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Robust and efficient preconditioned Krylov spectral solvers for

computing the ground states of fast rotating and strongly

interacting Bose-Einstein condensates

Xavier ANTOINE†‡§ Romain DUBOSCQ†‡

Abstract

We consider the Backward Euler SPectral (BESP) scheme proposed in [10] for computing the
stationary states of Bose-Einstein Condensates (BECs) through the Gross-Pitaevskii equation.
We show that the fixed point approach introduced in [10] fails to converge for fast rotating
BECs. A simple alternative approach based on Krylov subspace solvers with a Laplace or
Thomas-Fermi preconditioner is given. Numerical simulations (obtained with the associated
freely available Matlab toolbox GPELab) for complex configurations show that the method is
accurate, fast and robust for 2D/3D problems and multi-components BECs.
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1 Introduction

Bose-Einstein Condensates (BECs) were first experimentally observed in 1995 [3, 17, 23, 26] while
they were theoretically predicted a long time before by S.N. Bose and A. Einstein. This state
of matter allows to study quantum physics at the macroscopic scale. Later on, quantum vortices
have been observed [1, 18, 31, 32, 33, 34, 40] and a growing interest has been directed towards the
understanding of rotating BECs. At temperatures T much smaller than the critical temperature Tc,
the macroscopic behavior of a rotating BEC can be well described by a condensate wave function
ψ(t,x) which is solution to the Gross-Pitaevskii Equation (GPE) with rotating term. More precisely,
ψ(t,x) is solution to the dimensionless time-dependent GPE [8]

i∂tψ(t,x) = −1

2
∆ψ(t,x) + V (x)ψ(t,x) + βf(|ψ(t,x)|)ψ(t,x)−Ω · Lψ(t,x), (1)

for x ∈ Rd, d = 2, 3, t > 0. In 3D, the Laplace operator is defined by: ∆ = ∇2, where ∇ :=
(∂x, ∂y, ∂z)

t is the gradient operator; the spatial variable is x = (x, y, z)t ∈ R3 (in 2D we have
∇ := (∂x, ∂y)

t and x = (x, y)t ∈ R2). Function V is the external (usually confining) potential.
Parameter β is the nonlinearity strength describing the interaction between atoms of the condensate.
This parameter is related to the s-scattering length (as) and is positive (respectively negative) for
a repulsive (respectively attractive) interaction. Function f describes the nonlinearity arising in
the problem, which is fixed to the cubic case in the paper: f(|ψ|) = |ψ|2 (but other cases could
be considered like e.g. cubic-quintic problems or integral nonlinearities for dipolar gazes [8]). For
vortices creation, a rotating term is added. The vector Ω is the angular velocity vector and the
angular momentum is L = (Lx, Ly, Lz) = x ∧P, with the momentum operator P = −i∇. In many
situations and all along the paper, the angular velocity is such that Ω = (0, 0,Ω)t leading to

Ω · L = ΩLz = −i(x∂y − y∂x). (2)

In addition, an initial data ψ(t = 0,x) = ψ0(x) is prescribed to get a complete system.
One important problem in the numerical solution of the GPE is the computation of stationary

states which consists in finding a solution

ψ(t,x) = e−iµtφ(x), (3)

where µ is the chemical potential of the condensate and φ is a time independent function. This
function is given as the solution to the nonlinear elliptic equation

µφ(x) = −1

2
∆φ(x) + V (x)φ(x) + β|φ(x)|2φ(x)− ΩLzφ(x), (4)

under the normalization constraint

||φ||20 =
∫

Rd

|φ(x)|2dx = 1, (5)

where || · ||0 is the L2-norm in Rd. This nonlinear eigenvalue problem can be solved by computing
the chemical potential

µβ,Ω(φ) = Eβ,Ω(φ) +
β

2

∫

Rd

|φ(x)|4dx, (6)

with

Eβ,Ω(φ) =

∫

Rd

1

2
|∇φ|2 + V |φ|2 + β

2
|φ|4 − Ωℜ (φ∗Lzφ) dx, (7)

where φ∗ is the complex conjugate of φ. This also means that the eigenvalues are the critical points
of the energy functional Eβ,Ω over the unit sphere: S := {||φ||0 = 1}. Furthermore, (4) can be seen
as the Euler-Lagrange equation associated with the constraint minimization problem [12].
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Various numerical methods [8] have been designed to compute stationary states of GPEs, most
particularly to get the ground state and the excited state solutions. It is admitted that deriving
robust and efficient numerical approaches for the stationary state computation is difficult, most
particularly when the nonlinearity is large and the rotation velocity is high. More generally, methods
are based either on solving the nonlinear eigenvalue problem [27, 38, 39] or deriving nonlinear
optimization techniques under constraints [13, 19, 20, 24, 25]. An alternative approach is the
imaginary time method. It has been used extensively by the Physics community and has proved to
be powerful [2, 14, 21, 22, 29, 30]. From the mathematical point of view, the imaginary time method
has been studied in [8, 12] and written as a gradient flow formulation for the non rotating case. In
particular, the authors show that the time discretization of the Gradient Flow formulation must
be carefully considered. It is shown that the (semi-implicit) Backward Euler scheme is particularly
well adapted since it leads to an energy diminishing formulation without any CFL constraint on the
time step. For the rotating case, such a result is not proved. Concerning the spatial discretization,
finite difference (or finite element) methods can be used. However, for correctly capturing the
nucleation of vortices, high-order discretization schemes or refined (adaptive) meshes must be used.
These difficulties clearly complicate the construction of a simple and versatile numerical method,
most particularly for two- and three-dimensional problems [8], when considering dipolar-dipolar
interactions [8, 9] or multi-components BECs [6, 7, 8]. The direction that we follow here is based on
the use of the Fast Fourier Transform (FFT) to accurately discretize the spatial operators, leading
therefore to a pseudo SPectral method. Furthermore, the method requires low memory storage.
Introduced by Bao et al. in [10] for non rotating gazes, the application of this method, called
Backward Euler SPectral (BESP) method, to rotating BECs has proved to be very accurate over
standard finite difference schemes while being extremely efficient [41] (most particularly if one has in
mind to develop HPC codes, possibly using speed up GPU computing). However, as we will see in
details in Section 3.1, the main drawback of this method is related to the iterative scheme that is used
for solving the linear system associated to the BESP scheme. Indeed, as proposed in the literature,
the solution which is based on a fixed point approach can be inefficient and can even diverge when
the rotation speed is too large. This can be for example the case when considering quadratic-
quartic potentials and sufficiently large values of Ω. We propose in this paper a robust approach
based on the use of Krylov subspace solvers [35, 36, 37]. In particular, we show that BiCGStab
[35, 37] is particularly robust and very efficient to solve the linear systems. Moreover, we propose
to improve the convergence rate of BiCGStab through two simple physics-based preconditioners
related to the Laplace and Thomas-Fermi approximations. The resulting method is simple, accurate,
efficient and robust. In addition, it can be easily adapted to many situations e.g. multi-components
problems, general nonlinearities and potentials with a great potential for an implementation on high
performance computers.

The plan of the paper is the following. In Section 2, we derive the BESP scheme for a one-
component GPE with rotating term. Section 3 is devoted to the numerical solution of the linear
systems related to the BESP scheme. We show that the standard successive approximation scheme
with relaxation does not converge for large rotations. We propose a robust alternative based on
preconditioned Krylov subspace solvers [35]. Two preconditioners are considered: one related to
the Laplace operator and another one linked to the Thomas-Fermi equation. They appear to be
efficient and robust, most particularly with respect to the rotation speed Ω. In Section 4, we
provide three additional examples, one in the 2D case, one in the 3D case, and a third one for a
two-components system of 2D GPEs. The short Section 5 reports some informations about GPELab
(Gross-Pitaevskii Equation Laboratory) which is a freely available Matlab toolbox that in particular
proposes methods based on the scheme presented in this paper to compute stationary solutions and
dynamics to general multi-components GPEs. Finally, Section 6 concludes.
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2 Gradient flow formulation: the BESP discretization

2.1 CNGF and Backward Euler time discretization

One standard solution for computing the solution to the minimization problem (5)-(7) is through
the projected gradient method which consists in i) computing one step of a gradient method and
then ii) project the solution onto the unit sphere S. The method is the so-called imaginary time
method usually used in Physics and based on the remark that the real time is replaced by a complex
time following t → −it in Eq. (1). Let us denote by t0 = 0 < ... < tn < ... the uniformly spaced
discrete times and by ∆t = tn+1 − tn the uniform time step. The Continuous Normalized Gradient
Flow (CNGF) [8, 12, 41] is given by





∂tφ = −∇φ∗Eβ,Ω(φ) =
1

2
∆φ− V φ− β|φ|2φ+ΩLzφ, tn < t < tn+1,

φ(x, tn+1) = φ(x, t+n+1) =
φ(x, t−n+1)

||φ(x, t−n+1)||0
,

φ(x, 0) = φ0(x),x ∈ Rd, with ||φ||0 = 1.

(8)

In the above equations, we set: φ(x, t±n+1) := limt→t±n
φ(x, t). Hence, time marching corresponds to

iterations in the projected gradient. In [12], the CNGF is proved to be normalization conserving
and energy diminishing for β = 0 and a positive potential, in the non rotating case. When t tends
towards infinity, φ(x, t) gives an approximation of the steady state solution φ(x) which is a critical
point of the energy when the assumption on V ≥ 0 is fulfilled.

Concerning the time discretization of system (8), the application of the Backward Euler (BE)
scheme [12] leads to the semi-discrete semi-implicit (linear) scheme: for 0 ≤ n ≤ N , we compute
the function φn+1 such that





ABE,nφ̃(x) = bBE,n(x),x ∈ Rd,

φn+1(x) =
φ̃(x)

||φ̃||0
,

(9)

where the operator ABE and the right hand side function bBE are given by

ABE,n := (
I

∆t
− 1

2
∆ + V + β|φn|2 − ΩLz), bBE,n =

φn

∆t
. (10)

The maximal time of computation Tmax = N∆t is fixed by a stopping criterion (see Eq. (34)).
Therefore, for a considered physical problem, the number of time steps N is not known a priori
and depends on the convergence rate of the iterative scheme to get the ground state solution. The
initial function is given by: φ(x, 0) = φ0(x),x ∈ Rd, with ||φ||0 = 1, which is generally chosen as an
analytical approximate physical solution (like the Thomas-Fermi approximation).

2.2 Spatial discretization: pseudo SPectral scheme based on FFTs

Since the ground state evolution is assumed to be localized in a finite region of the space, we
consider that the support of the evolving field is inside a box O :=] − ax; ax[×] − ay; ay[×] −
az; az[ (O :=] − ax; ax[×] − ay; ay[ in the 2D case). We now choose the uniform spatial grid:
OJ,K,L = {xj,k,ℓ := (xj , yk, zℓ); 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1, 0 ≤ ℓ ≤ L− 1}, J,K,L being three
even positive integers. We set:

xj+1 − xj = hx = 2ax/J,
yk+1 − yk = hy = 2ay/K,
yℓ+1 − yℓ = hz = 2az/L.

(11)
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Since we assume that φ̃ is compactly supported in O, it satisfies a periodic boundary condition on ∂O
(in fact zero) and discrete Fourier transforms can then be used (sine or cosine transforms could also
be used according to the boundary condition). The partial Fourier pseudospectral discretizations
in the x-, y- and z-directions are respectively given by

φ̃(x, y, z, t) =
1

J

J/2−1∑

p=−J/2

̂̃
φp(y, z, t)e

iµp(x+ax),

φ̃(x, y, z, t) =
1

K

K/2−1∑

q=−K/2

̂̃
φq(x, z, t)e

iλq(y+ay),

φ̃(x, y, z, t) =
1

L

L/2−1∑

r=−L/2

̂̃
φr(x, y, t)e

iξr(z+az),

(12)

with
̂̃
φp,

̂̃
φq,

̂̃
φr respectively the Fourier coefficients in the x-, y- and z-directions

̂̃
φp(y, z, t) =

J−1∑

j=0

φ̃j(y, z, t)e
−iµp(xj+ax),

̂̃
φq(x, z, t) =

K−1∑

k=0

φ̃k(x, z, t)e
−iλq(yk+ay),

̂̃
φr(x, y, t) =

L−1∑

ℓ=0

φ̃ℓ(x, y, t)e
−iξr(zℓ+az),

(13)

and where µp =
πp
ax

, λq =
πq
ay

and ξr =
πr
az

. In the above equations, we set: φ̃j(y, z, t) := φ̃(xj , y, z, t),

φ̃k(x, z, t) := φ̃(x, yk, z, t) and φ̃ℓ(x, y, t) := φ̃(x, y, zℓ, t). For the backward Euler scheme, this
implies that we have the following spatial approximation





ABE,nφ̃ = b
BE,n,

φn+1(x) =
φ̃

||φ̃||0
,

(14)

where φ̃ = (φ̃(xj,k,ℓ))(j,k,ℓ)∈OJ,K,L
is the discrete unknown vector in CM and the right hand side

is b
BE,n := φn/∆t, with φn = (φn(xj,k,ℓ))(j,k,ℓ)∈OJ,K,L

∈ CM . For conciseness, let us remark
that we do not make the distinction between an array φ in MJ×K×L(C) (storage according to
the 3D cubic spatial grid) and the corresponding reshaped vector in CM . In the above notation,
MJ×K×L(C) designates the set of 3D (respectively 2D) arrays with complex coefficients. We also
define M = JKL (respectively M = JK) in 3D (respectively in 2D).

The operator ABE,n is given by the map which for any vector ψ ∈ CM , that is assumed to
approximate (ψ(xj,k,ℓ)) ∈ CM for a function ψ, computes a vector Ψ ∈ CM such that

Ψ := ABE,nψ = A
BE,n
TF ψ + ABE

∆,Ωψ,

A
BE,n
TF ψ :=

(
I

∆t
+ V+ β[[|φn|2]]

)
ψ,

ABE
∆,Ωψ :=

(
−1

2
[[∆]]− ΩLz

)
ψ.

(15)

The evaluation of the different operators is made as follows. For A
BE,n
TF , the application is direct

since it is realized pointwize in the physical space by setting

Ij,k,ℓ := δj,k,ℓ, Vj,k,ℓ := V (xj,k,ℓ), [[|ψn|2]]j,k,ℓ = |ψn|2(xj,k,ℓ), (16)
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for (j, k, ℓ) ∈ OJ,K,L. The symbol δj,k,ℓ denotes the Dirac delta symbol which is equal to 1 if and

only if j = k = ℓ and 0 otherwise. Let us note that the discrete operator A
BE,n
TF is represented by

a diagonal matrix after reshaping. The label ”TF” refers to the fact that this operator corresponds
to the discretization of the Thomas-Fermi approximation.

For the operator ABE
∆,Ω, we use the three following expressions, for (j, k, ℓ) ∈ OJ,K,L,

(−1

2
∂2x − iΩyk∂x)ψ(xj,k,ℓ) ≈

(−1

2
[[∂2x]]− iΩyk[[∂x]])ψj,k,ℓ :=

1

J

J/2−1∑

p=−J/2

(
µ2p
2

− Ωykµp)(̂ψk,ℓ)pe
iµp(xj+ax),

(−1

2
∂2y + iΩxj∂y)ψ(xj,k,ℓ) ≈

(−1

2
[[∂2y ]] + iΩxj [[∂y]])ψj,k,ℓ :=

1

K

K/2−1∑

q=−K/2

(
λ2q
2

+ Ωxjλq)(̂ψj,ℓ)qe
iλq(yk+ay),

(−1

2
∂2z )ψ(xj,k,ℓ) ≈ (−1

2
[[∂2z ]])ψj,k,ℓ :=

1

L

L/2−1∑

r=−L/2

ξ2r
2
(̂ψj,k)re

iξr(zℓ+az),

(17)

and we define the discrete operators

[[∆]]j,k,ℓ := [[∂2x]]j,k,ℓ + [[∂2y ]]j,k,ℓ + [[∂2z ]]j,k,ℓ,

(Lz)j,k,ℓ := −i(xj [[∂y]]j,k,ℓ − yk[[∂x]]j,k,ℓ).
(18)

The discrete operator [[∆]] is diagonal in the Fourier space but not Lz. Finally, the discrete L2-norm
|| · ||0 is given by

∀φ ∈ CM , ||φ||0 := h1/2x h1/2y h1/2z (
∑

(j,k,ℓ)∈OJ,K,L

|φj,k,ℓ|2)1/2. (19)

3 Robust and efficient preconditioned iterative solvers for BESP

3.1 Fixed point approach: limitation for high rotations

Following [10] and for Ω = 0, the most direct way to solve the linear system in (14) is to use a fixed
point approach with stabilization parameter ω. However, we will see that this method is not robust
since it fails to converge for a high rotation and a stiff nonlinearity.

Let us introduce the following operators

ABE
∆,ω =

I

∆t
− 1

2
[[∆]] + ωI, A

BE,n
Ω,TF,ω = ΩLz −

1

2
V− 1

2
β[[|φn|2]]− ωI. (20)

Since the Laplacian operator appearing in ABE
∆,ω is diagonalizable in the Fourier basis and can

therefore be directly inverted, a natural method, proposed in [10] for (14) with Ω = 0, is to compute

the sequence of iterates (φ̃
(m+1)

)m∈N through



φ̃
(0)

= φn(x),

φ̃
(m+1)

=
(
ABE
∆,ω

)−1
[
A

BE,n
Ω,TF,ωφ̃

(m)
+ b

BE,n
]
,

(21)

to get the solution φ̃ (in fact, an approximation) of the first equation of system (14) for a sufficiently
large index m. Since our method is supposed to be spectrally accurate, we need to fix a strong
stopping criterion

∥∥∥φ̃(m+1) − φ̃(m)
∥∥∥
∞

:= max
(j,k,ℓ)∈OJ,K,L

∣∣∣φ̃(m+1)
j,k,ℓ − φ̃

(m)
j,k,ℓ

∣∣∣ ≤ ε, (22)
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with ε very small (e.g. 10−12). In [10], the authors prove that the optimal stabilization parameter
ω∗ that minimizes the spectral radius of the iteration matrix (ABE

∆,ω)
−1A

BE,n
Ω,TF,ω, is given by

ω∗ =
bmax + bmin

2
, (23)

where

bmax = max
(j,k,ℓ)∈OJ,K,L

(
1

2
Vj,k,ℓ +

1

2
β[[|φn|2]]j,k,ℓ

)
(24)

and

bmin = min
(j,k,ℓ)∈OJ,K,L

(
1

2
Vj,k,ℓ +

1

2
β[[|φn|2]]j,k,ℓ

)
. (25)

The convergence proof of the fixed point method is based on the standard argument that if ρω(β, 0) <
1, then the method converges for any β ≥ 0. Denoting by ρ(A) the spectral radius of a matrix A, we
define ρω(β,Ω) := ρ((ABE

∆,ω)
−1A

BE,n
Ω,TF,ω). This method has been applied in [41] in the non rotating

case Ω > 0. However, no proof of convergence is given and only numerical simulations are available.
Let us now numerically illustrate the limitations of the fixed point approach when a rotating term

is included. We consider a 2D case for the quadratic-quartic potential V (x) = (1−α) ‖x‖2+κ ‖x‖4.
We take the set of parameters α = 1.2 and κ = 0.3 [41]; ‖x‖ is the usual euclidian norm of a vector
x ∈ Rd. The time step is ∆t = 10−2 and the square domain is O =] − 15; 15[2, with J = K = 29.

The stopping criterion is: either ||φ̃(m+1) − φ̃(m)||∞ ≤ 10−12 or m ≥ 5000. The initial data φ0 of
BESP is given by the Thomas-Fermi approximation

φ0(x) := φTF
β (x) =

{ √
(µTF

β − V (x))/β, if µTF > V (x),

0, otherwise,
(26)

with µTF
β = (4βγxγy/π)

1/2/2 (with γx = γy = 1 here), if β 6= 0, or by the normalized gaussian

φ0(x) =
(γxγy)

1/4

√
π

e−(γxx2+γyy2)/2 (27)

otherwise. Our example consists in testing numerically the convergence when we iteratively solve
the linear system in (14) from n = 0 to n = 1 by using the scheme (21). We first report on Figure
1(a) the number of iterations #iter of the method (for ω∗) to reach the convergence with respect
to β and Ω. As we can see, many iterations are generally required to converge with high precision.
Most particularly, for large enough values of Ω (Ω ≥ 1.4 in this example), we observe the divergence
of the algorithm, even for small nonlinearities, since #iter = 5000. To clarify the convergence
problem, we report on Figure 1(b) the variations of ρω∗(103,Ω) versus Ω. We can observe that, for
a moderate rotating speed Ω (≤ 1.4), then the spectral radius is slightly smaller than 1, implying a
slow but converging method. However, the spectral radius ρω∗(103,Ω) becomes larger than 1 after
Ω = 1.4 which makes the method diverges.

As a conclusion, even if the iterative method works for small Ω, then the convergence is slow.
Furthermore, the method is not robust if sufficiently fast rotations are considered since convergence
can break down.

3.2 Robust preconditioned Krylov solvers for BESP

3.2.1 Accelerators-preconditioners

For complex problems, it is known that Jacobi, Gauss-Seidel and SOR iterative methods [35] can
suffer from a lack of robustness as this is the case above. More robust iterative solvers are however
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Figure 1: 2D quadratic-quartic potential: convergence/divergence of the iterative scheme (21) with
respect to Ω.

available like for example for Krylov subspace solvers [35]. These methods are well-adapted to
efficiently solve large linear systems of the form

Aφ = b, (28)

where A is a matrix from MM (C) (a M ×M matrix with complex-valued coefficients) and b ∈
CM . For example, successful solvers are the Conjugate Gradient Squared method (CGS) [35],
the BiConjugate Gradient Stabilized method (BiCGStab) [35, 37] and the Generalized Minimal
RESidual method (GMRES) [35, 36]. The two first methods rely on the minimization of the error
(φ∗−φ(m))tA(φ∗−φ(m)), where φ∗ is the solution of system (28) and φ(m) is an approximation of
φ∗ in the Krylov subspace Km. These methods can be viewed as the minimization of a quadratic
functional in terms of φ(m), using a ”search direction” and ”step length” method. The third method
is based on the minimization of the residual ‖Aφ(m) − b‖, for φ(m) ∈ Km, using the Arnoldi
iteration. All these iterative methods are often called accelerators. If #iter is the number of
iterations to reach the solution with a required tolerance ε, then the global computational cost is
given by Cglobal = #iter × Citer

A , where Citer
A is the computational effort for one iteration. This is

directly related to the evaluation of matrix-vector products Ψ = Aψ, where ψ is given.
The use of an accelerator alone is generally not sufficient [35]. Indeed, the convergence rate of

the solver e.g. #iter is guided by the way the eigenvalues of the operator spread out in the complex
plane. Clustering is often an expected property to get fast convergence and a small number of
iterations to converge. This property cannot hold for the matrices arising in system (14) since they
are related to the discretization of second-order elliptic operators. To improve the convergence of the
solver and therefore to decrease #iter, one has to precondition the linear system. Preconditioners are
generally built in an algebraic way as an approximation of the inverse of A in Eq. (28). Among the
most robust preconditioners, let us for example mention ILUT methods, SPAI, multigrid techniques
[35]. The restriction with these approaches is that they require the access to the entries of A. In
our case, this cannot be expected since the partial differential operators are efficiently evaluated
through FFTs (see Eq. (18)). An alternative is to rather approximate the original partial differential
operator involved in the equation by another operator which can be easily inverted. We also have to
take into account the computational cost of the application of such preconditioners into the global
scheme. For the BESP scheme, the operator that must be solved is given by

ABE,n =
I

∆t
− 1

2
[[∆]]− ΩLz + V+ β[[|φn|2]]. (29)
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When one wants to evaluate Ψ = ABE,nψ, for ψ ∈ CM , FFT/iFFTs must be used. Following [16],
the computational cost of a FFT/iFFT for a complex-valued vector ψ is CFFT/iFFT = 5M log2(M).

Therefore, the evaluation of ABE,nψ requires one FFT and two iFFTs resulting in a global cost
Citer
ABE,n = 3CFFT for the application of the unpreconditioned operator.

A first possibility to precondition our system is to use the operator related to the fixed point
approach. This results in the following preconditioned linear system to solve

(
I+ PBE

∆ A
BE,n
Ω,TF

)
φ̃ = PBE

∆ b
BE,n, (30)

where

PBE
∆ =

(
I

∆t
− 1

2
[[∆]]

)−1

and A
BE,n
Ω,TF = −ΩLz + V+ β[[|φn|2]]. (31)

In the sequel, the preconditioner ”PBE
∆ ” is called ”Laplace” (∆) preconditioner and corresponds to

the discretization of the linear heat equation (diffusion part of the operator). Let us remark that a
matrix-vector evaluation for the preconditioned operator equation has a global cost Citer

∆ = 4CFFT.
A second simple preconditioner can be obtained by only keeping the explicit diagonal terms of

the original operator without partial differential operator to avoid any FFT computation and to get
an explicit inversion. This gives us the second preconditioned system

(
I+ P

BE,n
TF ABE

∆,Ω

)
φ̃ = P

BE,n
TF b

BE,n, (32)

where

P
BE,n
TF =

(
I

∆t
+ V+ β[[|φn|2]]

)−1

and A
BE,n
∆,Ω = −1

2
[[∆]]− ΩLz. (33)

All along the paper, the preconditioner P
BE,n
TF is called ”Thomas-Fermi” (TF) preconditioner and is

associated with the BE discretization of the Thomas-Fermi equation without rotation. An analysis
of the computational cost of a matrix-vector evaluation for this new equation shows that we obtain:
Citer

TF = 3CFFT, which is the same as for the equation without preconditioner.

3.2.2 Numerical comparison of the preconditioned solvers for BESP

We first compare the different following accelerators: CGS, BiCGStab and GMRES without restart.
The tolerance of the Krylov solvers is fixed to ε := 10−13 all along this section. We consider the
same situation and parameters as in subsection 3.1 for the fixed point approach. Let us choose
BiCGStab without preconditioner. We solve the BESP system to get the solution from n = 0
to n = 1. We report on Figure 2(a) the number of iterations #iter vs. (β,Ω) for BiCGStab to
converge. Compared with the fixed point approach, we can first observe that the method always
converges even for large Ω and is therefore robust. Furthermore, the number of iterations is always
much smaller than for the fixed point approach to get a very small residual and slightly grows with
respect to both increasing values of β and Ω. Hence, the method is efficient. We now compare
on Figures 3 the efficiency of the Krylov solvers: GMRES, CGS and BiCGStab. We fix β = 2000
and consider the same situation as above. We report the number of iterations #iter and the CPU
time (in seconds) required for the solver to converge. We can observe that the most efficient Krylov
solver is BiCGStab. For Ω = 0, CGS fails to converge, thus making it a non robust solver.

We now select the BiCGStab accelerator and compare the efficiency of the Laplace (∆-BiCGStab)
and Thomas-Fermi (TF-BiCGStab) preconditioners for the same problem. As we can observe on
Figure 4(a), the number of iterations #iter is strongly reduced when one considers the Thomas-
Fermi preconditioner and is stable according to Ω. The effect of the Laplace preconditioner is less
impressive most particularly for increasing values of Ω. The impact on the CPU time can be directly
seen on Figure 4(b).
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Figure 2: 2D quadratic-quartic potential: #iter vs. (β,Ω) for BiCGStab without preconditioner
(left) and converged solution for β = 2000 (right).
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Figure 3: 2D quadratic-quartic potential: #iter (left) and log10 of the CPU time (right) vs. Ω for
the first time step of the Krylov solvers without preconditioner.

We now fix β = 2000 and Ω = 2. For computing the stationary solution, the global time stopping
criterion is fixed (all along the paper) by

∥∥φn+1 − φn
∥∥
∞

≤ ǫ∆t, (34)

with ǫ = 10−6. According to (34), one obtains the computed ground state solution given on Figure
2(b). We now solve the linear systems with and without preconditioner for the first 2 × 104 time
steps to see the behavior of the solvers over a long time interval. As we can see on Figure 5(a),
the number of iterations per time step is strongly reduced all along the computations for the TF-
BiCGStab solver. The preconditioner ∆-BiCGStab is also helpful but less effective. Furthermore,
the reduction of iterations is quite stable over the time interval even if we can observe that less
iterations are needed for the first time steps (see Figure 5(b)).

We only retain TF-BiCGStab which has proved to be the most efficient and robust solver. Let
us consider the computational domain O =] − 15, 15[2 with J = K = 29. The time step is fixed
to ∆t = 10−2 and the stopping criterion for BiCGStab is given by formula (22) to ε = 10−6. Let
us analyze the behavior of the preconditioned solver with respect to the nonlinearity strength β.
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Figure 4: 2D quadratic-quartic potential: #iter (left) and CPU time (right) vs. Ω for the first time
step of BiCGStab with and without preconditioner.
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Figure 5: 2D quadratic-quartic potential: #iter for the first 2 × 104 time steps (left) and 6 × 102

time steps (right) vs. the imaginary time by using BiCGStab with and without preconditioner.

For Ω = 2, we consider five increasing values of β: 100, 500, 1000, 2000 and 5000. Figures 6
report the number of iterations #iter with respect to the imaginary time for the first 104 time
steps. We observe that the convergence rate is not too strongly affected by the nonlinearity, even
for large values of β. Only the first time steps show a different number of iterations according to the
increasing nonlinearity strength. We can conclude that the TF-BiCGStab preconditioner which is
designed for strong nonlinear problems is indeed robust. Let us analyze the convergence properties
with respect to the rotation speed Ω. We fix β = 2000 and consider Ω = 0, 1, 2, 3 and 3.5. As we
can see on Figures 7, the number of iterations increases with respect to Ω. This is due to the fact
that the effect of the rotation is not included in the Thomas-Fermi preconditioner.

We now consider the influence of the time step ∆t on the total number of iterations needed to
reach a ground state. We fix β = 300 and Ω = 0.5. We launch the BESP scheme for different
values of ∆t: 0.5, 0.1, 5 × 10−2, 10−2, 5 × 10−3, 10−3 and 5 × 10−4, for J = K = 29, a stopping
criterion ε = 10−6 for BiCGStab and criterion (34) for the global iterative time scheme related to
the CNGF. As we can see on Figures 8, the total number of iterations to reach the same solution
is inversely proportional to the time step. An explanation to this phenomenon is that, when the
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Figure 6: 2D quadratic-quartic potential and TF-BiCGStab: #iter vs. different values of β for the
first 104 (left) and 300 (right) time steps (Ω = 2).
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Figure 7: 2D quadratic-quartic potential and TF-BiCGStab: #iter vs. different values of the
rotation speed Ω for the first 104 (left) and 300 (right) time steps (β = 2000).

solution reaches an almost steady state, taking a larger time step is more adapted to attain the
global minimum of the energy functional. However, in cases where the physical parameters β and
Ω are larger, a smaller time step must be chosen since the minimization algorithm would otherwise
only lead to a local minimum.

4 Three additional examples

From the previous section, we have seen that the TF-BiCGStab preconditioned solver is efficient
and robust, most particularly for strong nonlinearities β, strong potentials and large rotation speeds
Ω. We propose to investigate the properties of the preconditioned iterative solvers 1) for a problem
with a quadratic potential, 2) for a three-dimensional GPE and 3) for a two components BEC.

4.1 A problem with a harmonic potential

Here we consider the computation of the stationary state of the GPE with a quadratic potential:
V (x) = 1

2‖x‖2 and a rotation speed ranging from 0 to 0.95 (1 is the critical velocity here). The

12



log10(∆t)

to
ta

l#
it
e
r

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

×10
4

6

8

10

12

14

16

18

20

(a) #iter vs. ∆t

Imaginary time

#
it
e
r

 

 

0 50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

∆ t = 0.5

∆ t = 0.1

∆ t = 0.05

∆ t = 0.01

∆ t = 0.005

∆ t = 0.001

∆ t = 0.0005

(b) #iter vs. imaginary time

Figure 8: 2D quadratic-quartic potential and TF-BiCGStab: total #iter vs. different time steps
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discretization/approximation parameters are the same as in subsection 3.1. First, let us consider
BiCGStab with a tolerance ε equal to 10−13 and solve the BESP system from n = 0 to n = 1.
The initial data is given by the Thomas-Fermi approximation (35) when β > 0. For β = 0, we
consider the normalized gaussian (36). From Figure 9(a), we can see that BiCGStab is robust and
efficient. Additional numerical simulations show that the unpreconditioned CGS and BiCGStab
lead to about the same convergence rate and outperform GMRES. Let us fix β = 2000. On Figure
9(b), we can see that, unlike the previous case, the Thomas-Fermi preconditioner does not reduce
#iter while the Laplace preconditioner is extremely efficient. This reduction is furthermore almost
not affected by the value of Ω.
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Figure 9: 2D harmonic potential: #iter vs. (β,Ω) for BiCGStab without preconditioner (left) and
#iter vs. Ω for the preconditioned BiCGStab (right).

4.2 A three-dimensional example

We consider now the 3D GPE Eq. (1) with potential V (x) = (1 − α)‖x‖2 + κ‖x‖4 (α = 1.2 and
κ = 0.3). The time step is ∆t = 10−2 and the computational domain is ] − 30; 30[3, for a spatial
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discretization with J = K = L = 27. The tolerance ε of the Krylov subspace solvers is 10−9 (all
along this section). The initial data φ0 for BESP is the Thomas-Fermi approximation

φTF
β (x) =

{ √
(µTF

β − V (x))/β, if µTF > V (x),

0, otherwise,
(35)

with µTF
β = (15βγxγyγz/(4π))

2/5/2 (with γx = γy = γz = 1 here), if β 6= 0, or the normalized
gaussian

φ0(x) =
(γxγyγz)

1/4

π3/4
e−(γxx2+γyy2+γzz2)/2 (36)

otherwise. We report on Figure 10 the number of iterations #iter vs. (β,Ω) for BiCGStab to
converge, from t0 = 0 to t1 = ∆t. Like the 2D case with quadratic-quartic potential, the method is
robust and efficient. Let us now compare the efficiency of the Krylov solvers: GMRES, CGS and
BiCGStab. We fix β = 2000 and consider the same situation as above. We report on Figure 11(a)
the number of iterations #iter to converge. We conclude that the most efficient solver is BiCGStab.
We now analyze the performance of the preconditioned and unpreconditioned BiCGStab. As we
can see on Figure 11(b), the Thomas-Fermi preconditioner reduces a lot the number of iterations
#iter. Moreover, this reduction is not affected by the value of Ω. In addition, the effect of the
Laplace preconditioner does not provide such a reduction.

 

200015001000

β
500

 

0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ω

30

40

50

60

70

80

90

100

110

Figure 10: 3D quadratic-quartic potential: #iter vs. (β,Ω) for BICGStab without preconditioner
to converge.

4.3 A two-components Bose-Einstein condensate

We consider now a two-components time-dependent GPE with rotating term and coupled nonlin-
earities [8]




i∂tψ1(t,x) =

(
−1

2
∆ + V (x)−Ω · L

)
ψ1(t,x) + βf1(|ψ1(t,x)|, |ψ2(t,x)|)ψ1(t,x)− ψ2(t,x),

i∂tψ2(t,x) =

(
−1

2
∆ + V (x)−Ω · L

)
ψ2(t,x) + βf2(|ψ2(t,x)|, |ψ1(t,x)|)ψ2(t,x)− ψ1(t,x),

(37)
for x ∈ Rd, t > 0. Functions ψ1 and ψ2 are the two components wave functions of the condensate.
In our case, we have the following coupled nonlinearities [8]

f1(|ψ1(t,x)|, |ψ2(t,x)|) = β1,1|ψ1(t,x)|2 + β1,2|ψ2(t,x)|2
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Figure 11: 3D quadratic-quartic potential: #iter vs. Ω for the first time step of the Krylov solvers
without (left) and with (right) preconditioner.

and
f2(|ψ2(t,x)|, |ψ1(t,x)|) = β2,2|ψ2(t,x)|2 + β2,1|ψ1(t,x)|2,

where β1,1 = 1, β2,2 = 0.97 and β1,2 = β2,1 = 0.94. Setting Ψ = (ψ1, ψ2), the energy of this system
is defined by

Eβ,Ω(Ψ) =

2∑

j=1

∫

Rd

1

2
|∇ψj |2 + V (x)|ψj(x)|2 + β

βj,j
2

|ψj |4 − Ωℜ
(
ψ∗
jLzψj

)
dx

+

∫

Rd

β
β1,2 + β2,1

2
|ψ1(x)|2|ψ2(x)|2dx−

∫

Rd

2ℜ(ψ1(x)ψ2(x))dx. (38)

The mass conservation property writes down

||Ψ||20 =
∫

Rd

(|ψ1(x)|2 + |ψ2(x)|2)dx = 1. (39)

To compute a stationary state of this system, we adapt the CNGF method [6, 8] which is energy
diminishing. Being given a uniform time step ∆t = tn+1− tn, ∀n ∈ N, the CNGF formulation leads
to computing Φ = (φ1, φ2) solution to





∂tφ1 = −∇φ∗
1
Eβ,Ω(Φ) =

1

2
∆φ1 − V φ1 − βf1(|φ1|, |φ2|)φ1 +ΩLzφ1 + φ2, tn < t < tn+1,

∂tφ2 = −∇φ∗
2
Eβ,Ω(Φ) =

1

2
∆φ2 − V φ2 − βf2(|φ2|, |φ1|)φ2 +ΩLzφ2 + φ1, tn < t < tn+1,

Φ(x, tn+1) = Φ(x, t+n+1) =
Φ(x, t−n+1)

||Φ(x, t−n+1)||0
,

Φ(x, 0) = Φ0(x),x ∈ Rd, with ||Φ||0 = 1.

(40)

We assume that the two components evolve in O :=] − ax; ax[×] − ay; ay[×] − az; az[ (for the 3D
case). Using the same notations as in the one-component case, the BESP scheme leads to solving





ABE,n
Φ̃ = b

BE,n,

Φ
n+1 =

Φ̃

||Φ̃||0
,

(41)
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where Φ̃ = (φ̃1(xj,k,ℓ), φ̃2(xj,k,ℓ))(j,k,ℓ)∈OJ,K,L
is a discrete vector in C2M . If Φn

= (φn1 (xj,k,ℓ), φ
n
2 (xj,k,ℓ))(j,k,ℓ)∈OJ,K,L

in C2M is an approximation of the solution Φ at time tn on the

spatial grid O, then the right hand side is given by b
BE := Φ

n/∆t. The operator ABE,n is defined
by the map which for any vector Φ = (φ1,φ2) ∈ C2M associates Ψ ∈ C2M such that

Ψ := ABE,n
Φ = A

BE,n
TF Φ+ ABE

∆,ΩΦ,

A
BE,n
TF Φ :=

(
1

∆t

(
I 0
0 I

)
+

(
V −1
−1 V

)
+ β

(
F1(Φ

n) 0
0 F2(Φ

n)

))
Φ,

ABE
∆,ΩΦ :=

(
−1

2

(
[[∆]] 0
0 [[∆]]

)
− Ω

(
Lz 0
0 Lz

))
Φ,

(42)

where

F1(Φ
n) = β1,1[[|φn

1 |2]] + β1,2[[|φn
2 |2]], F2(Φ

n) = β2,2[[|φn
2 |2]] + β2,1[[|φn

1 |2]]. (43)

The operators above are evaluated by extending the strategy developed in the one-component case.
Therefore, Krylov subspace solvers can be directly applied here. Concerning the preconditioners,
the extension of the ”Laplace” preconditioner gives

PBE
∆ =

(
1

∆t

(
I 0
0 I

)
− 1

2

(
[[∆]] 0
0 [[∆]]

))−1

. (44)

For the ”Thomas-Fermi” preconditioner, we have the diagonal "Thomas-Fermi" preconditioner (TF-
Diag in Figure 12(b))

P
BE,n
TF,Diag =

(
1

∆t

(
I 0
0 I

)
+

(
V 0
0 V

)
+ β

(
F1(Φ

n) 0
0 F2(Φ

n)

))−1

(45)

and the full ”Thomas-Fermi” (TF-Full in Figure 12(b)) preconditioner

P
BE,n
TF,Full =

(
1

∆t

(
I 0
0 I

)
+

(
V −1
−1 V

)
+ β

(
F1(Φ

n) 0
0 F2(Φ

n)

))−1

. (46)

To analyze the algorithm, we consider the quadratic potential V (x) = 1
2 |x|2. In the CNGF, we

choose the time step ∆t = 10−2. The square domain is ]−15, 15[2, with J = K = 29. The tolerance
ε of the Krylov solvers is set to 10−13. The initial data Φ0 is: Φ0 = (φ0, φ0), where φ0 is either
given by the Thomas-Fermi approximation (35) when β > 0, or by the normalized gaussian (36)
when β = 0. On Figure 12(a), we report the number of iterations #iter vs. (β,Ω) for BiCGStab to
converge, (steps n = 0 to n = 1). Like in the one-component case (see Section 4.1), we observe that
BiCGStab is robust and efficient. Extensive numerical simulations show that BiCGStab has the
best convergence rate compared to GMRES and CGS while being robust. Let us fix β = 2000. We
report on Figure 12(b) #iter for the different preconditioned BiCGStab. We see that the ”Laplace”
preconditioner leads to the best performance. There is no gain when considering the diagonal and
full TF preconditioners.

5 GPELab: an associated Matlab toolbox

The methods presented in the paper are the basic methods implemented in the freely available
Gross-Pitaevskii Equation Laboratory∗ (GPELab) Matlab toolbox. The aim of this collection of
algorithms is in particular to compute ground states of multi-components BECs with rotating terms

∗http://www.iecn.u-nancy.fr/~duboscq/GPELab.html
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Figure 12: 2D harmonic potential for the 2-components case: #iter vs. (β,Ω) for BiCGStab
(without preconditioner) and #iter vs. Ω for the preconditioned BiCGStab (right) to converge.

and general nonlinearities based on the preconditioned BESP scheme. Therefore, all the test cases
reported here can be directly reproduced by using the associated Matlab scripts [5]. Furthermore,
GPELab allows to compute the (stochastic) dynamics of BECs based on GPEs by using a ReSP
[15] or second- and fourth-orders time splitting spectral schemes [8, 11] (that are explicit and so do
not need any linear system solution).

6 Conclusion

We presented an accurate, efficient and robust method based on BESP for computing the stationary
states of strongly nonlinear and fast rotating GPEs. The method combines a Backward Euler
scheme in time and FFT-based discretization in space. The associated linear systems are solved by
the BiCGStab solver in conjunction with a Laplace or Thomas-Fermi preconditioner. The method is
supported by a full numerical study with various one- and two-components examples in 2D and 3D.
Finally, an associated Matlab code, GPELab [5], can be freely downloaded for testing the method
for a large class of problems related to the GPE.

Considering a Relaxation scheme, we can also extend [28] the method for computing the dy-
namics of vortices [4, 42]. It appears that the preconditioned CGS is the most robust and efficient
iterative method in the case of the ReSP scheme.
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