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Abstract—Most safety critical embedded systems, i.e. systems
for which constraints must necessarily be satisfied in order to
avoid catastrophic consequences, consist of a set of data depen-
dent tasks which exchange data. Although non-preemptive real-
time scheduling is safer than preemptive real-time scheduling
in a safety critical context, preemptive real-time scheduling
provides a better success ratio, but the preemption has a cost.
In this paper we propose a schedulability analysis for data
dependent periodic tasks which takes into account the exact
preemption cost, data dependence constraints without loss of
data and mutual exclusion constraints.

Keywords-real-time scheduling, exact preemption cost, data
dependent tasks, data transfer, mutual exclusion constraints,
schedulability analysis, safety critical embedded systems.

I. INTRODUCTION

We focus on safety critical embedded systems, i.e.
systems for which constraints must necessarily be satisfied
in order to avoid catastrophic consequences. Such systems,
in most cases, consist of a set of dependent periodic tasks
resulting from a functional specification, usually performed
with tools such as Simulink [1], Scade [2], etc., based
on block diagrams. The functional specification describes
the functions that will be executed and their dependences
which represent the data produced and consumed by the
functions. Such dependences involve a precedence relation
on the execution of every producer function and one or
several consumer functions, and lead to sharing the data
considered. Dependent functions associated with temporal
characteristics become dependent real-time tasks. These
characteristics feature first release, Worst Case Execution
Time (WCET), period and deadline.

Although non-preemptive real-time scheduling is safer
than preemptive real-time scheduling in a safety critical
context, preemptive real-time scheduling provides a better
success ratio, but the preemption has a cost. That cost
corresponds to the duration to save the context of the
preempted task and the duration to restore this context when
the preempted task will be seleceted again for execution.
Due to its cost, a preemption increases the response time

of the preempted task that may cause another preemption,
and so on, leading to the avalanche phenomenon. The cost
of the preemption is usually approximated in the WCET as
assumed, explicitly, by Liu and Layland in their pioneering
article [3]. However, such an approximation is dangerous in
a safety critical context since a system could miss some
deadlines during its real-time execution even though the
schedulability conditions have been satisfied or, in the best
case, resources could be wasted when the preemption cost
is approximated through margins added to the WCET. This
is why it is important to take into consideration the exact
preemption cost.

The remainder of the paper is organized as follows: Sec-
tion II describes the model and the notations used. Section
III presents related work on dependence constraints, mutual
exclusion constraints and the preemption cost. Section IV
presents the interval used to achieve the schedulability
analysis. Section V presents the data transfer involved by
data dependences. Section VI presents the mutual exclusion
constraints due to the shared buffers containing the data.
Section VII presents the schedulability analysis we propose.
Section VIII presents the impact of the preemption cost in
the schedulability analysis. Finally, Section IX concludes
and gives some directions for future work.

II. MODEL AND NOTATIONS

A. Model

Let Γn = {τ1, τ2, · · · , τn} be a set of n preemptive,
dependent real-time tasks represented by a directed acyclic
graph (DAG) noticed G. The nodes of G represent the tasks
and the arcs (directed edges) correspond to the dependences
between the tasks. An example of a graph depicting depen-
dent tasks is given in Figure 1.

Every periodic task is denoted by τi = (r1
i , Ci, Di, Ti)

where r1
i , Ci, Di and Ti are the temporal characteristics of

the task. r1
i is the first release time, Ci is the WCET without

any added time to approximate the preemption cost, Di

is the relative deadline, and Ti the period of the task τi.
We assume that Ci ≤ Di ≤ Ti. Actually, a periodic task
executes indefinitely a “job” also called an “instance”. We
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Figure 1. Example of DAG representing a dependent set of tasks

assume that Γn is scheduled off-line and the priorities of the
tasks are assigned according to a fixed-priority scheduling
algorithm denoted by Algo. This off-line schedule is stored
in a table that will be used during the real-time execution
of the tasks. This approach avoids the variable cost of the
overhead caused by an on-line scheduling algorithm. We
assume that the dependent tasks must have the same period
or have multiple periods in order for the consumer task to
be able to receive all the data produced by the producer task
without any data being lost or duplicated. Note that, when
the cost of every data to transfer is taken into account, this is
the worst situation since the other situations lead to less data
transfers. We assume that each producer task τi has a buffer
bi in which it writes the data at the end of its execution.
On the other hand a consumer task τj may read this data
in this buffer bi during its execution. If τj is preempted by
τi during its execution, the task τi may write a data in the
buffer bi while after τj will resume it may read the buffer
bi with the wrong value. This is why buffer bi must not be
read by τi and also written by τj . This restriction is called
a mutual exclusion constraint on bi between τi and τj . Note
however that, several tasks can read simultaneously in any
buffer.

Finally, we assume that the processor where the tasks will
be executed, has neither cache nor pipeline, or complex inter-
nal architecture. Both previous assumptions are usually made
in safety critical embedded systems where determinism is a
key issue.

B. Notations

We introduce some notations in Table I.

III. RELATED WORK AND CONTRIBUTIONS

A. Data Dependence constraints

A dependence constraint between two tasks (τi, τj) can
be: 1) a precedence constraint [4], i.e. task τi must be
executed before τj . Task τi is called the predecessor task
and τj the successor task; 2) a data dependence constraint
[5], i.e. τi must be executed before τj and τj (consumer
task) must wait to receive the data from τi (producer task)
before its execution.

There are two kinds of precedence constraints: simple
precedence constraints [4], [6], [7], i.e. each execution of τj
is preceded by an execution of τi and extended precedence
constraints [8], [7], i.e. the tasks do not have the same
periods and are executed at different rate. There are two

Notation Description
Hn = LCM{Ti}1≤i≤n The hyper period of Γn, the least

common multiple of the periods
rmin = min{r1

i }1≤i≤n The minimum of the first release
time of the tasks in Γn

rmax = max{r1
i }1≤i≤n The maximum of the first release

time of the tasks in Γn
pred(τi) Set of predecessors of τi
succ(τi) Set of successors of τi
bi(t) The number of data produced by τi

and available in the buffer bi at t
I(t) The set of release and end execu-

tion times at t, in the increasing
order

r−(t) The preview time in I(t) from t
r+(t) The next time in I(t) from t
Γr(t) The set of ready tasks at time t
φi(t) The task selected for execution at

time t among the ready tasks Γr(t)
ci(t) The remaining execution time of τi

at time t
di(t) The deadline of τi relative to time

t
pi The fixed priority of τi according

to Algo
pbi The priority of buffer bi
Γ(τi, t) The set of tasks blocked by τi at t
Γ(bi) The set of tasks that may use buffer

bi
B(t) The set of buffers that are currently

used at t
Γ(B(t)) The set of tasks that currently use

the buffers in B(t)

Table I
SUMMARY OF THE NOTATIONS

approaches to dealing with the precedence constraints. The
first approach is based on semaphores [9]: a semaphore is
allocated for each precedence (τi, τj), and the successor
task τj must wait for the predecessor task τi to release
the semaphore before it can start its execution. The second
approach is based on the modification of the priorities and
the release times of the task [4], [7].

The data dependence constraints require that the prece-
dence constraints are satisfied. In the systems considered,
since the tasks can have different execution periods, a
consumer task can consume the first data, the last, all the
data, or any other combinations of data from a producer task.
In [8], when the consumer task has a period greater than or
equal to that of the producer task, then the data consumed is
the last data produced during the execution of the consumer.
The authors transform the extended precedences constraint
into a simple precedence constraint by replacing a task τi
by ni = Hn

Ti
duplicated tasks of period Hn (Hn is the

least common multiple of the periods of the tasks and Ti
is the period of τi). They use the principle proposed in [4]
to deal with the simple precedence constraints. This method
based on the duplication of some tasks is exponential in
time and memory. In [5], if the period of the consumer
task is equal to n times the period of the producer task,



then the producer task must be executed n times compared
to the consumer task, and the consumer task cannot start
its execution until it has received all the data from the n
executions of the producer task (the data produced differ
from one execution of the producer task to another execution
and therefore data are not duplicated). Reciprocally, if the
period of the producer task is equal to n times the period of
the consumer task then the consumer task must be executed
n times compared to the producer task. In order to do that,
the graph of dependent tasks is unrolled. In that study the
authors consider that tasks are non-preemptive and have
strict periods.

B. Mutual exclusion constraints

In order to satisfy mutual exclusion constraints, the depen-
dent tasks are executed in different critical sections. These
critical sections must be managed carefully, because they
can cause priority inversion which occurs when a lower
priority task blocks the execution of a higher priority task.
Many synchronization protocols have been proposed to limit
the blocking duration of a task. Among them, the priority
inheritance protocol (PIP) [10] based on the principle of
priority inheritance. The PIP has two problems, first the
blocking duration can be long, and second it does not prevent
deadlocks. A deadlock occurs when at time t1, a task τj
starts to use a buffer b in a critical section until at time
t2 it attempts to use another buffer b′, however at this
time, the higher priority task τi preempts it and begins to
use buffer b′ in a critical section. To reduce the blocking
duration and prevent deadlocks, the priority ceiling protocol
(PCP) was proposed in [10]. The principle of PCP is to
ensure that when a task τi preempts another task which is
executing in a critical section and τi executes its own critical
section, the priority of τi is guaranteed to be higher than
the inherited priorities of all the preempted tasks in critical
sections. If this condition cannot be satisfied, τi cannot start
its critical section and it is suspended. When τi is blocked
by another task, the latter inherits the priority of τi. The PIP
and PCP protocols are used with static priority algorithms.
For dynamic priority algorithms, the stack resource policy
(SRP) [11] is proposed. The SRP is a dynamic version of
PCP.

C. Exact preemption cost

For preemptive scheduling without data-dependence, there
have been very few studies that address the exact number
of preemptions. Of those that have, A. Burns, K. Tindell
and A. Wellings in [12] presented an analysis that enables
the global cost due to preemptions to be factored into the
standard equations for calculating the worst case response
time of any task, but they achieved that by considering
the maximum number of preemptions rather than the exact
number. Juan Echagüe, I. Ripoll and A. Crespo also tried to
solve the problem of the exact number of preemptions in [13]

by computing the schedule using idle times and counting
the number of preemptions. However, they did not really
determine the execution overhead incurred by the system
due to these preemptions, as they did not take into account
the cost of each preemption during the analysis. Hence,
this amounts to considering only the minimum number of
preemptions because some preemptions are not considered
i.e., those due to the increase in the execution time of the task
because of the cost of preemptions themselves. To our best
knowledge the only studies in which the exact preemption
cost is taken into account in the schedulability analysis are
those presented in [14]. The authors proposed a scheduling
operation named ⊕ that performs a schedulability analysis
while computing the exact number of preemptions. However,
this operation does not allow priority inversion since the
priorities of the tasks cannot change during their execution.

IV. SCHEDULABILITY INTERVAL

A schedulability interval is the finite interval such that
the computation of a schedule during this interval provides
enough information to define the infinite schedule.

Goossens and Devillers in [15], considering independent
tasks and fixed-priority scheduling algorithms, determined
a schedulability interval. On the other hand, Leung and
Merrill in [16] showed that the interval [rmin, rmax+2∗Hn]
is a schedulability interval for a set of n independent
periodic tasks for the EDF (Earliest Deadline First) schedul-
ing algorithm. This interval is not necessarily the shortest.
Then, in [17], Choquet and Grolleau proposed a minimal
schedulability interval for a set of n dependent periodic
tasks. The schedulability interval proposed by those authors
denoted by In is given by:

In = [rmin, tc +Hn] (1)

where tc is the time from which the schedule repeats
indefinitely. tc is computed iteratively by an algorithm given
in the article. Since tc is smaller or equal to rmax+Hn, we
will use in the following the interval given by the Equation
1 with tc = rmax +Hn.

V. DATA TRANSFER

We consider a pair of data dependent tasks (τi, τj) ∈ G
involving a data transfer where task τi produces data for τj
which consumes it. If Ti = Tj then task τi is executed once
before one execution of τj , that is equivalent to a simple
precedence constraint. If it is not the case, according to their
periods, there are two possibilities:
• if Ti < Tj then task τi is executed kij =

Tj

Ti
times

before one execution of τj . During its execution, task τj
consumes all the kij data produced by τi. As mentioned
above, when Ti 6= Tj , there are several cases for τj to
consume the data produced by τi. As in [5], we suppose



that τj consumes all the data produced by τi without
any loss of data, since it is the worst case;

• if Ti > Tj then task τi is executed once before kji =
Ti

Tj
executions of τj . The task τj consumes one data

produced by τi for each of its executions.
Since we have supposed that Ti and Tj are multiple, both
cases can be summarized in one case given by: task τi is
executed kij = dTj

Ti
e times before kji = d Ti

Tj
e executions of

τj .
Definition 1: A data transfer between a task τj that con-

sumes data produced by a task τi at time t, t ∈ In and
t ≥ r1

j , is said to be without loss of data if and only if:
• τj receives, or has already received, all the kij data

produced by τi, ∀τi ∈ pred(τj),
• τj has executed less than kji times after receiving the

data from τi, ∀τi ∈ pred(τj),
• τj does not produce more than kji data for each τi ∈
succ(τi),

• all the kji data already produced by τj for τi, ∀τi ∈
succ(τi) must be already consumed kij times by τi.

Figure 2 presents an example of three data dependent
tasks which satisfy Definition 1. In this figure, task τ1 =
(0, 2, 6, 6) produces data for task τ2 = (1, 1, 3, 3) which
produces data for task τ3 = (2, 1, 6, 6). Task τ1 is executed
k12 = dT2

T1
e = d 3

6e = 1 time before k21 = dT1

T2
e = d 6

3e = 2
executions of task τ1. Task τ2 consumes exactly k21 = 2
times the same data produced by τ1. Also task τ2 is executed
k23 = dT3

T2
e = d 6

3e = 2 times before k32 = dT2

T3
e = d 3

6e = 1
execution of task τ3. Thus, task τ3 consumes k23 = 2 data
from τ1 for each of its executions.
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Figure 2. Data transfer

We define by bi : I(t) → N the function which
determines the number of data produced by τi until time t.
Before a task τi finishes its first execution (t < r1

i + Ci),
bi(t) is initialized to zero because no data is produced at
this time. If τi produces a data during its execution at r−(t)
then bi(t) = bi(r

−(t)) + 1 else bi(t) = bi(r
−(t)).

∀t ∈ I(t), bi(t) is given by:

bi(t) =


0 if (t < r1

i + Ci)

bi(r
−(t)) + 1 if ((φ(r−(t)) = τi)∧

(r−(t) + ci(r
−(t)) ≤ t)) else

bi(r
−(t))

The remaining execution time at time t for a task τi
denoted by ci(t) and the selected task at t denoted by φ(t)
are presented in the section VII.

Definition 2: A task τi is ready for execution at t ∈ I(t)
if and only if:

1) t ≥ r1
i ;

2) (r−(t) + ci(r
−(t)) > t)||((ci(r−(t)) > 0) ∧ (φ(r−(t)) 6=

τi));
3) bj(t) ∗ kij − bi(t) ∗ kji ≥ kji ∀τj ∈ pred(τi);
4) bi(t) ∗ kji − bj(t) ∗ kij < kij ∀τj ∈ succ(τi).

Conditions 1) and 2) ensure that τi is released before,
or at, t and τi does not complete its execution. Condition
3) ensures that task τi waits to receive all the kji data
produced by each of these predecessors τj and that τi is
not executed more than kij times after receiving the kji
data from τj . Condition 4) ensures that no more than kij
data are produced by τi before its successor τj consumes
these data.

Definition 3: The set of ready tasks at time t denoted
by Γr(t) is given by: Γr(t) = {τi ∈ Γn/τi is ready at t,
according to Definition 2}

VI. MUTUAL EXCLUSION CONSTRAINTS

Since we consider a fixed-priority scheduling algorithm,
we use the priority ceiling protocol to deal with the mutual
exclusion constraints on the shared buffers. A priority ceiling
is assigned to each shared buffer which is equal to the
highest priority task that may use this resource. The priority
ceiling of the buffer bi is given by

p(bi) = max{pi}τi∈Γ(bi)

Since a task inherits the highest priority of the tasks that
blocks it , this means that the priority of that considered
task may change during its execution. We denote by pi(t)
the priority of a task τi at time t given by Equation 2.

pi(t) =

{
max{pj(t)}τj∈Γ(τi,t) if Γ(τi, t) 6= ∅ else
pi

(2)

We denote by p(t) the highest priority ceiling of the
buffers which are being used at time t. p(t) is given by
Equation 3.

p(t) = max{p(bi)}bi∈B(t) (3)

Property 1: At time t ∈ In, a task τi ∈ Γr(t) is allowed
to start a new critical section if and only if the priority of
τi at t is higher than all the priority ceilings of the buffers
which are being used by tasks other than τi:

pi(t) > p(t)



VII. SCHEDULABILITY ANALYSIS

We consider a set of dependent tasks Γn according to
the model presented in Section II-A. The schedulability
analysis of Γn is achieved in the schedulability interval In
(see Section IV). We define a selection function denoted by
φ : I(t) → Γr(t) which determines the ready task which
executes at t. As for a scheduler, φ is only defined at the
release and end execution times of the tasks. We use this
selection function to determine the remaining execution
time of a task τi given by the function ci : I(t) → N. We
will need also the deadline of τi relative to t, determined
by the function d : I(t)→ N.

We denote by F = {t ∈ In/∃(τi, k) ∈ (Γn,N), t =
r1
i + kTi}, the set of the release times in In of tasks in Γn.

The set of release and end execution times of all the tasks
at time t denoted by I(t) is computed by:

I(t) =


F ∪ {t+ ck(t)} if ((t = rmin) ∧ (φ(t) = τk)∧

(t+ ck(t) < r+(t))) else
I(r−(t)) ∪ {t+ ck(t)} if ((φ(t) = τk)∧

(t+ ck(t) < r+(t)) else
I(r−(t))

Since we achieve an off-line scheduling, we determine the
end execution times of the tasks according to their worst
execution time and not according to their execution time at
runtime. We assume that, at runtime, the scheduler selects a
task for execution only at the times defined in the scheduling
table provided afer the off-line scheduling.

A. Selected task for execution at t

φ is the function which determines the task selected for
execution at time t ∈ I(t). At t = rmin, the task selected
is the one which has no predecessor and which has the
highest priority pi. But if t > rmin then φ(t) is determined
according to the schedule of the system until t. In order to
ensure the data transfer is compliant with Definition 1, the
selected task φ(t) must be in the set of ready tasks Γr(t)
defined in Section V. Also, in order to avoid deadlock and
to minimize the blocking duration according to PCP, the
selected task must satisfy Property 1.
∀t ∈ I(t), φ(t) = τk ∈ Γr(t) / (pk(t) = max{pi(t)τi∈Γr(t)}) ∧ (B(t) = {∅}) else
pk(t) > p(t) else
pk(t) = max{pi(t)τi∈Γ(B(t))}

At t, if no task is selected for execution, then the processor
is idle, denoted by φ(t) = idle. When task τi is the selected
task at t, τi is executed until r+(t) corresponding to the end
execution of τi or a release time of a task in Γn.

B. Remaining execution time of a task at t

We denote by ci the function which determines, at each
time t, the remaining execution time of the tasks τi. This
remaining time corresponds to the number of time units that
τi must execute to complete its execution in the instance
l = d tTi

e. For the computation of ci(t), we take into account
the exact preemption cost. That is, at each time t ∈ I(t),
if τi is preempted by another task, then the cost associated
to one preemption denoted by α is added to the number
of time units that τi must execute to complete its execution.
This principle allows us to take into account the preemptions
caused by other preemptions.

At each time t, the task τi can be in different states and
ci(t) is computed according to these states.

• if τi is released at t (( t−r
1
i

Ti
) ∈ N) then ci(t) = Ci else,

• if τi is not executed at r−(t) meaning that τi is not se-
lected at r−(t) (φ(r−(t)) 6= τi) then ci(t) = ci(r

−(t))
else,

• if τi is executed at r−(t) and is not preempted at t then
ci(t) = (r−(t) + ci(r

−(t))− t) else,
• τi is executed at r−(t) and is preempted at t then
ci(t) = (r−(t) + ci(r

−(t))− t) + α, with α being the
cost of one preemption.

∀t ∈ I(t)/t ≥ r1
i , ci(t) is given by:

ci(t) =


Ci if (

t−r1i
Ti

) ∈ N else
ci(r

−(t)) if (φ(r−(t)) 6= τi) else
r−(t) + ci(r

−(t))− t if (φ(t) = τi)∨
((φ(t) 6= τi) ∧ (r−(t) + ci(r

−(t)) = t)) else
(r−(t) + ci(r

−(t))− t) + α

C. Deadline of a task at t

We denote by di the function which determines, at each
time t the deadline of τi. This means that at time t the
task τi has to complete its execution no later than t+ di(t)
otherwise task τi will miss its deadline. For each release
time of τi (∀t/( t−r

1
i

Ti
) ∈ N) di(t) = Di. This deadline of

task τi at time t decreases until zero, i.e. when the deadline
Di is reached.
∀t ∈ I(t) ≥ r1

i , di(t) is given by:

di(t) =

 Di if (
t−r1i
Ti

) ∈ N else
r−(t) + di(r

−(t))− t if r−(t) + di(r
−(t)) > t else

0

D. Schedulability analysis

Theorem 1: A task τi ∈ Γn is schedulable if and only if:

∀t ∈ I(t), (ci(t) ≤ di(t))∧
((t ≤ r1

i ) ∨ (ci(r
−(t)) = 0)∨

(φ(r−(t)) = τi) ∨ ((t− r1
i )modTi 6= 0))

(4)



Proof: Suppose that the condition 4 is false, then we
have:

∃t ∈ I(t), ((ci(t) > di(t))∨
((t > r1

i ) ∧ (ci(r
−(t)) > 0)∧

(φ(r−(t)) 6= τi) ∧ ((t− r1
i )modTi = 0))

If ci(t) > di(t)) then task τi cannot finish its execution
before t + di(t) and will miss its deadline at t + di(t). In
this case τi is not schedulable. If, ((t > r1

i ) ∧ (φ(r−(t)) 6=
τi) ∧ (ci(r

−(t)) > 0) ∧ ((t − r1
i )modTi = 0)) means that

at time r−(t), τi is not selected for execution and τi is
already released. Since ((t− r1

i )modTi = 0), task τi begins
a new instance at time t while it did not finish its execution
during its last instance (ci(r−(t)) > 0), then τi misses its
deadline at time t, therefore τi is not schedulable. Thus if the
condition 4 is false then τi is not schedulable t. If τi ∈ Γn
is schedulable then the condition 4 is true.

Suppose that the condition 4 is true. ∀t ∈ I(t), ci(t) ≤
di(t). If (ci(r

−(t)) = 0) ∨ (t ≤ r1
i ) then τi has finished its

execution at r−(t), or τi is not already released at t or it is
released released at t. In all the cases τi is schedulable at t.
If φ(r−(t)) = τi then τi is executed at r−(t) and ci(t) ≤
di(t)) then τi is schedulable at t. If (t − r1

i )modTi 6= 0
then τi is always schedulable in its current instance then τi
is shedulable at t. Thus if the condition 4 is true then τi is
schedulable at any time t ∈ I(t) therefore τi is schedulable.

Definition 4: The set of dependent periodic tasks Γn is
schedulable while taking into account the exact preemption
cost, if ∀τi ∈ Γn then τi is schedulable according to the
theorem 1.

The schedulability analysis is achieved by the algorithm
1.

Algorithm 1 Schedulability analysis

1: t = rmin
2: schedulable← true
3: while (t < (tc+Hn)) ∧ (schedulable = true) do
4: compute φ(t)
5: Compute I(t)
6: for i=1 to n do
7: if (t ≥ r1

i ) then
8: compute ci(t)
9: compute di(t)

10: if ((ci(t) > di(t)) ∨ ((t > r1
i ) ∧ (ci(r

−(t)) >
0) ∧ (φ(r−(t)) 6= τi) ∧ ((t − r1

i )modTi = 0))
then

11: schedulable← false
12: end if
13: end if
14: end for
15: t← r+(t)
16: end while

The complexity of this schedulability analysis in the worst
case is equal to O(2.m.n), with m the number of different
release times in In.

Theorem 2: Γn = {τ1, τ2, · · · , τn} is a set of dependent
periodic tasks.

If Γn is schedulable according to Algorithm 1, while
taking into account the exact preemption cost then,
Γn remains schedulable when a task τi has at runtime
an execution time smaller than its worst case execution time.

Proof: Suppose that Γn is schedulable according to
Algorithm 1, while taking into account the exact preemption
and T is its scheduling table provided after the off-line
scheduling. At runtime, if a task τi has an execution time
smaller than its worst case execution time then it completes
its execution early than the time defined in T . Task τi
remains schedulable because it does not miss its deadline.
This fact does not affect the schedulability of the other tasks
because each task start its execution exactly at the times
defined in the table T . This involved that a task can complete
early its execution but will not miss its execution, then the
tasks in Γn remain schedulable. Thus if Γn is schedulable
according to Algorithm 1, while taking into account the
exact preemption cost then, Γn remains schedulable at
runtime when a task τi has an execution time smaller than
its worst case execution time.

Therefore the proposed off-line scheduling algorithm is
sustainable [18].

E. Example

We consider the set of dependent tasks Γ3 represented
by graph G′ in Figure 3. According to the data transfer
presented in Section V, τ3 must consume, for each of its
executions, two data from τ1 and one data from τ2. The
data produced by τ1 are written in its buffer b1 and those of
τ2 are written in its buffer b2. For its execution, task τ3 will
read in the buffers b1 and b2 to consume the data produced
by τ1 and τ2. We assume that the cost of one preemption
denoted by α is equal to 1 time unit and the priorities of
the tasks are assigned according to rate monotonic (RM) [3]
fixed priority scheduling algorithm. The priority of a task τi
is given by: pi = 1

Ti
.

The hyperperiod of Γ3 is H3 = 24. The schedulability
analysis of Γ3 is achieved in the interval I3 = [r1

2, tc+H3] =
[r1

2, r
1
3 + 2 ∗H3] = [0, 58], with tc = r1

3 +H3 as presented
in Section IV. According to Algorithm 1, we obtain the
scheduling table of Γ3 presented in table II.

In the Table II, the symbols ’-’ means that task τ1 and
τ3 are not released at t. At t = 13, 16, 41, no task is
selected for execution, at these times the processor is idle.
We only consider the released and end execution times of
tasks in Γ3, that allows a reduction of the complexity of the
schedulability analysis.
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Figure 4. Scheduling of the Γ3 with exact preemption cost

τ2

τ1

τ3

τ3 = (10, 3, 12, 12)

τ2 = (0, 5, 24, 24)

τ1 = (2, 2, 6, 6)

Figure 3. Graph G’ representing Γ3

t φ(t) τ1 τ2 τ3
c1(t) d1(t) c2(t) d2(t) c3(t) d3(t)

0 τ2 − − 5 24 − −
2 τ1 2 6 4 22 − −
4 τ2 0 4 4 20 − −
8 τ1 2 6 0 16 − −
10 τ3 0 4 0 14 3 12
13 idle 0 2 0 11 0 9
14 τ1 2 6 0 10 0 8
16 idle 0 4 0 8 0 6
20 τ1 2 6 0 4 0 2
22 τ3 0 4 0 2 3 12
24 τ3 0 2 5 24 1 10
25 τ2 0 1 5 23 0 9
26 τ1 2 6 5 22 0 8
28 τ2 0 4 5 20 0 6
32 τ1 2 6 2 16 0 2
34 τ2 0 4 2 14 3 12
36 τ3 0 2 0 12 3 10
38 τ3 2 6 0 10 1 8
39 τ1 2 5 0 9 0 7
41 idle 0 3 0 7 0 5
44 τ1 2 6 0 4 0 2
46 τ3 0 4 0 2 3 12
48 τ3 0 2 5 24 1 10
49 τ2 0 1 5 23 0 9
50 τ1 2 6 5 22 0 8
52 τ2 0 4 5 20 0 6
56 τ1 2 6 2 16 0 2

Table II
SCHEDULABILITY ANALYSIS

Figure 4 depicts the scheduling table II. In this figure,
the exact preemption cost is taken into account. Task τ2 is

preempted at t = 2, 26, 32, 50, 56. The preemption of τ2 at
t = 32 is involved by its preemption occurred at t = 26,
because if task τ2 was not preempted at t = 26 or the cost
of one preemption was supposed equal to 0 then τ2 would
not be preempted at t = 32. We observe also that the data
transfer mechanism presented in Section V and the mutual
exclusion constraints are respected. Task τ3 consumes for
each of its execution exactly 2 data produced by τ1 and 1
data produced by τ2. No data is lost. At t = 38, even if τ1
has a higher priority than task τ3, that is that latter which
is selected for execution because τ1 is blocked by τ3 which
uses the buffer b1 at this time.

VIII. IMPACT OF THE PREEMPTION COST

In this section we present the impact of the preemption
cost in the schedulability analysis. For the sake of simplicity
we implement Algorithm 1 with independent tasks, by
considering 2 cases. In the first case we suppose that the
preemption cost is approximated in the WCET of the tasks
(α = 0). In the second case we suppose that the preemption
cost is not approximated into the WCET with a cost α = 1
for one preemption. We compare the success ratio for these
2 cases. We perform this comparison by testing 15 sets of
task sets. Every set of task sets is composed of 10 task
sets. Every of the latter task sets contains 10 tasks. In both
cases, the Algorithm 1 is executed on every set of task sets.
Then, we compute the success ratio and the average load
of every set of task sets. The success ratio of a set of task
sets, is defined by:

number of task sets schedulable
number of task sets in a set of task sets

In Figure 5, we observe that when the average load of
the set of task sets is less than 0.8 then the scheduling
without and with preemption cost has the same success ratio.
But when this average load increases to 1 then the success
ratio obtained by appying Algorithm 1 with preemption cost
decreases until 0, while the success ratio of Algorithm 1



Figure 5. Impact of the preemption cost

without preemption cost is decreased until 0.8. When the
average load is greater than 0.93, the success ratio of Algo-
rithm 1 with preemption cost is equal to 0, that is, no task set
is schedulable whereas in the case of Algorithm 1 without
preemption cost some task sets are schedulable. The Figure
5 shows that more the load of the task sets is important,
more it is dangerous to approximate the preemption cost
in the WCET, because a task set could miss some deadlines
during its real-time execution even though the schedulability
conditions have been satisfied.

IX. CONCLUSION AND FUTURE WORK

Considering fixed priority algorithms, we have presented
a new schedulability analysis of data dependent periodic
tasks which takes into account the exact preemption cost,
without loss of data and mutual exclusion constraints
which both involve priority inversions. The proposed
off-line scheduling algorithm is sustainable, i.e. the set of
dependent tasks remains schedulable at runtime when a task
has an execution time smaller than its worst case execution
time.

We plan to use this schedulability analysis in the case
of partitioned and semi-partitioned multiprocessor real-time
scheduling.
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