĥi,j +

ǫ
d
hi,j

15: end if

16: end for

17: end for

18: δ ← solution of ĥδ = −g
19: if δ > Cσn then

20: δ = Cσn
δ

||δ||

21: end if

22: Apply xn+1 = xn + δ
23: n← n+ 1
24: end while

Algorithm 2 Self-adaptive Evolution Strategy with revaluations. N denotes
some independent standard Gaussian random variable, with dimension as re-
quired in equations above.

1: Parameters: K > 0, ζ ≥ 0, λ ≥ µ > 0, a dimension d ∈ N
∗

2: Input: an initial parent population x1,i ∈ R
d and an initial σ1,i = 1, i ∈ {1, . . . , µ}

3: n← 1
4: while (true) do
5: Generate λ individuals ij , j ∈ {1, . . . , λ}, independently using

σj = σn,mod(j−1,µ)+1 × exp

(

1

2d
N

)

and ij = xn,mod(j−1,µ)+1 + σjN

6: Evaluate each of them ⌈Knζ⌉ times and average their fitness values
7: Define j1, . . . , jλ so that

E⌈Knζ⌉[f(ij1)] ≤ E⌈Knζ⌉[f(ij2)] · · · ≤ E⌈Knζ⌉[f(ijλ)]

where Em denotes the average over m resamplings
8: Update: compute xn+1,k and σn+1,k using

σn+1,k = σjk and xn+1,k = ijk , k ∈ {1, . . . , µ}

9: n← n+ 1
10: end while

Algorithm 3 Fabian’s stochastic gradient algorithm with finite differences. Sev-
eral variants have been defined, in particular versions in which only one point
(or a finite number of points independently of the dimension) is evaluated at
each iteration[9, 29]. We refer to [12] for more details and in particular for the
choice of weights and scales.

1: Parameters: a dimension d ∈ N
∗, 1

2
> γ > 0, a > 0, c > 0, m ∈ N

∗, weights
w1 > · · · > wm summing to 1, scales 1 ≥ u1 > · · · > um > 0

2: Input: an initial x1 ∈ R
d

3: n← 1
4: while (true) do
5: Compute

σn = c/nγ

6: Evaluate the gradient g at xn by finite differences, averaging over 2m samples
per axis. ∀i ∈ {1, . . . , d}, ∀j{1 . . .m}

x(i,j)+
n = xn + ujei and x(i,j)−

n = xn − ujei

gi =
1

2σn

m
∑

j=1

wj

(

f(x(i,j)+
n)− f(x(i,j)−

n)
)

7: Apply xn+1 = xn −
a
n
g

8: n← n+ 1
9: end while

comp.
algorithm

obtained slope for d = 2 obtained slope for d = 15
time z = 0 z = 1 z = 2 z = 0 z = 1 z = 2

10 Portfolio -1.00±0.28 -1.63±0.06 -2.69±0.07 -0.72±0.02 -1.06±0.01 -1.90±0.02
10 P.+Sharing -0.93±0.31 -1.64±0.05 -2.71±0.07 -0.72±0.02 -1.05±0.03 -1.90±0.03
10 Fabian1 -1.24±0.05 -1.25±0.06 -1.23±0.06 -0.83±0.02 -1.03±0.02 -1.02±0.02
10 Fabian2 -0.17±0.09 -1.75±0.10 -3.16±0.06 0.11±0.02 -1.30±0.02 -2.39±0.02
10 Newton -0.20±0.09 -1.84±0.34 -1.93±0.00 0.00±0.02 -1.27±0.23 -1.33±0.00
10 RSAES -0.41±0.08 -0.61±0.13 -0.60±0.16 0.15±0.01 0.14±0.02 0.15±0.01
20 Portfolio -0.92±0.26 -1.58±0.05 -2.66±0.06 -0.70±0.02 -1.02±0.02 -1.85±0.02
20 P.+Sharing -0.94±0.22 -1.60±0.00 -2.67±0.06 -0.69±0.02 -1.02±0.02 -1.84±0.02
20 Fabian1 -1.20±0.07 -1.25±0.10 -1.24±0.05 -0.83±0.03 -1.01±0.02 -1.02±0.02
20 Fabian2 -0.15±0.06 -1.76±0.06 -3.18±0.06 0.11±0.02 -1.32±0.01 -2.45±0.01
20 Newton -0.14±0.05 -1.96±0.00 -1.96±0.00 0.00±0.02 -1.32±0.24 -1.39±0.00
20 RSAES -0.41±0.07 -0.54±0.11 -0.54±0.04 0.12±0.01 0.12±0.02 0.13±0.01
40 Portfolio -0.91±0.25 -1.60±0.00 -2.63±0.05 -0.69±0.01 -1.03±0.01 -1.86±0.03
40 P.+Sharing -0.99±0.18 -1.58±0.06 -2.66±0.06 -0.69±0.01 -1.02±0.02 -1.88±0.02
40 Fabian1 -1.21±0.06 -1.21±0.03 -1.19±0.07 -0.82±0.02 -1.00±0.02 -0.99±0.02
40 Fabian2 -0.18±0.07 -1.78±0.09 -3.18±0.07 0.11±0.02 -1.36±0.02 -2.52±0.02
40 Newton -0.17±0.08 -1.99±0.00 -1.68±0.61 0.00±0.02 -1.32±0.33 -1.45±0.00
40 RSAES -0.41±0.08 -0.64±0.12 -0.55±0.11 0.11±0.01 0.11±0.01 0.11±0.01
80 Portfolio -0.92±0.25 -1.61±0.05 -2.65±0.05 -0.68±0.02 -1.02±0.02 -1.85±0.02
80 P.+Sharing -0.83±0.28 -1.60±0.05 -2.64±0.04 -0.68±0.03 -1.01±0.01 -1.86±0.02
80 Fabian1 -1.15±0.05 -1.20±0.05 -1.22±0.04 -0.82±0.02 -0.99±0.01 -1.00±0.02
80 Fabian2 -0.17±0.09 -1.76±0.07 -3.11±0.09 0.10±0.02 -1.38±0.02 -2.58±0.01
80 Newton -0.12±0.06 -2.01±0.00 -2.01±0.00 0.00±0.01 -1.42±0.29 -1.50±0.00
80 RSAES -0.37±0.06 -0.54±0.12 -0.56±0.14 0.10±0.01 0.11±0.01 0.09±0.01
160 Portfolio -1.01±0.07 -1.61±0.00 -2.67±0.12 -0.65±0.02 -1.01±0.07 -1.89±0.03
160 P.+Sharing -0.90±0.20 -1.60±0.03 -2.66±0.07 -0.67±0.02 -1.02±0.01 -1.89±0.02
160 Fabian1 -1.14±0.04 -1.20±0.05 -1.19±0.05 -0.83±0.01 -0.98±0.01 -0.98±0.01
160 Fabian2 -0.21±0.08 -1.79±0.04 -2.97±0.06 0.09±0.02 -1.42±0.02 -2.62±0.02
160 Newton -0.13±0.08 -2.04±0.00 -2.04±0.00 0.00±0.01 -1.48±0.24 -1.55±0.00
160 RSAES -0.37±0.04 -0.61±0.13 -0.56±0.12 0.09±0.01 0.09±0.01 0.09±0.01

Table 1. Experiments on f(x) = ||x||2 + ||x||zN in dimension 2 and dimension 15. We
see that the portfolio successfully keeps the best of each world (nearly same slope as
the best). Importantly, without lag (i.e. if we use k(n) = n), this property was not

reproduced. Comp. time refers to the computational time.

