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GENERAL SENSITIVITY ANALYSIS IN DATA ASSIMILATION

F.-X. LE DIMET1
, V. SHUTYAEV2 AND TRAN THU HA3∗

Abstract. The problem of variational data assimilation for a nonlinear evolution model
is formulated as an optimal control problem to find the initial condition function (analy-
sis). The operator of the model, and hence the optimal solution, depend on the parameters
which may contain uncertainties. A response function is considered as a functional of the
solution after assimilation. Based on the second-order adjoint techniques, the sensitivity
of the response function to the parameters of the model is studied. The gradient of the
response function is related to the solution of a non-standard problem involving the cou-
pled system of direct and adjoint equations. The solvability of the non-standard problem
is studied. Numerical algorithms for solving the problem are developed. The results are
applied for the 2D hydraulic and pollution models. Numerical examples on computation
of the gradient of the response function are presented.

1. Statement of the problem

Consider the mathematical model of a physical process that is described by the
evolution problem

(1.1)

{

∂ϕ
∂t

= F (ϕ, λ), t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

where ϕ = ϕ(t) is the unknown function belonging for any t to a Hilbert space X, u ∈ X,

F is a nonlinear operator mapping Y × Yp into Y with Y = L2(0, T ;X), ‖ · ‖Y = (·, ·)1/2Y ,
Yp is a Hilbert space (the space of parameters of the model). Suppose that for given u ∈ X

and λ ∈ Yp there exists a unique solution ϕ ∈ Y to (1.1).
Let us introduce the functional

(1.2) J(u) =
1

2
(V1(u− u0), u− u0)X +

1

2
(V2(Cϕ− ϕobs), Cϕ− ϕobs)Yobs

,

where u0 ∈ X is a prior initial-value function (background state), ϕobs ∈ Yobs is a prescribed
function (observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs is a
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linear bounded operator, V1 : X → X and V2 : Yobs → Yobs are symmetric positive definite
operators.

Consider the following data assimilation problem with the aim to identify the initial
condition: for given λ ∈ Yp find u ∈ X and ϕ ∈ Y such that they satisfy (1.1), and on the
set of solutions to (1.1), the functional J(u) takes the minimum value, i.e.

(1.3)











∂ϕ
∂t

= F (ϕ, λ), t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

J(u) = inf
v
J(v).

The necessary optimality condition reduces the problem (1.3) to the following optimality
system [13]:

(1.4)

{

∂ϕ
∂t

= F (ϕ, λ), t ∈ (0, T )

ϕ
∣

∣

t=0
= u,

(1.5)

{

−∂ϕ
∗

∂t
− (F ′

ϕ(ϕ, λ))
∗ϕ∗ = −C∗V2(Cϕ− ϕobs), t ∈ (0, T )

ϕ∗∣
∣

t=T
= 0,

(1.6) V1(u− u0)− ϕ∗∣
∣

t=0
= 0

with the unknowns ϕ,ϕ∗, u, where (F ′
ϕ(ϕ, λ))

∗ is the adjoint to the Frechet derivative of
F with respect to ϕ, and C∗ is the adjoint to C defined by (Cϕ,ψ)Yobs

= (ϕ,C∗ψ)Y , ϕ ∈
Y, ψ ∈ Yobs.

We assume that the system (1.4)–(1.6) has a unique solution. The system (1.4)–(1.6) may
be considered as a generalized model F(U,K) = 0 with the state variable U = (ϕ,ϕ∗, u),
and it contains all the available information. All the components of U depend on the
parameters λ ∈ Yp. The purpose of this paper is to study the sensitivity of this generalized
model with respect to the parameters.

2. Sensitivity in the presence of data

In the environmental sciences the mathematical models contain parameters which cannot
be estimated precisely, because they are used to parametrize some subgrid processes and
therefore can not be physically measured. Thus, it is important to be able to estimate the
impact of uncertainties on the outputs of the model after assimilation.

Let us introduce a response function G(ϕ, u, λ), which is supposed to be a real-valued
function and can be considered as a functional on Y × X × Yp. We are interested in the
sensitivity of G with respect to λ, with ϕ and u obtained from the optimality system
(1.4)–(1.6). By definition the sensitivity is defined by the gradient of G with respect to λ:

(2.1)
dG

dλ
=
∂G

∂ϕ

∂ϕ

∂λ
+
∂G

∂u

∂u

∂λ
+
∂G

∂λ
.



GENERAL SENSITIVITY ANALYSIS IN DATA ASSIMILATION 3

If δλ is a perturbation on λ, we get from the optimality system:

(2.2)

{

∂δϕ
∂t

= F ′
ϕ(ϕ, λ)δϕ+ F ′

λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
∣

∣

t=0
= δu,

(2.3)

{

−∂δϕ
∗

∂t
− (F ′

ϕ(ϕ, λ))
∗δϕ∗ − (F ′′

ϕϕ(ϕ, λ)δϕ+ F ′′
ϕλ(ϕ, λ)δλ)

∗ϕ∗ = −C∗V2Cδϕ,
δϕ∗∣

∣

t=T
= 0,

(2.4) V1δu− δϕ∗∣
∣

t=0
= 0,

and

(2.5)

(

dG

dλ
, δλ

)

Yp

=

(

∂G

∂ϕ
, δϕ

)

Y

+

(

∂G

∂u
, δu

)

X

+

(

∂G

∂λ
, δλ

)

Yp

,

where δϕ, δϕ∗ and δu are the Gâteaux derivatives of ϕ, ϕ∗ and u in the direction δλ (for

example, δϕ = ∂ϕ
∂λ δλ).

To compute the gradient ∇λG(ϕ, u, λ), let us introduce three adjoint variables P1 ∈ Y ,
P2 ∈ Y and P3 ∈ X. By taking the inner product of (2.2) by P1, (2.3) by P2 and of (2.4)
by P3 and adding them, we obtain:
(

δϕ,−∂P1

∂t
− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ + C∗V2CP2

)

Y

+

(

δϕ
∣

∣

t=T
, P1

∣

∣

t=T

)

X

+

+

(

δϕ∗,
∂P2

∂t
− F ′

ϕ(ϕ, λ)P2

)

Y

+

(

δϕ∗∣
∣

t=0
, P2

∣

∣

t=0
−P3

)

X

+

(2.6) +

(

δu,−P1

∣

∣

t=0
+V1P3

)

X

+

(

δλ,−(F ′
λ(ϕ, λ))

∗P1 − (F ′′
ϕλ(ϕ, λ)P2)

∗ϕ∗
)

Yp

= 0.

Here we put

−∂P1

∂t
− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ + C∗V2CP2 =

∂G

∂ϕ
,

and

−P1

∣

∣

t=0
+V1P3 =

∂G

∂u
, P1

∣

∣

t=T
= 0,

∂P2

∂t
− F ′

ϕ(ϕ, λ)P2 = 0, P2

∣

∣

t=0
−P3 = 0.

Hence, we can exclude the variable P3 by

P3 = P2

∣

∣

t=0

and obtain the initial condition for P2 in the form:

V1P2

∣

∣

t=0
=
∂G

∂u
+ P1

∣

∣

t=0
.
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Thus, if P1, P2 are the solutions of the following system of equations

(2.7)











−∂P1
∂t

− (F ′
ϕ(ϕ, λ))

∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)

∗ϕ∗ + C∗V2CP2 = ∂G
∂ϕ

, t ∈ (0, T )

P1

∣

∣

t=T
= 0,

(2.8)











∂P2
∂t

− F ′
ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

V1P2

∣

∣

t=0
= ∂G

∂u + P1

∣

∣

t=0
,

then from (2.6) we get
(

∂G

∂ϕ
, δϕ

)

Y

+

(

∂G

∂u
, δu

)

X

=

(

δλ, (F ′
λ(ϕ, λ))

∗P1 + (F ′′
ϕλ(ϕ, λ)P2)

∗ϕ∗
)

Yp

,

and the gradient of G is given by

(2.9)
dG

dλ
= (F ′

λ(ϕ, λ))
∗P1 + (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗ +

∂G

∂λ
.

We get a coupled system of two differential equations (2.7) and (2.8) of the first order
with respect to time. One equation has a final condition (backward problem) while the
other has an initial condition (forward problem) depending on the initial value for the first
equation: that is a non-standard problem.

3. Solving the non-standard problem: a method based on optimal control

The method proposed is based on the theory of optimal control [13]. We consider the
system (2.7)–(2.8) in the form

(3.1)











−∂P1
∂t

+A∗P1 +BP2 = f, t ∈ (0, T )

P1

∣

∣

t=T
= 0,

(3.2)











∂P2
∂t

+AP2 = 0, t ∈ (0, T )

V1P2

∣

∣

t=0
= P1

∣

∣

t=0
+g,

where A = −F ′
ϕ(ϕ, λ), B = −(F ′′

ϕϕ(ϕ, λ)·)∗ϕ∗ + C∗V2C are linear operators mapping Y

into Y , f = ∂G
∂ϕ

∈ Y, g = ∂G
∂u

∈ X.
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Let transform (3.1)–(3.2) into a problem of optimal control. Instead of (3.2) we consider
the problem

(3.3)











∂P2
∂t

+AP2 = 0, t ∈ (0, T )

P2

∣

∣

t=0
= v

with some initial condition v ∈ X. We assume that for given f ∈ Y, v ∈ X the coupled
problem (3.1), (3.3) has a unique solution P1, P2 for t ∈ [0, T ]. Let P1(0, U) be the value
of P1 at time t = 0 for the value v of P2

∣

∣

t=0
. We define the cost function

(3.4) JP (v) =
1

2
‖V1v − P1(0, v)− g‖2X .

The problem becomes the determination of v∗ by minimizing JP . We can expect that at
the optimum, V1v − P1(0, v) − g = 0 and the problem will be solved. The procedure is
similar to the one used in section 2.

Let δv be a perturbation on v, then from (3.1), (3.3), (3.4) we get

(3.5)











−∂δP1
∂t

+A∗δP1 +BδP2 = 0, t ∈ (0, T )

δP1

∣

∣

t=T
= 0,

(3.6)











∂δP2
∂t

+AδP2 = 0, t ∈ (0, T )

δP2

∣

∣

t=0
= δv,

(3.7) J ′
P (v)δv = (V1v − P1

∣

∣

t=0
−g, V1δv − δP1

∣

∣

t=0
)X ,

where δP1, δP2 are the Gâteaux derivatives of P1, P2 with respect to v in the direction δv.
To compute the gradient ∇JP (v) let us introduce the adjoint variables Q1, Q2 ∈ Y . By

taking the inner product of (3.5) by Q1 and (3.6) by Q2, we obtain

(δP1,
∂Q1

∂t
+AQ1)Y + (δP1

∣

∣

t=0
, Q1

∣

∣

t=0
)X+

(3.8) +(δP2,−
∂Q2

∂t
+A∗Q2 +BQ1)Y + (δP2

∣

∣

t=T
, Q2

∣

∣

t=T
)X − (δv,Q2

∣

∣

t=0
)X = 0.

If Q1 and Q2 are defined as the solution of the system

(3.9)











∂Q1
∂t

+AQ1 = 0, t ∈ (0, T )

Q1

∣

∣

t=0
= V1v − P1

∣

∣

t=0
−g,
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(3.10)











−∂Q2
∂t

+A∗Q2 +BQ1 = 0, t ∈ (0, T )

Q2

∣

∣

t=T
= 0,

then (3.8) implies (δP1

∣

∣

t=0
, V1v−P1

∣

∣

t=0
−g)X = (δv,Q2

∣

∣

t=0
)X , and we get for the gradient:

(3.11) ∇JP (v) = V1(V1v − P1

∣

∣

t=0
−g)−Q2

∣

∣

t=0
.

4. Control equation via Hessian

The nesessary optimality condition reduces the non-standard problem to the optimality
system:

(4.1)











−∂P1
∂t

+A∗P1 +BP2 = f, t ∈ (0, T )

P1

∣

∣

t=T
= 0,

(4.2)











∂P2
∂t

+AP2 = 0, t ∈ (0, T )

P2

∣

∣

t=0
= v,

(4.3)











∂Q1
∂t

+AQ1 = 0, t ∈ (0, T )

Q1

∣

∣

t=0
= V1v − P1

∣

∣

t=0
−g,

(4.4)











−∂Q2
∂t

+A∗Q2 +BQ1 = 0, t ∈ (0, T )

Q2

∣

∣

t=T
= 0,

(4.5) V1(V1v − P1

∣

∣

t=0
−g)−Q2

∣

∣

t=0
= 0

with the unknowns v ∈ X, P1, P2, Q1, Q2 ∈ Y .
The system (4.1)–(4.5) is equivalent to a single equation for v (the control equation):

(4.6) Hv = F,

where H is the Hessian of the functional JP , defined on w ∈ X by the successive solutions
of the following problems:

(4.7)











∂P̂2
∂t

+AP̂2 = 0, t ∈ (0, T )

P̂2

∣

∣

t=0
= w,
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(4.8)











−∂P̂1
∂t

+A∗P̂1 +BP̂2 = 0, t ∈ (0, T )

P1

∣

∣

t=T
= 0,

(4.9)











∂Q̂1
∂t

+AQ̂1 = 0, t ∈ (0, T )

Q̂1

∣

∣

t=0
= V1w − P̂1

∣

∣

t=0
,

(4.10)











−∂Q̂2
∂t

+A∗Q̂2 +BQ̂1 = 0, t ∈ (0, T )

Q̂2

∣

∣

t=T
= 0,

(4.11) Hw = V1(V1w − P̂1

∣

∣

t=0
)− Q̂2

∣

∣

t=0
= 0,

and the right-hand side F is defined by the successive solutions of the following problems:

(4.12)











−∂P̃1
∂t

+A∗P̃1 = f, t ∈ (0, T )

P̃1

∣

∣

t=T
= 0,

(4.13)











∂Q̃1
∂t

+AQ̃1 = 0, t ∈ (0, T )

Q̃1

∣

∣

t=0
= −P̃1

∣

∣

t=0
−g,

(4.14)











−∂Q̃2
∂t

+A∗Q̃2 +BQ̃1 = 0, t ∈ (0, T )

Q̃2

∣

∣

t=T
= 0,

(4.15) F = V1(P̃1

∣

∣

t=0
+g) + Q̃2

∣

∣

t=0
.

The Hessian H maps X into X, it is symmetric and

(4.16) (Hw,w)X = ‖V1w − P̂1

∣

∣

t=0
‖2X ,

where P̂1 is the solution to (4.8). Indeed, since

(Hw,w)X = (V 2
1 w,w)X − (V1P̂1

∣

∣

t=0
, w)X − (Q̂2

∣

∣

t=0
, w)X ,

and
(Q̂2

∣

∣

t=0
, w)X = (Q̂2

∣

∣

t=0
, P̂2

∣

∣

t=0
)X = −(BQ̂1, P̂2)Y = −(Q̂1, BP̂2)Y =

= (0, P̂1)Y + (P̂1

∣

∣

t=0
, Q̂1

∣

∣

t=0
)X = (V1w − P̂1

∣

∣

t=0
, P̂1

∣

∣

t=0
)X ,

then

(Hw,w)X = (V 2
1 w,w)X − (V1P̂1

∣

∣

t=0
, w)X − (V1w − P̂1

∣

∣

t=0
, P̂1

∣

∣

t=0
)X = ‖V1w − P̂1

∣

∣

t=0
‖2X .
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Moreover, using the definitions of the operators A and B, it is easily seen that

V1w − P̂1

∣

∣

t=0
= Hw,

where H is the Hessian of the original functional J . Then, under the assumption that H
is positive definite, we obtain

(4.17) (Hw,w)X = (Hw,Hw)X ≥ c‖w‖2X .
where c = λ2min(H), and λmin(H) is the lower spectrum bound of the operator H.

Thus, the Hessian H is symmetric and positive definite, and therefore, the control equa-
tion (4.6) is correctly and everywhere solvable [21], i.e. for every F ∈ X there exists a
unique solution v ∈ X of (4.6) and the estimate holds:

‖v‖X ≤ c1‖F‖X , c1 = const > 0.

Therefore, we have proved that the non-standard optimal control problem with the
functional (3.4) has a unique solution.

5. A second method to solve the non-standard problem

Let us return to the non-standard problem (2.7)–(2.8) and rewrite it in an equivalent
form:

(5.1)











−∂P1
∂t

− (F ′
ϕ(ϕ, λ))

∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)

∗ϕ∗ + C∗V2CP2 = ∂G
∂ϕ , t ∈ (0, T )

P1

∣

∣

t=T
= 0,

(5.2)











∂P2
∂t

− F ′
ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

P2

∣

∣

t=0
= v,

(5.3) V1v − P1

∣

∣

t=0
=
∂G

∂u
.

Here we have three unknowns: v ∈ X, P1, P2 ∈ Y . Let us write (5.1)–(5.3) in the form
of an operator eqution for v. We define the operator H by the successive solution of the
following problems:

(5.4)











∂φ
∂t

− F ′
ϕ(ϕ, λ)φ = 0, t ∈ (0, T )

φ
∣

∣

t=0
= w,

(5.5)











−∂φ
∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ∗ − (F ′′

ϕϕ(ϕ, λ)φ)
∗ϕ∗ = −C∗V2Cφ, t ∈ (0, T )

φ∗
∣

∣

t=T
= 0,
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(5.6) Hw = V1w − φ∗
∣

∣

t=0
.

Then (5.1)–(5.3) is equivalent to the following equation in X:

(5.7) Hv = F
with the right-hand side F defined by

(5.8) F =
∂G

∂u
+ φ̃∗

∣

∣

t=0
,

where φ̃∗ is the solution to the adjoint problem:

(5.9)











−∂φ̃
∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ̃∗ = ∂G

∂ϕ , t ∈ (0, T )

φ̃∗
∣

∣

t=T
= 0.

It is easily seen that the operator H defined by (5.4)–(5.6) is the Hessian of the original
functional J considered on the optimal solution u of the problem (1.4)–(1.6): J ′′(u) = H.
Under the assumption that H is positive definite, the operator equation (5.7) is correctly
and everywhere solvable in X, i.e. for every F there exists a unique solution v ∈ X and

‖v‖X ≤ c‖H‖X , c = const > 0.

Therefore, under the assumption that J ′′(u) is positive definite on the optimal solution,
the non-standard problem (2.7)–(2.8) has a unique solution P1, P2 ∈ Y .

Based on the above consideration, we can formulate the following algorithm to solve the
non-standard problem:

1) For ∂G
∂u ∈ X, ∂G

∂ϕ ∈ Y solve the adjoint problem

(5.10)











−∂φ̃
∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ̃∗ = ∂G

∂ϕ , t ∈ (0, T )

φ̃∗
∣

∣

t=T
= 0

and put

F =
∂G

∂u
+ φ̃∗

∣

∣

t=0
.

2) Find v by solving

Hv = F
with the Hessian of the original functional J defined by (5.4)–(5.6).

3) Solve successively the direct and adjoint problems

(5.11)











∂P2
∂t

− F ′
ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

P2

∣

∣

t=0
= v,
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(5.12)











−∂P̃1
∂t

− (F ′
ϕ(ϕ, λ))

∗P̃1 − (F ′′
ϕϕ(ϕ, λ)P2)

∗ϕ∗ + C∗V2CP2 = 0, t ∈ (0, T )

P̃1

∣

∣

t=T
= 0,

and put

P1 = P̃1 + φ̃∗.

Thus, we obtain P1, P2 ∈ Y as the solutions to the non-standard problem (2.7)–(2.8).

Remark 1. In the above consideration, we have assumed that the direct and adjoint
tangent linear problems of the form











∂φ
∂t

− F ′
ϕ(ϕ, λ)φ = f, t ∈ (0, T )

φ
∣

∣

t=0
= w,











−∂φ
∗

∂t
− (F ′

ϕ(ϕ, λ))
∗φ∗ = g, t ∈ (0, T )

φ∗
∣

∣

t=T
= 0

with w ∈ X, f, g ∈ Y have the unique solutions φ, φ∗ ∈ Y with φ
∣

∣

t=T
, φ∗

∣

∣

t=0
∈ X.

Based on the presented theory, in the forthcoming sections we consider an application
to the 2D hydraulic and pollution models.

6. Mathematical formulation of the 2D water pollution problem

In this part 2D hydraulic and pollution models are used to describe the transport of the
pollution substances. The 2D pollution water model consists of a hydraulic model and a
transport–diffusion model of pollution substances. In the hydraulic model the Saint-Venant
equations are used [23]:

(6.1)
∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0, in Ω,

(6.2)
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= −gu(u

2 + v2)1/2

K2
xh

4/3
− g

∂zb

∂x
, in Ω,

(6.3)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= −gv(u

2 + v2)1/2

K2
yh

4/3
− g

∂zb

∂y
, in Ω,

where Ω is a bounded domain of R2 with the boundary Γ, zb is the bottom elevation,
h = z − zb is the water depth, and z is the free surface elevation, u is the average velocity
in the x direction, v is the average velocity in the y direction, g is the gravity acceleration,
Kx and Ky are the Strickler coefficients in the x and y directions, respectively.
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We suppose that a substance is dissolved in water. Then the transport and diffusion
processes of pollution substances are described by the following equation [24]:

(6.4)
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
− η∆C = KC + S, in Ω,

where ∆ =
(

∂2

∂x2 + ∂2

∂y2

)

, C = C(x, y, t) is the concentration of the substance, K is the

conversion coefficient, S = S(x, y) is the pollution function source in fluid, η is the diffusion
coefficient.

For X = (h, u, v)T and C we have the initial conditions:

X|t=0 = (h(x, y, 0), u(x, y, 0), v(x, y, 0))T = U, C(x, y, 0) = V.

The boundary conditions are: U·~n = Ūin(t), C(x, y, t)~n = C̄in(t) on the inflow boundary

Γ1; h(x, y, t) = h̄(t), ∂C
∂~n

= 0 on the outflow boundary Γ2; U · ~n = 0, ∂C
∂~n = 0 on the solid

wall Sw, where U = (u(x, y, t), v(x, y, t)), Γ = Γ1 ∪ Γ2 ∪ Sw is the boundary of the domain
Ω, ~n = (nx, ny) is the unit normal vector to Γ.

Equations (6.1)–(6.4) with boundary and initial conditions are rewritten as follows:

(6.5)



























∂X

∂t
+
∂A(X)

∂x
+
∂B(X)

∂y
= F (X), in Ω,

nxu+ nyv = Ūin, on Γ1,

nxu+ nyv = 0, on SW ,
h = h̄(t), on Γ2,

X(0) = U,

(6.6)























∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
− η△C = KC + S, in Ω,

C = C̄in, on Γ1,
∂C
∂~n = 0, on Γ2

⋃

SW ,

C(0) = V,

where:

A(X) =





uh
1
2u

2 + gh

uv



 , B(X) =





vh

uv
1
2v

2 + gh



 ,

F (X) =



















0

−gu
√
u2 + v2

K2
xh

4/3
+ u

∂v

∂y
− g

∂zb

∂x

−gv
√
u2 + v2

K2
yh

4/3
+ v

∂u

∂x
− g

∂zb

∂y



















.
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7. Variational data assimilation problem

According to (1.2), we define the cost function J by

(7.1) J(U, V ) =
1

2
(V1X(U −X0), (U −X0))XX

+
1

2
(V1C(V − C0), (V − C0))XC

+
1

2
(V2X(HXX −Xobs), (HXX −Xobs))YXobs

+
1

2
(V2C(HcC − Cobs), (HcC − Cobs))YCobs

,

whereXC = L2(Ω), XX = L2(Ω)×L2(Ω)×L2(Ω), YC = L2(0, T ;XC), YX = L2(0, T ;XX),
(X,C) ∈ YX × YC ; (U, V ) ∈ XX ×XC , X0, C0 ∈ XX ×XC is a prior initial-value function
(background state), (Xobs, Cobs) ∈ YXobs × YCobs is a prescribed function (observational
data), YXobs, YCobs are Hilbert spaces (observation spaces), HX : YX → YXobs, Hc : YC →
YCobs are linear bounded operators, V1X : XX → XX , V1C : XC → XC , V2X : YXobs →
YXobs, V2C : YCobs → YCobs are symmetric positive definite operators.

Consider the following data assimilation problem with the aim to identify the initial
condition: for given S find U = X(0) ∈ XX , V = C(0) ∈ XC , X ∈ YX and C ∈ YC
such that they satisfy (6.5)-(6.6), and on the set of solutions to (6.5)-(6.6), the functional
J(U, V ) takes the minimum value.

Following section 1, the data assimilation problem is written in the form:

(7.2)











































































∂X

∂t
+
∂A(X)

∂x
+
∂B(X)

∂y
= F (X), in Ω,

∂C
∂t

+ u∂C
∂x

+ v∂C
∂y

− η△C = KC + S, in Ω,

nxu+ nyv = Ūin, on Γ1,

nxu+ nyv = 0, on SW ,
h = h̄(t), on Γ2,

C = C̄in, on Γ1
∂C
∂~n = 0, on Γ2

⋃

SW ,

C(0) = V

X(0) = U

J(U, V ) = inf
U∗,V ∗

J(U∗, V ∗).
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According to (1.4)–(1.6), the necessary optimality condition reduces problem (7.2) to
the following optimality system:

(7.3)



































































∂X

∂t
+
∂A(X)

∂x
+
∂B(X)

∂y
= F (X), in Ω,

∂C
∂t

+ u∂C
∂x

+ v∂C
∂y

− η△C = KC + S, in Ω,

nxu+ nyv = Ūin, on Γ1,

nxu+ nyv = 0, on SW ,
h = h̄(t), on Γ2,

C = C̄in, on Γ1
∂C
∂~n = 0, on Γ2

⋃

SW ,

C(0) = V,

X(0) = U,

(7.4)














































∂P

∂t
= ∂A∗(X,P )

∂x + ∂B∗(X,P )
∂y − F ∗(X,P ) + F0(Q,C) +H∗

XV2X (HXX −Xobs)

P2nx + P3ny = 0 on SW
P2 = −Uin

g P1nx on Γ1,

P3 = −Uin
g P1ny on Γ1

P2 = −hP1nx
U~n on Γ2,

P3 = −hP1ny

U~n on Γ2,

P (T ) = 0,

(7.5)































∂Q

∂t
= −~∇ · (UQ)− η△Q−KQ+H∗

c V2C (HcC − Cobs)
∂Q
∂~n = 0 on SW ,

U~nQ+ η ∂Q
∂~n = 0 on Γ2,

Q = 0 on Γ1,

Q(T ) = 0,

(7.6)







V1X(U −X0)− P (0) = 0,
V1C(V − C0)−Q(0) = 0,
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where P = (P1, P2, P3)
T and Q are the adjoint variables with respect to X and C,

F0(Q,C) = (0, Q∂C
∂x , Q

∂C
∂y )

T , and A∗(X,P ), B∗(X,P ), F ∗(X,P ) are defined by the for-

mula:

(7.7)



















































A∗(X,P ) =





−gP2 − uP1

−uP2 − hP1

−uP3



 ; B∗(X,P ) =





−gP3 − vP1

−vP2

−vP3 − hP1



 ;

F ∗(X,P ) = −















−4gu
√
u2+v2

3K2
xh

7/3 P2 − 4gv
√
u2+v2

3K2
yh

7/3 P3 + P1
∂u
∂x + P1

∂v
∂y

[

g
(u2+v2)+u2

K2
xh

4/3
√
u2+v2

+ ∂u
∂x

]

P2 +
guvP3

K2
yh

4/3
√
u2+v2

+ P3
∂v
∂x + P1

∂h
∂x

[

g
(u2+v2)+v2

K2
yh

4/3
√
u2+v2

+ ∂v
∂y

]

P3 +
guvP2

K2
xh

4/3
√
u2+v2

+ P2
∂u
∂y + P1

∂h
∂y















.

8. Evaluation of sensitivities with respect to the source

As in section 2, we will study the sensitivities with respect to the source S. Let the
response function be defined by

(8.1) GA(X,C, S) =

∫ T

0

∫

ΩA

C(x, y, t)dxdydt,

where ΩA ⊂ Ω is the response region, and C depends on S through (7.3).
We consider some direction s in the space of S and then compute the Gateaux derivative

of response function GA with respect to this direction. The Gateaux derivative is presented
by the following formula:

(8.2) ĜA(S, s) =

∫ T

0

∫

ΩA

Ĉdxdydt.

The Gateaux derivative of P from equation (7.4) is the solution of the following problem:
(8.3)


















































∂P̂

∂t
= ∂Â∗(X,P )

∂x + ∂B̂∗(X,P )
∂y − F̂ ∗(X,P ) + F ∗∗(Q,C, Q̂, Ĉ) +H∗

XV2XHXX̂

P̂2nx + P̂3ny = 0 on SW
P̂2 = −Uin

g P̂1nx on Γ1,

P̂3 = −Uin
g P̂1ny on Γ1

P̂2 = −hP1nx
U~n on Γ2,

P̂3 = −hP1ny

U~n on Γ2

P̂ (T ) = 0,

where F ∗∗(Q,C, Q̂, Ĉ) = (0, Q̂∂C
∂x +Q∂Ĉ

∂x , Q̂
∂C
∂y +Q∂Ĉ

∂y )
T . Multiplying equation (8.3) by a

vector-function Ψ = (Ψ1,Ψ2,Ψ3) and then integrating in t and over Ω, we have:
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∫

0

T (

P̂ ,
∂Ψ

∂t
+
∂A∗∗(X,Ψ)

∂x
+
∂B∗∗(X,Ψ)

∂y
− F ∗∗∗(X,Ψ)

)

dt(8.4)

+

∫

0

T (

X̂,
∂AX(X,Ψ)

∂x
+
∂BX(X,Ψ)

∂y
− FX(X,Ψ) +H∗V2XHΨ

)

dt

=

∫

0

T ∫

Γ1∪Γ2∪SW

P̂E∗∗(X,Ψ)d (Γ1 ∪ Γ2 ∪ SW ) dt+

∫

0

T ∫

Γ1∪Γ2∪SW

X̂EX(X,Ψ)d (Γ1 ∪ Γ2 ∪ SW ) dt

−
∫

0

T ∫

Ω
F̂ ∗∗dΩdt−

∫

0

T ∫

Γ2∪SW

ĈQ(Ψ2nx +Ψ3ny)d (Γ2 ∪ SW ) dt+
(

P̂ (T ),Ψ(T )
)

−
(

P̂ (0),Ψ(0)
)

,

where: F̂ ∗∗ = Q̂(Ψ2 · ∂C
∂x +Ψ3 · ∂C

∂y )− Ĉ · ∂QΨ2

∂x − Ĉ · ∂QΨ3

∂y ,

(8.5)














































A∗∗(X,Ψ) =





uΨ1 + hΨ2

gΨ1 + uΨ2

uΨ3



 ; B∗∗(X,Ψ) =





vΨ1 + hΨ3

vΨ2

gΨ1 + vΨ3



 ;

F ∗∗∗(X,Ψ) = −













0

−4gu
√

(u2+v2)

3K2
xh

7/3 Ψ1 +

[

g(2u2+v2)
K2

xh
4/3

√
u2+v2

− ∂v
∂y

]

Ψ2 +
guvΨ3

K2
xh

4/3
√
u2+v2

+Ψ3
∂u
∂y

−4gv
√

(u2+v2)

3K2
yh

7/3 Ψ1 +

[

g(u2+2v2)
K2

yh
4/3

√
u2+v2

− ∂u
∂x

]

Ψ3 +
guvΨ2

K2
yh

4/3
√
u2+v2

+Ψ2
∂v
∂x













;

(8.6)































AX(X,Ψ) =





0
P3Ψ3

−P3Ψ2



 ; BX(X,Ψ) =





0
−P2Ψ3

P2Ψ2



 ;

FX(X,Ψ) = −





Fh(X,Ψ)
Fu(X,Ψ)
Fv(X,Ψ)



 ,

Fh(X,Ψ) =
28gu

√
u2 + v2

9K2
xh

10/3
P2Ψ1 +

28gv
√
u2 + v2

9K2
yh

10/3
P3Ψ1

− 4g(2u2+v2)
3K2

xh
7/3

√
u2+v2

P2Ψ2 −
4g(u2+2v2)

3K2
yh

7/3
√
u2+v2

P3Ψ3

− 4guv

3K2
xh

7/3
√
u2+v2

P2Ψ3 − 4guv

3K2
yh

7/3
√
u2+v2

P3Ψ2 − ∂P1

∂y Ψ3 − ∂P1

∂x Ψ2,

Fu(X,Ψ) = − 4g(2u2 + v2)

3K2
xh

7/3
√
u2 + v2

P2Ψ1 −
4guv

3K2
yh

7/3
√
u2 + v2

P3Ψ1 +
gu

(

2u2 + 3v2
)

K2
xh

4/3 (u2 + v2)3/2
P2Ψ2

+ gu3

K2
yh

4/3(u2+v2)3/2
P3Ψ3 +

gv3P2Ψ3

K2
xh

4/3(u2+v2)3/2
+ gv3P3Ψ2

K2
yh

4/3(u2+v2)3/2
− ∂P2

∂x Ψ2 − ∂P1

∂x Ψ1 − ∂P3

∂x Ψ3,
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Fv(X,Ψ) = −4g(u2 + 2v2)

3K2
yh

7/3
P3Ψ1 −

4guv

3K2
xh

7/3
√
u2 + v2

P2Ψ1

+ gv3

K2
xh

4/3(u2+v2)3/2
P2Ψ2 +

gu3P3Ψ2

K2
yh

4/3(u2+v2)3/2
+ gu3P2Ψ3

K2
xh

4/3(u2+v2)3/2

+
gv(3u2+2v2)Ψ3P3

K2
yh

4/3(u2+v2)3/2
− ∂P1

∂y Ψ1 − ∂P2

∂y Ψ2 − ∂P3

∂y Ψ3,

E∗∗(X,Ψ) =





Ψ1U~n+ h (Ψ2nx +Ψ3ny)
gΨ1nx +U~nΨ2

gΨ1ny +U~nΨ3



 ; EX(X,Ψ) =





0
P2Ψ3ny − P3Ψ3nx
P3Ψ2nx − P2Ψ2ny



 .

The Gateaux derivative of Q from equation (7.5) is the solution of the following problem:

(8.7)



































∂Q̂

∂t
= −~∇ ·

(

UQ̂
)

−
(

∂ûQ
∂x + ∂v̂Q

∂y

)

− η△Q̂−KQ̂+H∗
c V2CHcĈ

∂Q̂
∂~n = 0 on SW ,

U~nQ̂+ η ∂Q̂
∂~n = 0 on Γ2,

Q̂ = 0 on Γ1,

Q̂(T ) = 0.

Multiplying equation (8.7) by function Λ and integrating it in t and over Ω, we have:

∫

0

T (

Q̂,
∂Λ

∂t
+ u

∂Λ

∂x
+ v

∂Λ

∂y
− η∆Λ−KΛ

)

dt+

∫

0

T (

X̂, F2XC

)

dt

= −
∫

0

T (

Ĉ,H∗
c V2CHcΛ

)

dt+
(

Q̂(T ),Λ(T )
)

−
(

Q̂(0),Λ(0)
)

−η
∫

0

T ∫

∂Γ1

Λ
∂Q̂

∂~n
dΓ1dt+ η

∫

0

T ∫

∂(Γ2∪SW )
Q̂
∂Λ

∂~n
d(Γ2 ∪ SW )dt

+

∫

0

T ∫

∂Γ2

QΛ (ûnx + v̂ny) dΓ2dt,

where: F2XC = (0, Q∂Λ
∂x , Q

∂Λ
∂y )

T . The Gateaux derivative of C from equation (6.6) is the

solution of the problem:

(8.8)



























∂Ĉ

∂t
= −U~∇ · Ĉ + η△Ĉ +KĈ + s−

(

û∂C
∂x + v̂ ∂C

∂y

)

Ĉ|Γ1

= 0
∂Ĉ
∂~n |Γ2

⋃
SW

= 0

Ĉ(0) = V̂ .
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Multiplying equation (8.8) by function Φ and integrating in t and Ω, we have:
∫

0

T (

Ĉ,−∂Φ
∂t

− ∂uΦ

∂x
− ∂vΦ

∂y
− η∆Φ−KΦ

)

dt+

∫

0

T (

X̂, F1XC(C,Λ)
)

dt(8.9)

=

∫

0

T

(s,Φ) dt−
(

Ĉ(T ),Φ(T )
)

+
(

Ĉ(0),Φ(0)
)

+η

∫

0

T ∫

∂Γ1

Φ
∂Ĉ

∂~n
dΓ1dt− η

∫

0

T ∫

SW

Ĉ
∂Φ

∂~n
dSWdt−

∫

0

T ∫

∂(Γ2)
Ĉ

(

U~nΦ+ η
∂Φ

∂~n

)

dΓ2dt,

where F1XC = (0,Φ∂C
∂x ,Φ

∂C
∂y )

T . We denote

FXC = F2XC + F1XC =





0

Q∂Λ
∂x +Φ∂C

∂x
Q∂Λ

∂y +Φ∂C
∂y



 .

The Gateaux derivative of X from equation (6.5) is the solution of the problem:

(8.10)























∂X̂

∂t
+
∂Â(X)

∂x
+
∂B̂(X)

∂y
= F̂ (X), in Ω,

nxû+ nyv̂ = 0, on Γ1
⋃

SW ,

ĥ = 0, on Γ2,

X̂(0) = Û .

Multiplying equation (8.10) by a vector-function P 1 = (P 1
1 , P

1
2 , P

1
3 )

T and integrating in t
and Ω, we have:

∫

0

T (

X̂,
∂P 1

∂t
− ∂A∗(X,P 1)

∂x
− ∂B∗(X,P 1)

∂y
+ F ∗(X,P 1)

)

dt =

∫

0

T ∫

Γ1∪Γ2∪SW

X̂E∗(X,P 1)d (Γ1 ∪ Γ2 ∪ SW ) dt+
(

X̂(T ), P 1(T )
)

−
(

X̂(0), P 1(0)
)

,

where the vector-functions A∗(X,P 1), B∗(X,P 1), F ∗(X,P 1) are shown in formula (7.7)
with variables X, P 1, and

(8.11) E∗(X,P 1) =





U~nP 1
1 + g(P 1

2 nx + P 1
3 ny)

U~nP 1
2 + hP 1

1 nx
U~nP 1

3 + hP 1
1 ny



 .

The Gateaux derivatives of U and V from equation (7.6) are the solutions of the equations:

(8.12) V1X Û − P̂ (0) = 0, V1C V̂ − Q̂(0) = 0.

Multiplying the first equation in (8.12) by ψ = (ψ1, ψ2, ψ3), and the second one by φ,
integrating them over Ω, we have:

(8.13)

∫

Ω
V1C V̂ φdΩ−

∫

Ω
Q̂(0)φdΩ = 0,

∫

Ω
V1X ÛψdΩ−

∫

Ω
P̂ (0)ψdΩ = 0.
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Adding the obtained integral equalities (8.4)–(8.13), we have:

∫

0

T (

Ĉ,−∂Φ
∂t

− ∂uΦ

∂x
− ∂vΦ

∂y
− η∆Φ−KΦ− ∂QΨ2

dx
− ∂QΨ3

dy
+H∗

c V2CHcΛ

)

dt

+

∫

0

T (

P̂ ,
∂Ψ

∂t
+
∂A∗∗(X,Ψ)

∂x
+
∂B∗∗(XΨ)

∂y
− F ∗∗∗(X,Ψ)

)

dt

+

∫

0

T (

Q̂,
∂Λ

∂t
+ u

∂Λ

∂x
+ v

∂Λ

∂y
− η∆Λ−KΛ +Ψ2

∂C

∂x
+Ψ3

∂C

∂y

)

dt

+

∫

Ω

(

V̂ , V1Cφ− Φ(0)
)

dΩ+

∫

Ω

(

Û , V1Xψ − P 1(0)
)

dΩ

+

∫

0

T (

X̂,
∂AX(X,Ψ)

∂x
+
∂BX(X,Ψ)

∂y
− FX(X,Ψ) +H∗

XV2XHXΨ+ FXC

)

dt

−
∫

0

T (

X̂,
∂P 1

∂t
− ∂A∗(X,P 1)

∂x
− ∂B∗(X,P 1)

∂y
+ F ∗(X,P 1)

)

dt

=

∫

0

T

(s,Φ) dt−
(

P̂ (0),Ψ(0)− ψ
)

−
(

Q̂(0),Λ(0)− φ
)

+

∫

0

T ∫

Γ1∪Γ2∪SW

P̂E∗∗(X,Ψ)d (Γ1 ∪ Γ2 ∪ SW ) dt

−η
∫

0

T ∫

∂Γ1

Λ
∂Q̂

∂~n
dΓ1dt+ η

∫

0

T ∫

∂(Γ2∪SW )
Q̂
∂Λ

∂~n
d(Γ2 ∪ SW )dt

−
∫

0

T ∫

∂Γ1

Φ
∂Ĉ

∂~n
dΓ1dt+

∫

0

T ∫

SW

Ĉ

(

η
∂Φ

∂~n
−Q(Ψ2nx +Ψ3ny)

)

dSWdt

−
∫

0

T ∫

∂(Γ2)
Ĉ

(

U~nΦ+ η
∂Φ

∂~n
+Q(Ψ2nx +Ψ3ny)

)

dΓ2dt+

∫

0

T ∫

∂Γ2

QΛ (ûnx + v̂ny) dΓ2dt

(8.14) +

∫

0

T ∫

Γ1∪Γ2∪SW

(

X̂, EX(X,Ψ)− E∗(X,P 1)
)

d (Γ1 ∪ Γ2 ∪ SW ) dt.

As in section 2, we put P 1(T ) = 0,Φ(T ) = 0, −Φ(0) + V1Cφ = 0, −P 1(0) + V1Xψ = 0,
Λ(0) = φ, Ψ(0) = ψ. Then we have:

(8.15) V1CΛ(0) = Φ(0), V1XΨ(0) = P 1(0).
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If P 1,Ψ,Λ,Φ are the solutions of the following problems:
(8.16)























































−∂P 1

∂t +
∂(A∗(X,P 1)+AX(X,Ψ))

∂x +
∂(B∗(X,P 1)+BX(X,Ψ))

∂y −
−F ∗(X,P 1)− FX(X,Ψ) +H∗

XV2XHXΨ+ FXC(C,Λ) = 0
P 1
2 nx + P 1

3 ny = 0 on SW

P 1
2 = −hP 1

1
nx

U~n on Γ2,

P 1
3 = −hP 1

1
ny

U~n on Γ2

P 1
2 = −Uin

g P 1
1 nx on Γ1,

P 1
3 = −Uin

g P 1
1 ny on Γ1

P 1(T ) = 0,

(8.17)






























−∂Φ
∂t

− ∂uΦ

∂x
− ∂vΦ

∂y
− η∆Φ−KΦ− ∂QΨ2

dx
− ∂QΨ3

dy
+H∗

c V2CHcΛ = 1ΩA

∂Φ
∂~n = 0 on SW ,

U~nΦ+ η ∂Φ
∂~n +Q(Ψ2nx +Ψ3ny) = 0 on Γ2,

Φ = 0 on Γ1

Φ(T ) = 0,

(8.18)



















∂Ψ

∂t
= −∂A∗∗(X,Ψ)

∂x − ∂B∗∗(X,Ψ)
∂y + F ∗∗∗(X,Ψ)

Ψ2nx +Ψ3ny = 0 on SW ∪ Γ1,

Ψ1 = 0 on Γ2,

V1XΨ(0) = P 1(0),

(8.19)























∂Λ

∂t
+ u

∂Λ

∂x
+ v

∂Λ

∂y
− η∆Λ−KΛ +Ψ2

∂C

∂x
+Ψ3

∂C

∂y
= 0

Λ = 0 on Γ1,
∂Λ
∂~n = 0 on SW ∪ Γ2,

V1CΛ(0) = Φ(0),

using equations (8.2), (8.14), the gradient of response function GA is calculated by the
formula:

ĜA(S, s) =

∫ T

0

(

1Ω, Ĉ
)

dt =

∫ T

0
(s,Φ) dt.

Hence

(8.20)
dG

dS
=

∫ T

0
Φ dt in Ω.
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9. Non-standard problem

By the way shown in section 3 we will solve the system (8.16)–(8.19). Instead of (8.18),
(8.19) we consider the problems:

(9.1)



























∂Ψ

∂t
= −∂A∗∗(X,Ψ)

∂x − ∂B∗∗(X,Ψ)
∂y + F ∗∗∗(X,Ψ)

Ψ2nx +Ψ3ny = 0 on SW
Ψ2nx +Ψ3ny = 0 on Γ1,

Ψ1 = 0 on Γ2,

Ψ(0) = v1,

(9.2)























∂Λ

∂t
+ u

∂Λ

∂x
+ v

∂Λ

∂y
− η∆Λ−KΛ +Ψ2

∂C

∂x
+Ψ3

∂C

∂y
= 0

Λ = 0 on Γ1,
∂Λ
∂~n = 0 on Γ2 ∪ SW ,

Λ(0) = v2.

We assume that for given v = (v1, v2) ∈ XX ×XC the problems (8.16), (8.17), (9.1),(9.2)
have the unique solution P 1,Φ,Ψ,Λ for t ∈ [0, T ]. We define the cost function:

(9.3) J(Ψ,Φ)(v) =
1

2
‖V1Xv1 − P1(0, v1)‖2XX

+
1

2
‖V1Cv2 − Φ(0, v2)‖2XC

.

Minimizing J(Ψ,Φ) we have the value v∗ = (v∗1, v
∗
2). If at the optimum the equations

(9.4) V1Xv1 − P1(0, v1) = 0, V1Cv2 − Φ(0, v2) = 0

are satisfied, then the problem will be solved.
Following the reasoning of section 3, we can obtain the gradient of J(Ψ,Φ) through the

adjoint variables. Let R1, R2, Q1 and Q2 satisfy the following problems:

(9.5)















∂R1

∂t + ∂A∗∗(X,R1)
∂x + ∂B∗∗(X,R1)

∂y − F ∗∗∗(X,R1) = 0

R1
2nx +R1

3ny = 0 on SW ∪ Γ1,

R1
1 = 0 on Γ2,

R1(0) = V1Xv1 − P 1(0),

(9.6)



















































−∂R2

∂t +
∂AR2

∂x +
∂BR2

∂y − FR2 +H∗V2XHR1 = 0

R2
2nx +R2

3ny = 0 on SW

R2
2 = −(hR2

1
+QQ1)nx

U~n on Γ2,

R2
3 = −(hR2

1
+QQ1)ny

U~n on Γ2,

R2
2 = −U~nR2

1
nx

g on Γ1,

R2
3 = −U~nR2

1
ny

g on Γ1,

R2(T ) = 0,
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(9.7)















∂Q1

∂t − η∆Q1 −KQ1 + u∂Q1

∂x + v ∂Q1

∂y + (∂C∂xR
1
2 +

∂C
∂y R

1
3) = 0

∂Q1

∂~n = 0 on SW ∪ Γ2,

Q1 = 0 on Γ1,

Q1(0) = V1Cv2 − Φ(0),

(9.8)


























∂Q2

∂t + ∂uQ2

∂x + ∂vQ2

∂y + η∆Q2 +KQ2 −H∗
c V2CHcQ1 + (

∂QR1

2

∂x +
∂QR1

3

∂y ) = 0

η ∂Q2

∂~n +U~nQ2 +Q
(

R1
2nx +R1

3ny
)

= 0 on Γ2,

Q2 = 0 on Γ1,
∂Q2

∂~n = 0 on SW ,
Q2(T ) = 0,

where the function vectors A∗∗(X,R1), B∗∗(X,R1), F ∗∗∗(X,R1) are defined by formula
(8.5) with variable R1 instead of Ψ, and

(9.9)















AR2 = A∗(X,R2) +AX(X,R1), BR2 = B∗(X,R2) +BX(X,R1),

FR2 = F ∗(X,R2) + FΨ −





0

Q∂Q1

∂x +Q2
∂C
∂x

Q∂Q1

∂y +Q2
∂C
∂y



 , FΨ = −(FΨ1
, FΨ2

, FΨ3
)T ,

(9.10)

FΨ1
=

28gu
√
u2 + v2

9K2
xh

10/3
P2R

1
1 +

28gv
√
u2 + v2

9K2
yh

10/3
P3R

1
1

− 4g(2u2+v2)

3K2
xh

7/3
√
u2+v2

P2R
1
2 − 4guv

3K2
yh

7/3
√
u2+v2

P3R
1
2

− 4guv

3K2
xh

7/3
√
u2+v2

P2R
1
3 −

4g(u2+2v2)

3K2
yh

7/3
√
u2+v2

P3R
1
3 − ∂P1

∂x R
1
2 − ∂P1

∂y R
1
3,

(9.11)

FΨ2
= − 4g

(

2u2 + v2
)

3K2
xh

7/3
√
u2 + v2

P2R
1
1 −

4guv

3K2
yh

7/3
√
u2 + v2

P3R
1
1 +

gu
(

2u2 + 3v2
)

K2
xh

4/3 (u2 + v2)3/2
P2R

1
2

+ gv3

K2
yh

4/3(u2+v2)3/2
P3R

1
2 +

gv3

K2
xh

4/3(u2+v2)3/2
P2R

1
3 +

gu3

K2
yh

4/3(u2+v2)3/2
P3R

1
3

−∂P1

∂x R
1
1 − ∂P2

∂x R
1
2 − ∂P3

∂x R
1
3,

(9.12)

FΨ3
= − 4g

(

u2 + 2v2
)

3K2
yh

7/3
√
u2 + v2

P3R
1
1 −

4guv

3K2
xh

7/3
√
u2 + v2

P2R
1
1 +

gu3

K2
yh

4/3 (u2 + v2)3/2
P3R

1
2

+ gv3

K2
xh

4/3(u2+v2)3/2
P2R

1
2 +

gu3

K2
xh

4/3(u2+v2)3/2
P2R

1
3 +

gv(3u2+2v2)
K2

yh
4/3(u2+v2)3/2

P3R
1
3

−∂P1

∂y R
1
1 − ∂P2

∂y R
1
2 − ∂P3

∂y R
1
3.

Then, we have the gradient of the cost function J(Ψ,Φ)(v):

(9.13) ∇J(Ψ,Φ)(v) =
(

V1X
(

V1Xv1 − P 1(0)
)

−R2(0), V1C (V1Cv2 − Φ(0))−Q2(0)
)

.
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9.1. Algorithm to calculate the gradient of the response function GA. We have
the following algorithm to calculate the gradient of the response function GA:

• 1. Solve equations (8.16), (8.17), (9.1), (9.2), (9.5)-(9.8);
• 2. Have ∇J(Ψ,Φ)(v) by (9.13);
• 3. Solve the optimal control problem finding the mimimum of J(Ψ,Φ)(v) with the
value v∗ = (v∗1, v

∗
2);

• 4. Put the obtained v∗1, v
∗
2 into the relation Ψ(0) = v∗1,Λ(0) = v∗2;

• 5. Solve again the problems (9.1), (9.2), (8.17);
• 6. Have the value of the gradient of the response function dG

dS by formula (8.20).

10. Simulation experiment on computing the response-function gradient

for 2D water pollution model

In order to numerically solve the above model equations, a cell-centered finite
volume method is used (see [23]), accompanied by an explicit scheme in time [25]. To
study the response function’s gradient we consider the problem of water flow running into
the channel with the lenght 3000m, the width 800m, and the bottom elevation zb = 0.
Then the flow domain Ω is defined by the rectangular area 3000m×800m. The other data
of this problem are described in Table 1. In this problem the gate-into channel denoted by
Γ1 is on the place where x = 0, y ∈ [0, 200], and the gate out of the channel Γ2 is on the
other place where x = 3000, y ∈ [600, 800]. The boundary conditions on the in-gate Γ1 into
the channel are: C |Γ1

= 24 mg/l and U~n |Γ1
= (unx + vny) |Γ1

= 0.35 m/s. The boundary

conditions on the solid boundary SW are: ∂C
∂n |SW

= 0 and U~n |SW
= (unx + vny) |SW

= 0.

The boundary conditions on the out-gate Γ2 of the channel are ∂C
∂n |Γ2

= 0 and h |Γ2
= 7m.

The initial conditions are u(x, y, 0) = 0, v(x, y, 0) = 0, h(x, y, 0) = 7m and C(x, y, 0) = 24
mg/l.

Kx,Ky Mesh type η K Time step (s)
30.6 Triangular 1.7e−6 −4.05E−6 1

Table 1. Data of the channel

• We will test the problem by considering a “twin-experiment”.
– A run of the model (with arbitrary initial values) simulating the true pollutant

concentration levels, is used as a reference. The reference run is used to extract
the “pseudo” observations, at certain points of the channel. The measurement
X0, C0 are obtained by the values of X,C at the moment 2000s of the reference
model. The model is running more 100s, then we have Xobs and Cobs in every
time step.

– In the testing model the initial value for the X(0) = U and C(0) = V is taken
as the average of other long model runs (2000 s), with a different initial value.
(Note that the initial value for this run does not matter much since we have
taken the average over a very long run). The model is running more 100s,
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then X, C, P ,Q are obtained by the optimal process (7.3)–(7.6). Then for this
time period 100s the vector functions Φ,Ψ, Λ, Q1, Q2, R

1, R2 are received by
finding the minimum of the cost function J(Ψ,Φ)(v) using the subsection 9.1
(steps 1-5). Therefore, the gradient of the response function G is obtained by
formula (8.20).

• When there is not yet any pollution source put in the middle of the channel with
unstructured net, the concentration and velocity fields at one moment are shown
in figure 1. The substance comes into the channel by the gate Γ1 and then the
concentration distribution is shown in this figure. Let the model run until the
moment 2000s, then we put 1 or 2 sources with the concentration 40mg/l in the
channel and let the model run more 100s (see figure 2). It is shown that in the
cases when the response regions are located in the source places the relative gradient
values of response functions and the red areas are larger than the others when the
response regions are located far from the source place (see figures 3-4). In the case
when the response area is in the middle place between 2 sources the red and green
areas are closer to the source places; when response areas are nearby the source
place the relative gradient values are larger than the others when the response area
are located far from the source places (see figures 3-4).
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Figure 1. Unstructured net with triangular cells before putting the pol-
lution source into the middle of the channel (Left); Velocity field before
putting the pollution source into the middle of the channel (Right)
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Figure 2. Concentration picture after putting 1 pollution source into the
channel (Left); Concentration picture after putting 2 pollution sources into
the channel (Right)

Figure 3. One source in the channel - Relative gradients of the response
function in 6 cases of response region places (from left to right) : Response
region in the left-hand place of the source region (fig.1a-1c); Response region
in the place of the source region ( fig.2); Response regions in the right-hand
and far right-hand places of the source region (fig.3a-3b)

References

[1] Cacuci D.G. Sensitivity theory for nonlinear systems: II.Extensions to additional classes of responses.
J. Math. Phys, 1981, v.22, pp.2803–2812.



GENERAL SENSITIVITY ANALYSIS IN DATA ASSIMILATION 25

Figure 4. Two sources in the channel - Relative gradients of the response
function in 9 cases of the response region places (from left to right) : Re-
sponse region in the left-hand place of the source regions (fig.1a-1b); Re-
sponse region in the place of the first source region (fig.2); Response region in
the right-hand place nearby the first source region (fig.3a); Response region
in the middle between 2 sources (fig. 3b); Response region in the left-hand
place nearby the second source region (fig.3c); Response region in the place
of the second source region (fig.4); Response region in the right-hand place
of the source region (fig.5a-5b)

[2] Chavent G. Local stability of the output least square parameter estimation technique. Math. Appl.

Comp., 1983, v.2, pp.3–22.
[3] Dontchev A.L. Perturbations, Approximations and Sensitivity Analysis of Optimal Control Sys-

tems.(Lecture Notes in Control and Information Sciences; 52). – Berlin: Springer, 1983.
[4] Gejadze I., Le Dimet F.-X., Shutyaev V., On analysis error covariances in variational data assimilation.

SIAM J. Sci. Computing, 2008, v.30, no.4, pp.1847–1874.
[5] Gejadze I., Le Dimet F.-X., Shutyaev V., On optimal solution error covariances in variational data

assimilation problems. Journal of Computational Physics, 2010, v.229, pp.2159–2178.



26 F.-X. LE DIMET,V. SHUTYAEV, TRAN THU HA

[6] Gejadze I.Yu., Copeland G.J.M., Le Dimet F.-X., Shutyaev V., Computation of the analysis error co-
variance in variational data assimilation problems with nonlinear dynamics. Journal of Computational

Physics, 2011, v.230, pp.7923–7943.
[7] Glowinski R., Lions J.L. Exact and approximate controllability for distributed parameter systems.

Acta Numerica, 1994, v.1, p. 269.
[8] Le Dimet F.-X., Navon I.M., Daescu D.N. Second-order information in data assimilation. Monthly

Weather Review, 2002, v.130, no.3, pp.629–648.
[9] LeDimet F.-X., Ngnepieba P., Shutyaev V. On error analysis in data assimilation problems. Russ. J.

Numer. Anal. Math. Modelling, 2002, 17, pp.71-97.
[10] LeDimet F.-X., Ngodock, Luong B., Verron J. Sensitivity analysis in variational data assimilation. J.

Meteorol. Soc. Japan, 1997, v.75 (1B), pp.245-255.
[11] Le Dimet F.X., Talagrand O. Variational algorithms for analysis and assimilation of meteorological

observations: theoretical aspects. Tellus, 1986, v.38A, pp.97-110.
[12] Le Dimet F.-X., Shutyaev V. On deterministic error analysis in variational data assimilation. Nonlinear

Processes in Geophysics, 2005, 14, p. 1-10.
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