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Summary Four families of ABCs where built in [6] for the two-

dimensional linear Schrödinger equation with time and space depen-

dent potentials and for general smooth convex fictitious surfaces. The

aim of this paper is to propose some suitable discretization schemes

of these ABCs and to prove some semi-discrete stability results. Fur-

thermore, the full numerical discretization of the corresponding initial

boundary value problems is considered and simulations are provided

to compare the accuracy of the different ABCs.

Key words Schrödinger equation; absorbing boundary conditions;

variable potential.

AMS Subject Classification: 35Q41, 47G30, 35S15

1 Introduction

The aim of this paper is to propose accurate and stable discretiza-

tions to some Absorbing Boundary Conditions (ABCs) for the two-

dimensional linear time-dependent Schrödinger equation [2] with a

general potential V





i∂tu+∆u+ V (x, y, t)u = 0, (x, y) ∈ R
2, t > 0

u(x, y, 0) = u0(x, y), (x, y) ∈ R
2,

(1)
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where u0 ∈ L2(R2) is compactly supported in the future bounded

spatial computational domain Ω, with fictitious boundary Σ. The

potential function is C∞, space and time dependent and real-valued.

We assume that V is a smooth potential outside the computational

domain ΩT = Ω×]0;T [, T being the final time of computation. We

also introduce ΣT := Σ×]0;T [. Under suitable conditions, the initial

ΩT

Σ

Ω

s

s

t

x

y

n

Fig. 1. Geometry

boundary value problem (1) is well-posed [8,9]. Moreover, the L2-

norm of the solution is conserved in the free-space

∀t > 0, ‖u(t)‖2L2(R2) =

∫

R2

|u(x, y, t)|2dxdy = ‖u0‖2L2(R2) , (2)

where ‖·‖2L2(R2) is the L2(R2)-norm. Finally, n is the outwardly di-

rected unit normal vector to Σ. In practical applications, considering
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potential effects is a crucial and active topic that is not completely

well managed in physics [10,11,19,20,23].

Absorbing Boundary Conditions are used in practical computa-

tions when an unbounded domain has to be truncated for computa-

tional purposes. When a wave strikes the fictitious boundary Σ that

is introduced for the numerical solution, and when this wave should

be outgoing to the bounded computational domain Ω, the aim of

the ABC is to minimize the reflection back into the computational

domain that is generated by Σ. When there is no reflection at all,

the boundary condition is generally called ”Transparent Boundary

Condition (TBC)”. Nevertheless, such a boundary condition is gen-

erally out of reach, most particularly in our situation. For this reason,

ABCs, which are approximations of the TBC, are generally preferred

since mathematical techniques can be developed to obtain such ap-

proximations. For a very complete and global overview of these differ-

ent approaches we refer to [2]. From the point of view of ABCs and for

the problem considered in this paper, absorbing boundary conditions

for some particular time independent one-dimensional potentials can

be obtained by using explicit expressions of the Dirichlet-to-Neumann

(DtN) operator through special functions (for example Airy’s func-
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tions) [17,18] or adapted techniques (Floquet’s theory for sinusoidal

potentials [24]).

In a first part [6], we derived (under a high frequency assumption)

different kinds of ABCs by using some adaptations of pseudodifferen-

tial operators techniques introduced in the fundamental papers [13,

15] by Engquist & Majda. Based on symbolic calculus associated with

some special fractional pseudodifferential operators, this method al-

lows us to build asymptotic expansions of the total symbols for the

underlying pseudodifferential operators. This leads to two classes of

ABCs according to two possible constructive strategies. The first fam-

ily of ABCs (obtained by Strategy I in the sequel of the paper, and

also in [6]) is associated with a Schrödinger-like equation after a gauge

change has been applied. The second approach, that we call Strat-

egy II, consists in directly building ABCs for the initial Schrödinger

equation of system (1). The ABCs are defined through approxima-

tions of the exact Dirichlet-to-Neumann map which are nonlocal both

in space and time. This constraint is very restrictive for an effective

calculation since this leads to additional memory costs and long com-

putational times. One natural way to overcome this problem is to suit-

ably localize the involved nonlocal operators. Therefore, each family

of ABCs is approximated by using Taylor’s or Padé’s expansions of
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the symbols. This results in four types of ABCs. Well-posedness of

the associated initial boundary value problems have been obtained in

[6] for some of the proposed ABCs. We can then expect some simi-

lar properties at the discrete level to prove that the related schemes

are unconditionally stable. The aim of this paper is to propose some

discretization schemes of the ABCs derived in [6] and to prove when

possible some stability results. Furthermore, through numerical sim-

ulations on nontrivial cases, we want to compare the different ABCs

in terms of accuracy and efficiency.

The paper is organized as follows. In the second Section, we ex-

plain the main ingredients concerning the construction of absorbing

boundary conditions and give the four families of ABCs obtained in

[6]. In Section 3, we consider semi discretizations in time based on the

Crank-Nicolson scheme. We explain how to obtain suitable discrete

schemes adapted to the approximation of the different kinds of ABCs.

In particular, stability results are proved under a semi-discrete high

frequency assumption. Section 4 deals with the full numerical approx-

imation and finite element implementation of the ABCs. This part

is completed with various computations to analyze and compare the

accuracy of the different ABCs for time independent and time depen-

dent potentials. We draw a conclusion in Section 5. Finally, Annex A
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provides some technical details about the Z-transform which plays a

central role in the proofs of the paper.

2 Four families of Absorbing Boundary Conditions

Let us consider that the smooth (closed) fictitious boundary Σ := ∂Ω

is convex to ensure that the solution u is an outgoing wave to the

computational domain Ω. We denote by s the anticlockwise directed

curvilinear abscissa along Σ and by κ := κ(s) the local (positive)

curvature at s. If we introduce the curvilinear derivative ∂s, then the

Laplace-Beltrami operator over Σ is defined by ∆Σ := ∂2s .

To introduce properly the ABCs derived in [6], we need the frac-

tional integration operators I
α/2
t of order α/2 defined by

I
α/2
t f(t) =

1

Γ (α/2)

∫ t

0
(t− s)α/2−1f(s) ds, for α ∈ N. (3)

where Γ designates the Gamma special function. Another operator

is the fractional differential operator ∂
1/2
t given by

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(s)√
t− s

ds. (4)

The construction of the four families of absorbing boundary condi-

tions (ABC) obtained in [6] was realized thanks to pseudodifferential

operators theory and associated symbolic calculus. We refer to [6] for

some notions about this theory. The symbols of the ABCs involve the
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curvilinear abscissa s, the time variable t but also their respective co-

variable ξ and τ . Their derivation is restricted by the high frequency

microlocal assumption which requires that the points (s, t, ξ, τ) lie

in the quasi hyperbolic zone H =
{
(s, t, ξ, τ),−τ − ξ2 > 0

}
. As we

will see later, we will need this assumption at the discrete level to

guarantee good properties of the numerical schemes used to approxi-

mate system (1). The development of the different ABCs can be done

following two strategies to which, once again, two kinds of approxi-

mations are associated. We therefore obtain four families of boundary

conditions.

A first strategy is the following. Let us consider that u is the

exact solution of system (1) and let us define V as a primitive of the

potential V with respect to the time t

V(x, y, t) =
∫ t

0
V (x, y, s) ds. (5)

Let us introduce v as the new unknown defined by

v(x, y, t) = e−iV(x,y,t)u(x, y, t). (6)

We obviously have v0(x, y) = u0(x, y). Moreover, plugging u given

by (5)–(6) into the Schrödinger equation with potential in (1) shows

that v is solution to the variable coefficients Schrödinger equation

i∂tv +∆v + 2i∇V · ∇v +
(
i∆V − |∇V|2

)
v = 0, in ΩT . (7)
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The fundamental reason why considering this change of unknown is

crucial is that this first step would lead, in the one-dimensional case,

to the Transparent Boundary Condition applied to v and associated

to (7) for a time-dependent but x-independent potential. This is not

the case if we work directly with the initial unknown u for (1) which

would give an approximate artificial boundary condition even for a

time-dependent and x-independent potential. We call this strategy

the ”Phase Function Transformation Strategy”.

The second strategy, probably more natural, consists in building

an approximate boundary condition based on the equation (1) with

unknown u. We call this second strategy ”Direct Strategy”.

In each case, ABCs are obtained through a truncation of the

asymptotic expansion of the total symbol of the Dirichlet-to-Neumann

map. We thus obtain a sequence of ABCs of increasing order M ,

the integer M being the number of finite symbols considered in the

asymptotic of the total symbol. This is what we call ”a family of

ABCs”. It is expected that increasing M numerically improves the

accuracy of the ABC.

The ABCs obtained by strategies I and II are nonlocal both in

space and time. We propose two different techniques to build local

versions of the ABCs. The first one, based on a high frequency hy-



10 Xavier ANTOINE et al.

pothesis, is based on a Taylor expansion. However, it only gives access

to local ABCs in space that however remain nonlocal in time. The

second approach consists in considering approximations of ABCs at

the symbolic level. We use in this case rational approximation (Padé

approximation here) of the square-root. The advantage of this method

is that it allows us to build fully local ABCs in space and time.

2.1 Strategy I: Phase Function Transformation

In strategy I and using a Taylor expansion to localize the boundary

conditions with respect to time, the ABCs of order M are given by

∂nu+ ΛM1,Tu = 0, on ΣT , (8)

where the operators ΛM1,T are defined on ΣT by

Λ2
1,Tu = e−iπ/4eiV∂

1/2
t

(
e−iVu

)
+
κ

2
u, (9)

Λ3
1,Tu = Λ2

1,Tu (10)

−eiπ/4eiV
(
κ2

8
+
∆Σ

2
+ i∂sV∂s +

1

2
(i∂2sV − (∂sV)2)

)
I
1/2
t

(
e−iVu

)
,

(11)

Λ4
1,Tu = Λ3

1,Tu+ ieiV
(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8
+
i∂sκ∂sV

2

)
It
(
e−iVu

)

− i
sg(∂nV )

4

√
|∂nV | eiVIt

(√
|∂nV | e−iVu

)
, (12)

and where the phase function V is given by

V(x, y, t) =
∫ t

0
V (x, y, σ) dσ.
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These ABCs are denoted by ABCM1,T in the sequel.

The second type of boundary conditions is given by the following

formulation

∂nu+ ΛM1,Pu = 0, on ΣT (13)

where the operators ΛM1,P are defined on ΣT by

Λ1
1,Pu = −ieiV

√
i∂t +∆Σ

(
e−iVu

)
, (14)

Λ2
1,Pu = Λ1

1,Pu+
κ

2
u+ ∂sVeiV∂s (i∂t +∆Σ)

−1/2 (e−iVu
)

(15)

− κ

2
eiV (i∂t +∆Σ)

−1∆Σ

(
e−iVu

)
. (16)

We specify these boundary conditions by ABCM1,P . The idea is then

to approximate the operators
√
i∂t +∆Σ + V and (i∂t +∆Σ + V )−1

by differential operators which allow us to build local versions of the

ABCs. This operation is realized with Padé approximants (see section

3.4). We will denote this method by Padé approach in the sequel.

2.2 Strategy II: direct method

In strategy II (direct method) and following Taylor expansions, the

ABCs of order M are given by

∂nu+ ΛM2,Tu = 0, on ΣT . (17)
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The operators ΛM2,T are defined on ΣT by

Λ1
2,Tu = e−iπ/4∂

1/2
t u, (18)

Λ2
2,Tu = Λ1

2,Tu+
κ

2
u, (19)

Λ3
2,Tu = Λ2

2,Tu− eiπ/4
(
κ2

8
+
∆Σ

2

)
I
1/2
t u (20)

− eiπ/4
sg(V )

2

√
|V | I1/2t

(√
|V |u

)
,

Λ4
2,Tu = Λ3

2,Tu+ i

(
∂s(κ∂s)

2
+
κ3 + ∂2sκ

8

)
It u (21)

− i
sg(∂nV )

4

√
|∂nV | It

(√
|∂nV |u

)
.

The boundary conditions are denoted by ABCM2,T in the rest of the

paper.

Following the Padé approach like in strategy I, the ABCs of order

M are given by

∂nu+ ΛM2,Pu = 0, on ΣT , (22)

where the operators ΛM2,P are defined on ΣT by

Λ1
2,Pu = −i

√
i∂t +∆Σ + V u, (23)

Λ2
2,Pu = Λ2

2,Pu+
κ

2
u− κ

2
(i∂t +∆Σ + V )−1∆Σu. (24)

The ABCs are denoted by ABCM2,P .

Remark 1 . The construction of the ABCs may be generalized to the

case of nonlinear problems. The idea is to replace formally the po-
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tential by the nonlinearity in the above ABCs. Considering schemes

adapted to nonlinear problems, some of the points described below

can be used. The way the ABCs compare might be different from

what we observe in the potential case, partly due to heavy computa-

tional costs for some of the ABCs. Some numerical results for a cubic

nonlinearity are presented in [5] showing accurate results.

3 Semi-discretization of the boundary conditions

We have obtained four families of artificial boundary conditions la-

belled ABCM1,T , ABC
M
1,P , ABC

M
2,T and ABCM2,P , for different orders

M ∈ {1, 2, 3, 4}. The associated operators linked to these bound-

ary conditions are given by the equations (8), (13), (17) and (22).

The aim of this section is to present the semi-discrete (with respect

to time) numerical schemes associated to these different absorbing

boundary conditions. In a first step, we are interested in the semi-

discretization of the equation in the computational domain Ω. The

second step consists in studying the properties of the discretizations

for each ABC.
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3.1 Semi-discrete interior scheme

We have to deal with the following IBVP for the Schrödinger equation




i∂tu+∆u+ V u = 0, in ΩT ,

∂nu+ ΛMu = 0, on ΣT ,

u(·, 0) = u0, in Ω,

(25)

where ΛM denotes one of the operators of order M , M ∈ {1, 2, 3, 4},

among the four families of ABCs. We set N as the number of time

steps for a uniform discretization of [0;T ]. Therefore, we have ∆t =

T/N . For tn = n∆t, with 0 ≤ n ≤ N , un(x) designates an approx-

imation of u(x, tn). A semi-discrete approximation adapted to the

Schrödinger equation on ΩT is given by the Crank-Nicolson scheme

i
un+1 − un

∆t
+∆

un+1 + un

2
+
V n+1 + V n

2

un+1 + un

2
= 0, 0 ≤ n ≤ N,

(26)

setting V n = V (x, tn). For implementation issues, it is useful to in-

troduce the new variables vn+1 = un+1/2 = un+1+un

2 and Wn+1 =

V n+1/2 = V n+1+V n

2 , with v0 = u0 and W 0 = V 0. The scheme can

then be written

2i

∆t
vn+1 +∆vn+1 +Wn+1vn+1 =

2i

∆t
un, 0 ≤ n ≤ N. (27)

It is well-known that a discretization of the ABC which preserves

the stability of the Crank-Nicolson scheme for the free-potential Schrö-
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dinger equation is not a trivial task. We propose here two solutions

for the discretization of ABCM·,{T,P}. The first one is based on semi-

discretization of the fractional operators involved in (8) and (13).

We are then able to show that the resulting semi-discrete scheme is

unconditionally stable. At the same time, a solution based on con-

volution operators may require long computational times (but can

be strongly accelerated through recent fast algorithms [25]). The sec-

ond solution that we study is based on the approximation of the

fractional operators through the solution of auxiliary time-dependent

partial differential equations on Σ. The evaluation is then extremely

efficient but at the same time no stability proof is available.

In a first step, we study the discretization of the boundary con-

ditions ABCM1,T and ABCM2,T based on a Taylor expansion. Next, we

will consider the discretization of the boundary conditions ABCM1,P

and ABCM2,P related to Padé approximants.

3.2 Discretization of the boundary conditions ABCM1,T and ABCM2,T

The boundary conditions ABCM·,T involve fractional derivatives and

integral operators which are discretized by using discrete convolu-

tions of the operators ∂
1/2
t , I

1/2
t and It [3,4,7]. If {fn}n∈N is a se-

quence of complex numbers approximating {f(tn)}n∈N, then the ap-
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proximations of ∂
1/2
t f(tn), I

1/2
t f(tn) and It f(tn) with respect to the

Crank-Nicolson scheme for a time step ∆t are given by the numerical

quadrature formulas

∂
1/2
t f(tn) ≈

√
2

∆t

n∑

k=0

βn−kf
k =

√
2

∆t
(βk ⋆ f

k)n, (28)

I
1/2
t f(tn) ≈

√
∆t

2

n∑

k=0

αn−kf
k =

√
∆t

2
(αk ⋆ f

k)n, (29)

It f(tn) ≈
∆t

2

n∑

k=0

γn−kf
k =

∆t

2
(γk ⋆ f

k)n, (30)

where the sequences (αn)n∈N, (βn)n∈N and (γn)n∈N are





(α0, α1, α2, α3, α4, α5, . . .) = (1, 1, 12 ,
1
2 ,

3
8 ,

3
8 , . . .),

βk = (−1)kαk, ∀k ≥ 0,

(γ0, γ1, γ2, γ3, . . .) = (1, 2, 2, 2, . . .).

(31)

We denote by bn+1 the convolution product (βk ⋆v
k)n+1, also written

βn+1 ⋆ v
n+1.

Proposition 1 The semi-discrete Crank-Nicolson scheme for (25)

with boundary conditions ABCM2,T is given by





2i

∆t
vn+1 +∆vn+1 +Wn+1 vn+1 =

2i

∆t
un, on Ω,

∂nv
n+1 + ΛM,n+1

2,T vn+1 = 0, on Σ,

u0 = u0, on Ω,

(32)
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for n = 0, . . . , N − 1. The semi-discrete operators ΛM,n+1
2,T , M ∈

{1, 2, 3, 4}, are given by

Λ1,n+1
2,T vn+1 = e−iπ/4

√
2

∆t
bn+1, (33)

Λ2,n+1
2,T vn+1 = Λ1,n+1

2,T vn+1 +
κ

2
vn+1, (34)

Λ3,n+1
2,T vn+1 = Λ2,n+1

2,T vn+1 (35)

− eiπ/4
√
∆t

2

(
κ2

8
an+1
0 +

1

2
an+1
2 +

1

2
sg(Wn+1)

√
|Wn+1| an+1

V

)
,

Λ4,n+1
2,T vn+1 = Λ3,n+1

2,T vn+1 + i
∆t

2

(
1

2
∂s(κd

n+1
1 ) +

κ3 + ∂2sκ

8
dn+1
0

−1

4
sg(∂nW

n+1)
√
|∂nWn+1| dn+1

V

)
, (36)

with the following notations

bn+1 =
(
βk ⋆ v

k
)
n+1

, (37)

an+1
µ =

(
αk ⋆

(
∂µs v

k
))

n+1
, µ ∈ {0, 1, 2}, (38)

an+1
V =

(
αk ⋆

(√
|W k| vk

))

n+1

, (39)

dn+1
µ =

(
γk ⋆

(
∂µs v

k
))

n+1
, µ ∈ {0, 1}, (40)

dn+1
V =

(
γk ⋆

(√
|∂nW k| vk

))

n+1

. (41)

In order to build a discretization of ABCM1,T , we have to consider the

various terms coming from the phase function transformation and to

approximate the phase function V by

W
n+1 = Vn+1/2 =

Vn+1 + Vn
2

.
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Proposition 2 The semi-discrete Crank-Nicolson scheme for (25)

with boundary conditions ABCM1,T is given by





2i

∆t
vn+1 +∆vn+1 +Wn+1vn+1 =

2i

∆t
un, on Ω,

∂nv
n+1 + ΛM,n+1

1,T vn+1 = 0, on Σ,

u0 = u0, on Ω,

(42)

for n = 0, . . . , N −1, where the semi-discrete operators ΛM,n+1
1,T , M ∈

{2, 3, 4}, are given by

Λ2,n+1
1,T vn+1 = e−iπ/4

√
2

∆t
eiW

n+1
b̃n+1 +

κ

2
vn+1, (43)

Λ3,n+1
1,T vn+1 = Λ2,n+1

1,T vn+1 − eiπ/4
√
∆t

2

(
κ2

8
eiW

n+1
ãn+1
0 (44)

+
1

2
eiW

n+1
ãn+1
2 + i(∂sW

n+1)eiW
n+1

ãn+1
1

+
1

2

(
i∂2sW

n+1 − (∂sW
n+1)2

)
eiW

n+1
ãn+1
0

)
,

Λ4,n+1
1,T vn+1 = Λ3,n+1

1,T vn+1 + i

(
1

2
eiW

n+1
∂s(κd̃

n+1
1 ) (45)

+
κ3 + ∂2sκ

8
eiW

n+1
d̃n+1
0 +

i

2
(∂sκ)(∂sW

n+1)eiW
n+1

d̃n+1
0

− i

4
sg(∂nW

n+1)
√

|∂nWn+1| eiW n+1
d̃n+1
V

)
.
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In the above notations, we have set

b̃n+1 =
(
βk ⋆

(
e−iW

k

vk
))

n+1
, (46)

ãn+1
µ =

(
αk ⋆

(
∂µs

(
e−iW

k

vk
)))

n+1
, µ ∈ {0, 1, 2}, (47)

d̃n+1
µ =

(
γk ⋆

(
∂µs

(
e−iW

k

vk
)))

n+1
, µ ∈ {0, 1}, (48)

d̃n+1
V =

(
γk ⋆

(
e−iW

k
√

|∂nW k| vk
))

n+1

. (49)

Remark 2 . In the case of radially symetrical potential V = V (r, t)

and domain Ω, the operators Λ3,n+1
1,T and Λ4,n+1

1,T have a simplified

form

Λ3,n+1
1,T vn+1 = Λ2,n+1

1,T vn+1 − eiπ/4
√
∆t

2

(
κ2

8
eiW

n+1
ãn+1
0 (50)

+
1

2
eiW

n+1
ãn+1
2

)
,

Λ4,n+1
1,T vn+1 = Λ3,n+1

1,T vn+1 + i

(
1

2
eiW

n+1
∂s(κd̃

n+1
1 ) (51)

+
κ3 + ∂2sκ

8
eiW

n+1
d̃n+1
0 − i

4
sg(∂nW

n+1)
√

|∂nWn+1| eiW n+1
d̃n+1
V

)
,

with the modified coefficients ãn+1
µ and d̃n+1

µ

b̃n+1
µ =

(
αk ⋆

(
e−iW

k

∂µs v
k
))

n+1
, µ ∈ {0, 1, 2}, (52)

d̃n+1
µ =

(
γk ⋆

(
e−iW

k

∂µs v
k
))

n+1
, µ ∈ {0, 1}, (53)

since ∂sW
n+1 = 0.
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3.3 Stability results for the Crank-Nicolson scheme associated with

the discretized boundary conditions ABCM1,T and ABCM2,T

We derive in this section a priori estimates for the systems (32)

and (42). To prove these results, it is necessary to recall that the

ABCs are obtained through symbolic calculus linked to underlying

pseudodifferential operators. As already said, their validity requires

a condition in the quasi hyperbolic zone H. This condition is nothing

but a relation on the positivity of the real part of the symbol σ(PΣ)

of the Schrödinger operator on the boundary

PΣ : f 7→ PΣ(f) = i∂tf +∆Σf.

It is obtained by

F(s,t) (PΣ(f)) = σ(PΣ)F(s,t)(f),

where σ(PΣ) = −τ − ξ2 and F(s,t) denotes the Fourier transform

with respect to the variables s and t. The restriction to the quasi

hyperbolic zone H also reads: Re(−τ − ξ2) > 0 and Im(−τ − ξ2) = 0.

This definition is only available in the continuous framework. In the

discrete case, we have to adapt this definition to the Crank-Nicolson

scheme.
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The semi-discrete operator P̃Σ associated with PΣ and linked to

the Crank-Nicolson scheme is

P̃Σ : f 7→
(
i
f(tn+1)− f(tn)

∆t
+∆Σ

f(tn+1) + f(tn)

2

)

n∈N

.

We identify its associated symbol replacing the Fourier transform

used in the continuous framework by the Z-transform (see Annex A)

FsZ
(
P̃Σ(f)

)
= σsd(P̃Σ)FsZ(f(tn))(z),

with

σsd

(
P̃Σ

)
=

i

∆t
(z − 1)− ξ2

2
(z + 1) =

z + 1

2

(
2i

∆t

z − 1

z + 1
− ξ2

)
. (54)

The property that the quadruplet (s, t, ξ, τ) belongs to the quasi hy-

perbolic zone H is: −τ − ξ2 > 0, which means that Re (σ(PΣ)) > 0

and Im (σ(PΣ)) = 0. Similarly, we define the semi-discrete quasi hy-

perbolic zone, denoted by Hsd, whose characterization is linked to

the semi-discrete symbol of P̃Σ .

Definition 1 The semi-discrete quasi hyperbolic zone Hsd is the set

of quadruplets (s, n, ξ, z) ∈ R× N× R× C satisfying

Re

(
2i

∆t

z − 1

z + 1
− ξ2

)
> 0 and Im

(
2i

∆t

z − 1

z + 1
− ξ2

)
= 0.

Therefore, the characterization σ(PΣ) ∈ R
+∗ is transposed to the

semi-discrete domain as 2i
∆t

z−1
z+1 − ξ2 ∈ R

+∗.
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Let us begin with the approximation of the boundary condition

ABCM2,T . We have the following result:

Theorem 1 Let (un)0≤n≤N be a solution of the system




i
un+1 − un

∆t
+∆vn+1 +Wn+1 vn+1 = 0, in Ω,

∂nv
n+1 + ΛM,n+1

2,T vn+1 = 0, on Σ, for M ∈ {2, 3, 4},

u0 = u0, in Ω.

(55)

For M = 2, we have the following energy inequality

∀n ∈ {0, . . . , N}, ‖un‖L2(Ω) ≤ ‖u0‖L2(Ω). (56)

Moreover, if sg(W k) = 1 on Σ for any time tk, then the inequality

(56) remains satisfied for M = 3. In addition, if κ > 0, κ3 + ∂2sκ < 0

and sg(∂nW
k) = 1 on Σ, then this inequality is also satisfied for

M = 4.

Remark 3 . We only state uniqueness results in Theorem 1. Existence

should be also studied to get a complete Theorem.

Proof A classical algebraic manipulation leads to the identity

‖uP ||2L2(Ω) − ‖u0‖2L2(Ω)

2∆t
= Re

(
P−1∑

n=0

∫

Σ
ivn+1∂nv

n+1dΣ

)
= Re

(
P−1∑

n=0

An

)
,

(57)

where An denotes the term
∫
Σ iv

n+1∂nv
n+1dΣ.

To prove (56), one needs to show that the right hand side of (57)

is negative. Since sg(Wn+1) = sg(∂nW
n+1) = 1 on Σ for all times
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tn+1 and v0 has compact support in Ω, a simple computation allows

us to write

P−1∑

n=0

∫

Σ
ivn+1∂nv

n+1dΣ = −eiπ/4
√

1

2∆t

∫

Σ

P∑

n=0

bnvndΣ

− i

2

∫

Σ
κ

P∑

n=0

|vn|2 dΣ

+ ieiπ/4
√
∆t

2

∫

Σ

P∑

n=0

(
i

∆t
bnvn +

1

2
an0 ∂

2
sv
n

)
dΣ

+ ieiπ/4
√
∆t

2

∫

Σ

κ2

8

P∑

n=0

an0v
ndΣ

+ ieiπ/4
√
∆t

2

∫

Σ

1

2

P∑

n=0

anV
√
|Wn| vndΣ

− ∆t

2

∫

Σ

κ

2

P∑

n=0

dn1∂sv
ndΣ

+
∆t

2

∫

Σ

κ3 +∆κ

8

P∑

n=0

dn0v
ndΣ

− ∆t

2

∫

Σ

1

4
sg(∂nW

0)
P∑

n=0

dnV
√

|∂nWn| vndΣ.

(58)

The proof mainly relies on Lemmas 1 and 2 (see Annex A). Let us

apply them to the first term of the right hand side of (58). One has

Qβ :=
P∑

n=0

vnbn =
P∑

n=0

(
vn

n∑

k=0

βn−kv
k

)
=

P∑

n=0

vn(βn ⋆ v
n).

Thanks to Lemma 2, −eiπ/4Qβ has a negative real part. The study

of the other terms is quite similar except for the third one for which
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the proof is more delicate. We study the real part of the quantity

B3 = ieiπ/4
√
∆t

2

∫

Σ

P∑

n=0

(
i

∆t
bnvn +

1

2
an0 ∂

2
sv
n

)
dΣ.

Using the Plancherel’s theorem for the Fourier transform along the

curvilinear abscissa s (with covariable ξ), we get

B3 = ieiπ/4
√
∆t

2

∫

R

P∑

n=0

(
i

∆t
b̂nv̂n − ξ2

2
ân0 v̂

n

)
dξ.

By using Lemma 1 (see Annex A), we have

B3 = ieiπ/4
√
∆t

2

∫

R

1

2π

∫ π

−π

[
i

∆t
β̂(eiω)− ξ2

2
α̂(eiω)

] ∣∣∣∣∣
P∑

n=0

v̂ne−iωn

∣∣∣∣∣

2

dω,

which reduces to

B3 = ieiπ/4
√
∆t

2

∫

R

1

2π

∫ π

−π


 i

∆t

√
eiω − 1

eiω + 1
− ξ2

2

√
eiω + 1

eiω − 1


 ·

∣∣∣∣∣
P∑

n=0

v̂ne−iωn

∣∣∣∣∣

2

dω. (59)

The study of the sign of the real part of B3 is thus reduced to the

study of the sign of the real part of the complex function R(z) defined

by

R(z) = ieiπ/4

(
i

∆t

√
z − 1

z + 1
− ξ2

2

√
z + 1

z − 1

)
(60)

on the unit circle. Another equivalent form is

R(z) =
i

2
eiπ/4

√
z + 1

z − 1

(
2i

∆t

z − 1

z + 1
− ξ2

)
. (61)

Therefore, the function R(z) can be written as

R(z) = σ(z)

(
2i

∆t

z − 1

z + 1
− ξ2

)
,
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where σ is the function defined by

σ(z) =
i

2
eiπ/4

√
z + 1

z − 1
.

Since we are working in the semi-discrete quasi hyperbolic zone Hsd,

we have 2i
∆t

z−1
z+1 − ξ2 > 0. The problem is therefore reduced to the

study of the real part of the function σ on the unit circle. But for ω ∈

(−π;π), one has
√

eiω+1
eiω−1

=
√
−i cotan

(
ω
2

)
. Hence, the application

z 7→
√

z+1
z−1 maps the unit circle onto e−iπ/4R+ ∪ eiπ/4R+. Thus, we

have that Re (σ(z)) ≤ 0 when z = eiω belongs to the unit circle. This

proves that the term B3 given by (59) has a negative real part.

For the boundary conditions obtained by the Phase Function Trans-

formation, we have an equivalent theorem but under stronger hypoth-

esis on the potential and the computational domain.

Theorem 2 Let (un)0≤n≤N be a solution of the system




i
un+1 − un

∆t
+∆vn+1 +Wn+1 vn+1 = 0, in Ω,

∂nv
n+1 + ΛM,n+1

1,T vn+1 = 0, on Σ, for M ∈ {2, 3, 4},

u0 = u0, in Ω.

(62)

For M = 2, we have the following energy inequality

∀n ∈ {0, . . . , N}, ‖un‖L2(Ω) ≤ ‖u0‖L2(Ω). (63)

Moreover, if the potential V and the computational domain Ω are

radially symetrical, then the inequality (56) remains satisfied forM =
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3. Finally, if sg(∂nW
k) is time independent on Σ, then this inequality

is also satisfied for M = 4.

We omit the proof which is similar to the previous one. We refer

to [16] for more details.

Remark 4 . Let us point out here that the stability results in Theo-

rems 1 and 2 exactly correspond to well-posedness results obtained

in [6] at the continuous level under the same kind of assumptions.

3.4 Discretization of the boundary conditions ABCM1,P and ABCM2,P

An alternative approach to discrete convolutions consists in approxi-

mating the square-root operator
√
i∂t + V by using rational functions

and more precisely using the m-th order Padé approximants [22]

√
z ≈ Rm(z) = am0 +

m∑

k=1

amk z

z + dmk
=

m∑

k=0

amk −
m∑

k=1

amk d
m
k

z + dmk
, (64)

where the coefficients (amk )0≤k≤m and (dmk )1≤k≤m are given by

am0 = 0 , amk =
1

m cos2
(
(2k+1)π

4m

) , dmk = tan2
(
(2k + 1)π

4m

)
.

(65)

Formally,
√
i∂t + V is approximated by

Rm(i∂t + V ) =

m∑

k=0

amk −
m∑

k=1

amk d
m
k (i∂t + V + dmk )

−1. (66)
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Let us begin by applying this technique to the absorbing boundary

conditions ABCM2,P coming from the direct strategy

∂nu−i
√
i∂t +∆Σ + V u+

κ

2
u−κ

2
(i∂t +∆Σ + V )−1∆Σu = 0, on Σ.

By using (66), we get

∂nu− i
m∑

k=0

amk u+ i
m∑

k=1

amk d
m
k (i∂t +∆Σ + V + dmk )

−1 u+
κ

2
u

− κ

2
(i∂t +∆Σ + V )−1∆Σu = 0.

To write a suitable form of the equation in view of an efficient nu-

merical treatment, we classically introduce m+1 auxiliary functions

ϕk, for 1 ≤ k ≤ m, and ψ (see Lindmann [21]) as follows

ϕk = (i∂t +∆Σ + V + dmk )
−1 u,

and

ψ = (i∂t +∆Σ + V )−1∆Σu.

The corresponding full absorbing boundary condition is written as a

system associated to the condition ABC2
2,P





∂nu− i
m∑

k=0

amk u+ i
m∑

k=1

amk d
m
k ϕk +

κ

2
u− κ

2
ψ = 0, on ΣT ,

i∂tϕk +∆Σϕk + V ϕk + dmk ϕk = u, on ΣT , for 1 ≤ k ≤ m,

i∂tψ +∆Σψ + V ψ = ∆Σu, on ΣT ,

ϕk(x, 0) = 0, 1 ≤ k ≤ m, ψ(x, 0) = 0, for x ∈ Σ.

(67)
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Now, we have to discretize the above system. The semi-discretization

of the interior scheme remains the same as before (see Eq. (27)) and

consequently (67) becomes for 0 ≤ n ≤ N





∂nv
n+1 − i

m∑

k=0

amk v
n+1 +

κ

2
vn+1 + i

m∑

k=1

amk d
m
k ϕ

n+1/2
k − κ

2
ψn+1/2 = 0,

(
2i

∆t
+∆Σ +Wn+1 + dmk

)
ϕ
n+1/2
k − vn+1 =

2i

∆t
ϕnk , 1 ≤ k ≤ m,

(
2i

∆t
+∆Σ +Wn+1

)
ψn+1/2 −∆Σv

n+1 =
2i

∆t
ψn,

ϕk(x, 0) = 0 for 1 ≤ k ≤ m, ψ0(x) = 0 on Σ,

(68)

where ϕ
n+1/2
k =

ϕn+1
k

+ϕn
k

2 and ψn+1/2 = ψn+1+ψn

2 . In this system, the

functions ϕk and ψ are defined on the closed curve Σ.

We can now apply the same technique to the conditions ABC2
1,P

and obtain

∂nu− ieiV
√
i∂t +∆Σ

(
e−iVu

)
+
κ

2
u

+ (∂sV)eiV (i∂t +∆Σ)
−1/2 ∂s

(
e−iVu

)

− κ

2
eiV (i∂t +∆Σ)

−1∆Σ

(
e−iVu

)
= 0.

The first terms of this equation are treated in a way similar as for

ABC2
2,P . We have to introduce new auxiliary functions for lower order

terms. The term (∂sV)eiV (i∂t +∆Σ)
−1/2 ∂s

(
e−iVu

)
is treated in two

steps. First, we introduce a new auxiliary function η defined on ΣT
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by

(i∂t +∆Σ)
1/2 η = ∂s(e

−iVu).

The second step consists in approximating the square-root operator

by Padé approximants of order m

(
m∑

k=0

amk

)
η −

m∑

k=1

amk d
m
k (i∂t +∆Σ + dmk )

−1 η = ∂s(e
−iVu).

Next, we consider m new auxiliary functions (θk)1≤k≤m defined on

ΣT by

(i∂t +∆Σ + dmk )
−1 η = θk.

Similarly, we introduce the function ψ for the last term of ABC2
1,P ,

which satisfies on Σ the relation i∂tψ + ∆Σψ = ∆Σ

(
e−iVu

)
. Thus,

we get a system associated to the condition ABC2
1,P





∂nu− i

m∑

k=0

amk u+
κ

2
u+ ieiV

m∑

k=1

amk d
m
k ϕk + (∂sV)eiVη

− κ

2
eiVψ = 0, on ΣT ,

(i∂t +∆Σ + dmk )ϕk = e−iVu, on ΣT , for 1 ≤ k ≤ m,

(
m∑

k=0

amk

)
η −

m∑

k=1

amk d
m
k θk = ∂s

(
e−iVu

)
, on ΣT ,

(i∂t +∆Σ + dmk ) θk = η, on ΣT , for 1 ≤ k ≤ m,

(i∂t +∆Σ)ψ = ∆Σ

(
e−iVu

)
, on ΣT ,

ϕk(x, 0) = θk(x, 0) = 0 on Σ, for 1 ≤ k ≤ m,

ψ(x, 0) = 0 on Σ.



30 Xavier ANTOINE et al.

We deduce the following discretization





∂nv
n+1 − i

m∑

k=0

amk v
n+1 +

κ

2
vn+1 + ieiW

n+1
m∑

k=1

amk d
m
k ϕ

n+1/2
k

+ ∂sW
n+1eiW

n+1
ηn+1/2 − κ

2
eiW

n+1
ψn+1/2 = 0,

(
2i

∆t
+∆Σ + dmk

)
ϕ
n+1/2
k − e−iW

n+1
vn+1 =

2i

∆t
ϕnk , 1 ≤ k ≤ m,

(
m∑

k=0

amk

)
ηn+1/2 −

m∑

k=1

amk d
m
k θ

n+1/2
k = ∂s

(
e−iW

n+1
vn+1

)
,

on ΣT ,
(

2i

∆t
+∆Σ + dmk

)
θ
n+1/2
k − ηn+1/2 =

2i

∆t
θnk , 1 ≤ k ≤ m,

(
2i

∆t
+∆Σ

)
ψn+1/2 −∆Σ

(
e−iW

n+1
vn+1

)
=

2i

∆t
ψn,

ϕ0
k(x) = θ0k(x) = 0 for 1 ≤ k ≤ m, ψ0(x) = 0 on Σ.

(69)

Remark 5 . When the potential and the computational domain are

radially symetrical, the condition ABC2
1,P becomes

∂nu− ieiV
√
i∂t +∆Σ

(
e−iVu

)
+
κ

2
u

− κ

2
eiV (i∂t +∆Σ)

−1∆Σ

(
e−iVu

)
= 0, on ΣT . (70)



ABCs for the 2D Schrödinger equation with an exterior potential 31

This leads to significant simplifications for the numerical treatment.

In this case, the discretization reads





∂nv
n+1 − i

m∑

k=0

amk v
n+1 +

κ

2
vn+1 + ieiW

n+1
m∑

k=1

amk d
m
k ϕ

n+1/2
k

− κ

2
eiW

n+1
ψn+1/2 = 0,

(
2i

∆t
+∆Σ + dmk

)
ϕ
n+1/2
k − e−iW

n+1
vn+1 =

2i

∆t
ϕnk ,

1 ≤ k ≤ m,

(
2i

∆t
+∆Σ

)
ψn+1/2 −∆Σ

(
e−iW

n+1
vn+1

)
=

2i

∆t
ψn,

ϕk(x, 0) = 0 for 1 ≤ k ≤ m, ψ0(x) = 0 on Σ.

(71)

Like in the one-dimensional case [4], it is not possible to give

a proof of stability for these ABCs discretized with Padé approxi-

mants. A point of interest would be the study of stability for ABCs

discretized using other rational approximations of the square root.

4 Finite element approximation and numerical results

The variational formulation for the semi-discretization (27) of the

Schrödinger equation (1) consists in seeking the unknown function

vn+1 in the Sobolev space H1(Ω) such that for any test function
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ψ ∈ H1(Ω), one has

∫

Ω

(
2i

∆t
vn+1ψ −∇vn+1∇ψ +Wn+1vn+1ψ

)
dΩ

+

∫

Σ
∂nv

n+1ψdΣ =

∫

Ω

2i

∆t
unψdΩ (72)

The spatial approximation is realized by using the classical P1 finite

element space of piecewise linear functions

Vh =
{
ϕh ∈ H1(Ωh), ϕh|T ∈ P1, ∀T ∈ Th

}
,

where the bounded computational polygonal domain Ωh = ∪T∈ThT

is constructed with the help of a regular triangulation Th. The cur-

vature approximation is developed by a simple procedure [1] based

only on the knowledge of the initial mesh. The finite element approx-

imation space Vh being a subspace of H1(Ωh), the stability of the

fully discrete scheme is simply a consequence of the stability of the

semi-discrete scheme. At each time step, the resulting complex-valued

sparse and symmetrical linear system is solved by a biconjugate gra-

dient stabilized solver accelerated by an incomplete LU factorization

preconditioner. The convergence is reached in only a few iterations.

We split our analysis in two parts, respectively for time inde-

pendent and time dependent potentials. In both cases, we restrict

ourselves to computations for which we have access to exact solu-

tions. This allows us to compute error norm between an exact so-
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lution denoted by uex(x, y, t) in the sequel and a numerical solution

unum(x, y, t) equal to un(x, y) ∈ Vh when t ∈ [tn, tn+1). An exact

solution is given in term of solutions to the free Schrödinger equation




i∂tv +∆v = 0, (x, y) ∈ R
2, t > 0

v(x, y, 0) = v0(x, y), (x, y) ∈ R
2,

(73)

where v0 ∈ L2(R2). It is well-known that an exact solution of (73)

can be obtained by convolution with the Green’s kernel. When v0 is

a gaussian

v0(x, y) = e−L(x
2+y2)+i(k1x+k2y), (74)

where L > 0 and k = (k1, k2)
T is the wave vector, the exact solution

is given by

v(x, y, t) =
i

i− 4Lt
×

exp

(
−i L(x

2 + y2) + i(k1x+ k2y) + it(k21 + k22)

i− 4Lt

)
. (75)

4.1 Time independent potentials

The numerical simulations in this subsection are made for the repul-

sive quadratic potential V1(x, y, t) = ω2(x2+y2) (see Figures 3(a) and

3(b)). An explicit solution can be computed [12] in term of solution

v of (73) by

u(x, y, t) = exp

(
iω

2
(x2 + y2) tanh (2ωt)

)
v(x̃, ỹ, t̃)

cosh (2ωt)
(76)
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where x̃ = x/ cosh (2ωt), ỹ = y/ cosh (2ωt) and t̃ = tanh (2ωt)/(2ω).

The computational domains Ω are p-balls

Bp(R) =
{
(x, y) ∈ R

2| |x|p + |y|p ≤ Rp
}
, 2 ≤ p <∞,

which can be parameterized with respect to the angle θ by the rela-

tions

x(θ) = R | cos θ|2/p · sg(cos θ),

y(θ) = R | sin θ|2/p · sg(sin θ).

Obviously, we recover the usual circle of radius R for p = 2. The

interest of such a computational domain is that it becomes close to a

square for large enough values of p while being smooth. We will use

in this paper the two computational domains Ω1 = B2(0, 2.5) and

Ω2 = B8(0, 2.5) represented on Figure 2. In all our computations, the

final time is T = 1. The main difference in the computations made on
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(b) Ω2 = B8(0, 2.5)

Fig. 2. Computational domains Ω1 and Ω2
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domain Ω1 or Ω2 is that the potential and curvature do not remain

constant on their boundaries as we can notice it on Figure 3.
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Fig. 3. Potential and curvature for domains Ω1 and Ω2

For a domain Ω2 and a potential which are both radial, many

simplifications occur in ABCM1,T and ABCM1,P for the gauge change

approach. Indeed, the terms related to the derivative of V with respect

to the curvilinear abscissa vanish in ABC3
1,T , ABC

4
1,T and ABC2

1,P ,

and the implementation greatly simplifies since the functions e±iV

are constant on Σ. When the domain or/and the potential are not
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symmetrical, no simplification can be made. As a consequence, the

computational cost is much more important, in particular for ABCM1,T .

The reason is that the discrete convolution imposes that the n finite

element matrices depending on e−iV must be rebuilt at the n-th time

iteration.

The first experiments are made for the domain Ω1 with L = 4

and k = (0, 0)T . The value of ω is 0.5. For this test case, we fix

∆t = 10−3. The domain Ω1 is meshed with 423k = 423 000 triangles

except for Fig. 5. In order to show the behavior of the various absorb-

ing boundary conditions with respect to their order, we first plot the

logarithm of the error norm ‖uex(·, t)− unum(·, t)‖L2(Ω1) on Figure 4.

As expected, the error decays with the order of the ABCs. Another

interesting feature can be observed on Figure 5 where we report the

evolution of the error with respect to the mesh size. We only keep

the different highest order ABCs. We remark that the error always

reaches the same limit for the different mesh sizes of Ω1. Finally, we

plot on Figure 6 the error norm for the best order of the different

families of ABCs. The more convincing ABC is clearly the one ob-

tained by the Taylor approximation in the framework of Strategy 1.

The two Padé approaches give the same results in both strategies.

The Taylor approach in Strategy 2 leads to the worst approximation.
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For completeness, we test the best ABC, namely ABC4
1,T , for long

time simulations for a triangulation of Ω1 involving 26k triangles.

Indeed, from the previous curves, one may think that the error grows

with respect to time. This is in fact not the case as it can be seen on

Figure 7. The error remains almost constant for longer computational

times.
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Fig. 4. Evolution of the error norm log10
(

‖uex(·, t)− unum(·, t)‖L2(Ω1)

)

with re-

spect to the ABC order.
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Fig. 5. Evolution of the error norm log10
(

‖uex(·, t)− unum(·, t)‖L2(Ω1)

)

with re-

spect to the mesh size.
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)

for a long time compu-

tation for ABC4
1,T .

The next simulations are performed on the domain Ω2 which is

meshed with 23k triangles. The time step ∆t is chosen as 2 · 10−3,

the value of L remains unchanged but the wave vector is now k =

(3, 3)T and the value of ω is 1. This choice insures that the solution

propagates in the direction of the lower left part of the domain which

has the strongest curvature. Again, we plot the error norm for the

various ABCs on Figure 8 and a comparison on Figure 9. The results

confirm what we have already observed for Ω1 but some differences

appear concerning the behavior of the Padé approximation. The Padé

approach for Strategy 1 gives better results than for Strategy 2. The

best approach still consists in using ABC4
1,T . We next show on Figure

10 the evolution of the contour plot of the logarithm of |uex(·, .)| and

|unum(·, .)| for ABC4
1,T which is satisfactory.
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Fig. 8. Evolution of the error norm log10
(

‖uex(·, t)− unum(·, t)‖L2(Ω2)

)

with re-

spect to the ABC order.
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4.2 Time dependent potentials

As for the previous subsection, we have access to an explicit solution

for V2(x, y, t) = f(t)(x2+y2) thanks to [12]. To this aim, we define two

functions µ and ν solutions of the second-order ordinary differential

equation

g′′(t)− 4f(t)g(t) = 0

completed with initial data. Thereby, the function µ is solution to

this ODE with µ(0) = 0 and µ′(0) = 1. Considering ν, one takes

ν(0) = 1 and ν(1) = 0. Then, the solution is given by

u(x, y, t) =
1

ν(t)
exp

(
i

4

ν ′(t)

ν(t)

x2 + y2

ν(t)2

)
v

(
x

ν(t)
,
y

ν(t)
,
µ(t)

ν(t)

)
.

If the function f is linear, f(t) = αt, the solution is explicitely

given by using Airy’s special functions Ai and Bi. Then, setting,
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t̃ = 22/3α1/3t, we get

µ(t) = 21/3
π

6α1/3Γ (2/3)

(
31/3Bi(t̃)− 35/6Ai(t̃)

)

and

ν(t) =
1

2
Γ (2/3)

(
32/3Ai(t̃) + 31/6Bi(t̃)

)
.

The numerical experiments are made on Ω1 meshed with 105k tri-

angles. The time step ∆t is chosen as 2 · 10−3 and the function f is

f(t) = (1 − cos (2πt))/2. The parameters of the solution are L = 4,

k = (0, 0)T and ω = 1. As in the previous subsection, we plot the

evolution of the error norm for the different ABCs on Figure 11 and

compare the results on 12. The conclusions remain unchanged and

the best ABC is still ABC4
1,T .

5 Conclusion

The aim of this paper was to propose suitable discretization schemes

of ABCs proposed in [6]. Furthermore, stability results have been

proved in some cases. Numerical simulations are provided to compare

the different kinds of ABCs. It appears that the most accurate ABC

is ABC4
1,T which is related to the application of Taylor’s expansion to

the first strategy of construction of ABCs based on a gauge change.

Acceleration of the evaluation of the fractional operators [25] involved

in the definition of this ABC should strongly improve the overall
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Fig. 11. Evolution of the error norm log10
(

‖uex(·, t)− unum(·, t)‖L2(Ω1)

)

with

respect to the ABCs order.
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computational cost of their application but is however beyond the

scope of our paper. Finally, let us remark that our developments

can be a priori extended to the three-dimensional case for smooth

surfaces and by using related differential geometry tools. However,

the computation of the symbols, already heavy in the two-dimensional

situation, would be very long and tedious. Furthermore, the numerical

simulations would also bring technical challenges, linked e.g. to mesh

generation and the resolution of large scale linear systems.

A Z-transform: technical annex

For the sake of clarity, we precise some notations and results about

the Z-transform of a discrete signal [14].

Definition 2 Let (fn)n∈N be a discrete signal. We call Z-transform

of (fn), and we denote by Z(fn) or f̂ , the function of the z variable

defined by

f̂(z) = Z(fn)(z) =

+∞∑

n=0

fnz
−n, for |z| > R̂f , (77)

where R̂f denotes the convergence radius of the series f̂ which is

defined by

R̂f = inf

{
R > 0 ;

∑

n

fnR
−n < +∞

}
. (78)

Thereby, R̂f is the inverse of the convergence radius of the power

series
∑
fnz

n.
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We denote by ⋆ the usual convolution product

an ⋆ b
n = (a ⋆ b)n =

n∑

k=0

akb
n−k.

Let us recall some classical properties of the Z transform.

Proposition 3 Let (fn)n∈N and (gn)n∈N be two discrete signals with

convergence radius R̂f and R̂g, respectively. Then, the following re-

sults hold

1. Z(fn+1) = zf̂ − zf(0),

2. Z(fn+1 ± fn) = (z ± 1)f̂(z)− zf(0),

3. Z(fn ⋆ gn) = f̂(z)ĝ(z), for |z| > max (R̂f , R̂g).

We also have the following lemma used in the stability proofs of

the paper.

Lemma 1 Let (up)p∈N and (hp)p∈N be two sequences. We define the

sequence (yp)p∈N by

yp =

p∑

k=0

hkup−k,

and by ĥ the Z-transform of (hp)p∈N, for which we assume that Rĥ ≥

1. Let H(E) be the Hardy space on E = {z ∈ C, |z| > 1}

H(E) =

{
H holomorphic on E s.t. sup

r>1

∫ π

−π

∣∣H(reiω)
∣∣ dω < +∞

}
.

If ĥ ∈ H(E), then one has

n∑

p=0

upyp =
1

2π

∫ π

−π
ĥ(eiω)

∣∣∣∣∣∣

n∑

p=0

upe
−iωp

∣∣∣∣∣∣

2

dω. (79)
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Proof Let us define, for ρ ≥ 1, yp(ρ) =
∑p

k=0 hkρ
−kup−k. We fix

n <∞ and consider the Laurent polynomials ŷρ(z) :=
∑n

p=0 yp(ρ)z
−p

and û(z) :=
∑n

p=0 upz
−p. By using the Cauchy product, one has for

all z s.t. |z| > ρ

ĥ(ρz) · û(z) = ĥρ(z) +
∞∑

p=n+1




p∑

k=p−n

hkρ
−kup−k


 z−p.

In particular, this is true for the unit circle. We compute the L2 scalar

product on the unit circle for the measure 1
2πdω. The orthogonality

of zp implies that

〈
û, ĥ · û

〉
= 〈û, ŷρ〉 =

n∑

p=0

upyp(ρ).

The left hand side of this equality is reduced to

1

2π

∫ π

−π
ĥ(ρeiω)

∣∣∣∣∣∣

n∑

p=0

upe
−iωp

∣∣∣∣∣∣

2

dω.

But, ĥ(ρeiω) converges to ĥ(eiω) in L1 when ρ→ 1+. Therefore, since

limρ→1+ yp(ρ) = yp, this ends the proof of Lemma 1.

This lemma is mainly used in the following result.

Lemma 2 Let (αn)n, (βn)n and (γn)n be the sequences given by (31),

and (ϕk)k∈N a sequence of complex numbers. We have the following

properties:

Qα =

n∑

p=0

ϕp
p∑

k=0

αp−kϕ
k ∈ eiπ/4R+ ∪ e−iπ/4R+, (80)
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Qβ =

n∑

p=0

ϕp
p∑

k=0

βp−kϕ
k ∈ eiπ/4R+ ∪ e−iπ/4R+, (81)

Qγ =

n∑

p=0

ϕp
p∑

k=0

γp−kϕ
k ∈ {Re(z) ≥ 0}. (82)

Proof The proof of the result for the terms Qα and Qβ mainly relies

on Lemma 1 (see Annex A). Let us consider here Qα (the proof is

similar for Qβ). The Z-transform of the sequence (αn)n evaluated

on the unit circle for ω ∈ (−π, π) is given by α̂(eiω) =
√

eiω+1
eiω−1

∈

L1(−π, π). It is easy to see that α̂ ∈ H(E). Therefore, Lemma 1 holds

and we have

Qα =
1

2π

∫ π

−π

√
eiω + 1

eiω − 1

∣∣∣∣∣
P∑

n=0

vne−iωn

∣∣∣∣∣

2

dω.

But for ω ∈ (−π;π), one has
√

eiω+1
eiω−1

=
√
i tan

(
ω
2

)
. Hence, the ap-

plication z 7→
√

z+1
z−1 maps the unit circle onto eiπ/4R+ ∪ e−iπ/4R+.

This implies that

Qα ∈ eiπ/4R+ ∪ e−iπ/4R+.

This proof cannot be extended to Qγ since the Z-transform of the

sequence (γn)n evaluated on the unit circle for ω ∈ (−π, π) does not

belong to H(E). We therefore proceed in a different way. The term

Qγ can be interpreted as an hermitian form

Qγ =

n∑

p=0

ϕp (γp ⋆ ϕ
p) = t

ϕAϕ = 〈ϕ, Aϕ〉
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where ϕ is the vector with size n + 1 and complex coefficients ϕ =

(ϕ0, · · · , ϕn)T and A designates the real coefficients matrix of size

(n+ 1)× (n+ 1) defined by

A =




1 0 . . . . . . 0

2 1
. . .

...

2 2 1
. . .

...

...
. . .

. . . 0

2 . . . . . . 2 1




.

Since A is positive, for any real valued vector x we have

〈x, Ax〉 ≥ 0.

We now decompose the complex valued vector ϕ as ϕ = x+ iy, with

x and y two real valued vectors. We compute the hermitian product

Qγ = 〈ϕ, Aϕ〉 = 〈x, Ax〉+ 〈y, Ay〉+ i
[
〈x, Ay〉 − 〈y, Ax〉

]
.

Then we have

Re(Qγ) = 〈x, Ax〉+ 〈y, Ay〉 ≥ 0,

and

Im(Qγ) = 〈x, Ay〉 − 〈y, Ax〉,

this term being non null if x or y are not equal to zero since A is not

symmetric. Consequently, we have

Qγ ∈ {Re(z) ≥ 0}.
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