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Distributed Optimal Planning:

an Approach by Weighted Automata Calculus

Eric Fabre*, Loı̈g Jezequel**

Abstract—We consider a distributed system modeled as a
possibly large network of automata. Planning in this system
consists in selecting and organizing actions in order to reach
a goal state in an optimal manner, assuming actions have a
cost. To cope with the complexity of the system, we propose
a distributed/modular planning approach. In each automaton
or component, an agent explores local action plans that reach
the local goal. The agents have to coordinate their search in
order to select local plans that 1/ can be assembled into a
valid global plan and 2/ ensure the optimality of this global
plan. The proposed solution takes the form of a message

passing algorithm, of peer-to-peer nature: no coordinator is
needed. We show that local plan selections can be performed by
combining operations on weighted languages, and then propose
a more practical implementation in terms of weighted automata
calculus.
Index Terms—factored planning, distributed planning, op-

timal planning, discrete event system, distributed constraint
solving, distributed optimization, weighted automaton, K-
automaton, string to weight transducer, formal language theory

I. INTRODUCTION

A planning problem [1] consists in optimally selecting and

organizing a set of actions in order to reach a goal state

from a given initial state. These “states” correspond to tuples

(vi)i∈I of values, one per variable Vi, i ∈ I , and the actions

read and write on subsets of these variables. Expressed

in these general terms, one easily guesses that a planning

problem “simply” amounts to finding a path from an initial

state to a (set of) goal state(s) in an automaton. In reality, the

problem is more complex in several respects. First of all, the

underlying automaton that encodes the problem is generally

huge : the state space explodes, due to its vector nature, and

actions operate on few components of the state vector, so a

single action results in a huge number of transitions. There-

fore, finding a path to the goal in such a huge automaton is

not a trivial task and requires dedicated algorithms. Secondly,

there exist planning problems of different difficulties. Some

are more on the side of constraint solving: they admit few

complex solutions, or even none, and one should dedicate

his efforts to finding one solution, or to proving that there

is no solution at all. Other problems are more accessible, in
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the sense that one can easily prove the existence of many

solutions. The difficulty then amounts to finding the best

one in an efficient manner, where “best” means that some

criterion should be minimized, for example the number of

actions in the plan, or the total cost of the plan, assuming

each action involves some cost. The present paper addresses

this second family of problems.

In order to address planning problems of growing size and

complexity, several research directions have been recently

explored. They essentially try to make use of the locality of

actions, i.e. the fact that an action involves a small number

of variables. One can for example take advantage of the

concurrency of actions: when two actions are simultaneously

firable and involve different sets of variables, they need not

be ordered in a plan. This results in search strategies that han-

dle plans as partial orders of actions rather than sequences,

which reduces the search space [2], [3]. A stronger trend is

known as “factored planning”, and aims at solving planning

problems by parts [5], [6], [7], [8]. Formally, one can imagine

that the action set is partitioned into subsets, each subset

representing an “agent.” So each agent can only influence

part of the resource set. The idea is then that one should

build a plan for each agent, which corresponds to a smaller

planning problem, and at the same time ensure that all such

local plans are compatible, i.e. can be assembled to form

a valid global plan. The difficulty is of course to obtain

this compatibility of local plans: this is where the sparse

interaction graph of agents is exploited, and where one may

obtain a complexity gain.

The results presented here elaborate on this idea, but adopt

a radically new perspective on the problem. Specifically,

we assume that agents are sufficiently small to enable the

handling of all local plans. We then focus on the dis-

tributed computations that 1/ will select local plans of each

agent that can be extended into (or that are projection of)

a global plan, and 2/ will at the same time select the tuple

of local plans (one per agent) that corresponds to the best

global plan. As a side-product, we also obtain global plans

that are partially ordered sets of actions.

Our approach first encodes the planning problem as a

reachability problem in a network of automata, one automa-

ton per agent (section II). We then make use of classical tools

in formal language theory, distributed constraint solving [10],

[11], [9], distributed optimization [13] (section III), and

weighted automata calculus [16], [17] (section IV) to solve

the problem. Taken separately, none of these tools is original,

but their assembling certainly is, and we believe this opens

a promising research direction about planning problems.



II. PLANNING IN NETWORKS OF AUTOMATA

A. From planning to distributed planning

The definition of a planning problem assumes first a finite

set of state variables {Vi}i∈I ! VI , taking values in finite

domains Di. The initial state is a specific tuple (vi)i∈I and

we assume here a set of goal states in product form × iGi

with Gi ⊆ Di. The second ingredient is a finite collection

of actions {ak}k∈K . An action ak usually involves a small

subset of variables V(ak) ⊆ VI . To be firable, ak must

read specific values on (some of) the V(ak), which form the

preconditions of ak. The firing of ak writes specific values

on (some of) the variables V(ak), the so-called effect of ak.

In this paper, to avoid non-central technical complications,

we assume that each ak both reads and writes on all its

variables V(ak). Finding an optimal plan consists in selecting

and organizing actions to go from the initial state (v i)i∈I

to one of the goal states of G = ×i∈IGi, and at the

same time minimize a criterion like the number of actions

for example. This is made more formal below. Planning

problems are generally expressed in different formalisms:

STRIPS or PDDL assume binary variables, while SAS+ [5]

or the related notion of Domain Transition Graph [4] assume

multi-valued variables. Here we are closer to this second

family.

To make this setting distributed, we partition the variable

set VI into subsets VIn , with $nIn = I , corresponding to

the “agents” An (one could equivalently partition the action

set). Agent An is provided with all the actions ak restricted

to its variables VIn , ak|VIn
, such that V(ak)∩VIn &= ∅. Agent

An represents the restriction of the global planning problem

to the subset of variables VIn . Since actions are now split

into different agents, we introduce below a standard product

formalism that synchronizes agents on these shared actions

and allows us to recover the global planning problem from

its restrictions. This way of splitting a planning problem

into parts is standard and has been adopted by several

“factored planning” approaches [5], [6], [7], [8], [12]. It is

generally used to build global plans by parts, starting by

some agent, looking for a local plan in this agent, and then

trying to progressively extend it with a compatible local plan

of another agent, and so on. Here, the compatibility of local

plans corresponds to an agreement to jointly perform or reject

some shared actions (this is formalized below).

In this paper, we adopt a different perspective. First of all,

we look for a distributed planning approach and abandon the

idea of a coordinator in charge of assembling the proposed

local plans into a global one. We rather assume that the

agents themselves are in charge of computations, relying

on message exchanges, and that they only handle local

information (typically sets of local plans), not global one.

Secondly, rather than a search for one possible global plan

(which assumes many backtrackings in the assembling of

agent proposals), the method we propose is rather based

on a filtering idea : it explores all local plans of an agent,

and removes those that can not be the restriction of a valid

global plan. Finally, beyond this filtering idea, the procedure

we propose implements as well a distributed optimization

function that will compute (all) the optimal global plan(s). To

our knowledge, this is the first approach to optimal factored

planning.

We proceed by formalizing the notion of agent as a

weighted automaton, and the notion of plan as a word in

the language of this automaton.

B. Weighted automata and their languages

Let (K,⊕,⊗, 0̄, 1̄) denote the so-called tropical commuta-

tive semiring (R+∪{+∞}, min, +, +∞, 0). Following [16],

a weighted automaton (WA), or equivalently a string to

weight transducer, is a tuple A = (S, I, F, Σ, cI , cF , c) where

S is a finite set of states, among which I, F ⊆ S represent

initial and final states respectively, Σ is a finite alphabet

of actions, cI : I → K\{0̄} and cF : F → K\{0̄} are

weight/cost functions on initial and terminal states. The last

parameter c : S×Σ×S → K is a weight or cost function over

all possible transitions of A, with the convention that only

transitions in T = c−1(K\{0̄}) are possible in A (transitions

of infinite cost are impossible). Given a transition t ∈ T ,

we denote by (s−(t), σ(t), s+(t)) its three components in

S × Σ × S. A path π = t1...tn is a sequence of transitions

such that s+(ti) = s−(ti+1), 1 ≤ i ≤ n − 1. We define

s−(π) = s−(t1), s+(π) = s+(tn), σ(π) = σ(t1)...σ(tn)
and for the cost of this path c(π) = c(t1) ⊗ . . . ⊗ c(tn),
i.e. the sum of transition costs. The path π is accepted by

A, denoted π |= A, iff s−(π) ∈ I and s+(π) ∈ F . The

language of A is defined as the formal power series

L(A) =
∑

u∈Σ∗

L(A, u) u (1)

where coefficients are given by

L(A, u) =
⊕

π |= A
u = σ(π)

cI [s−(π)] ⊗ c(π) ⊗ cF [s+(π)] (2)

L(A, u) is the weight of the action sequence (or word) u,

and it is thus obtained as the minimum weight over all

accepted paths of A that produce u, with the convention that

L(A, u) = +∞ (i.e. 0̄) when no such path exists. The word

u is said to belong to the language of A iff L(A, u) &= 0̄.

One can associate a transition function δ : S × Σ → 2S

to A by δ(s, σ) = {s′, ∃(s, σ, c, s′) ∈ T }, which extends

naturally to state sets S ′ ⊆ S by union and to words u ∈ Σ∗

by composition. We also denote δ(s) = ∪σ∈Σδ(s, σ). A is

said to be deterministic when |I| = 1 and δ is a partial

function over S × Σ, i.e. from any state s there is at most

one outgoing transition carrying a given label σ.

A WA can be considered as an encoding of a planning

problem with action costs. Optimal planning then consists

in finding the word(s) u of minimal weight in the language

L(A), or equivalently the optimal accepted path(s) in A,

which can be solved by traditional graph search. In the se-

quel, we examine the case where A is large, but obtained by

combining smaller planning problems (called components),

one per agent.



C. From distributed planning to (networks of) automata

We represent an agent An as a WA. Its state space encodes

all possible values (vi)i∈In on its variables, and its transitions

define how actions modify these values. Transition costs

represent how much the agent must spend for a given action.

The goal of agent is defined by its subset F of final states.

The interaction of two agents is defined by sharing some

actions, which formally takes the form of a product of WA.

Let A1,A2 be two WA, Ai = (Si, Ii, Fi, Σi, cI
i, cF

i, ci)
with Ti as associated transition sets, their product A = A1×
A2 = (S, I, F, Σ, cI , cF , c) is defined by S = S1 × S2, I =
I1 × I2, F = F1 × F2, Σ = Σ1 ∪ Σ2, cI = cI

1 ◦ p1 ⊗ cI
2 ◦

p2, cF = cF
1 ◦ p1 ⊗ cF

2 ◦ p2 where the pi : S1 × S2 → Si

denote the canonical projections. For transition costs, one

has

c((s1, s2), σ, (s′1, s
′
2)) =





c1(s1, σ, s′1) ⊗ c2(s2, σ, s′2) if σ ∈ Σ1 ∩ Σ2

c1(s1, σ, s′1) if σ &∈ Σ2 and s2 = s′2
c2(s2, σ, s′2) if σ &∈ Σ1 and s1 = s′1
0̄ otherwise

(3)

The first line corresponds to synchronized actions : the two

agents must agree to perform shared actions of Σ1 ∩ Σ2,

in which case action costs are added. By contrast, actions

carrying a private label remain in the product as private

actions, where only one agent changes state (next two lines).

We now model a distributed planning problem as a product

A = A1 × ... × AN , which can be seen as a network of

interacting agents. The objective is to find the/a path π from

I = I1 × ...× In to the global objective F = F1 × ...× FN

that has minimal cost in A. Equivalently, we look for a word

u in the language of A that has minimal weight L(A, u).
We will actually look for an N -tuple of words (u1, ..., uN ),
one word ui per component Ai, where each ui corresponds

to the canonical projection of u on (the action alphabet of)

agent Ai. Such local paths πi are said to be compatible.

The next section explains how to compute an optimal tuple

of compatible local plans without computing optimal global

plans.

III. DISTRIBUTED OPTIMAL PLANNING BY (WEIGHTED)

LANGUAGE CALCULUS

A. Basic operations on weighted languages

Let us first define the product of weighted languages

(WL). For a word u ∈ Σ∗ and Σ′ ⊆ Σ, we denote by

u|Σ′ the natural projection of u on the sub-alphabet Σ ′. Let

L1,L2 be two WL defined as formal power series on Σ1, Σ2

respectively, their product is given by

(L1 ×L L2)(u) = L1(u|Σ1) ⊗ L2(u|Σ2) (4)

Proposition 1: For A = A1 × ... ×AN one has L(A) =
L(A1) ×L ... ×L L(AN ).

Proof: The result is well known if weights are ig-

nored [10], [14]. Regarding weights, let us consider the

case of two components, without loss of generality. Let

u ∈ (Σ1 ∪ Σ2)∗ such that its projections ui = u|Σi
have

non vanishing costs : L(Ai, ui) &= 0̄. Let πi be an accepted

path in Ai such that σi(πi) = ui. By definition of A1 ×A2,

one can interleave π1 and π2 into a path π |= A such that

σ(π) = u. Conversely, let π |= A such that σ(π) = u. Since

transitions of A are pairs of transitions of A1 and A2, the

canonical restriction of π to the Ai part yields a πi |= Ai

such that σi(πi) = ui. As a consequence, the ⊕ in (2) splits

into a product of two sums, one for each component, which

yields L(A, u) = L(A1, u1) ⊗ L(A2, u2).
The second operation we need is the projection of a WL

L defined on alphabet Σ on a subset Σ ′ ⊆ Σ of action

labels. As for regular languages, this amounts to removing

the non desired labels, but here we combine it with a cost

optimization operation over the discarded labels :

∀u′ ∈ Σ′∗, ΠΣ′ (L)(u′) =
⊕

u∈Σ∗, u|Σ′=u′

L(u) (5)

Proposition 2: Let u be an optimal word of L, i.e. L(u) =⊕
v∈Σ∗ L(v), then u′ = u|Σ′ is an optimal word of L′ =

ΠΣ′(L), i.e. L′(u′) =
⊕

v′∈Σ′∗ L′(v′). And conversely, an

optimal word u′ of L′ is necessarily the projection on Σ′ of

an optimal word u of L.

Proof: Direct consequence of (5).

Proposition 2 has an important meaning for distributed

planning. Consider the set of global plans L(A) and its

projections ΠΣi(L(A)) on the action sets of all components.

Then an optimal local plan ui in ΠΣi(L(A)) is necessarily

the projection of an optimal global plan u ∈ L(A) : u i =
u|Σi

. And the latter induces optimal local plans uj = u|Σj

in all the other projected languages ΠΣj (L(A)), j &= i.
Moreover, if the optimal local plan u i is unique in every

ΠΣi(L(A)), then these local plans are necessarily the pro-

jection of the same u, i.e. they are compatible (by definition).

In summary, our objective is to compute the projections

ΠΣi(L(A)) on the action alphabets of components A i, and

then select the optimal words in these local languages. It

turns out that these projected languages can be obtained

without computing L(A), as we show below.

B. Distributed planning

Theorem 1: Let L1,L2 be weighted languages on Σ1, Σ2

respectively, and let Σ1 ∩ Σ2 ⊆ Σ′, then

ΠΣ′(L1 ∧ L2) = ΠΣ′(L1) ∧ ΠΣ′ (L2) (6)

Proof: Again, the result is standard on languages when

weights are ignored [9]. To take weights into account, assume

for simplicity that Σ′ = Σ1∩Σ2. The proof is then similar to

the one of Prop. 1 : for any two words u i ∈ Li, i = 1, 2, such

that u1|Σ′ = u2|Σ′ , one will have a joint word u in L1 ∧L2,

and vice-versa. It is then sufficient to notice that in (6) the

sum ⊕ that removes the extra labels of (Σ1 ∪Σ2)\Σ′ in the

left-hand side projection can be split into a product of two

independent sums, one removing labels of Σ1\Σ′ in the u1

terms, and another one removing labels of Σ2\Σ′ in the u2

terms. This gives the right-hand side of (6).

Theorem 1 is central to derive distributed constraint solv-

ing methods [12] (useful here to select compatibles local



plans), as well as distributed optimization methods [13]

(useful here to derive the local views of optimal global

plans). These approaches are actually two facets of a more

general theory developed in [9]. We combine them here

to design a distributed method for optimal planning. For a

matter of simplicity, we illustrate the concepts on a simple

example.

Consider a planning problem defined as A = A1×A2×A3

where Ai is defined on the action alphabet Σi and such that

Σ1 ∩Σ3 ⊆ Σ2. This assumption states that every interaction

of A1 and A3 involves A2, or equivalently that A1 and A3

have conditionally independent behaviors given a behavior of

A2. One can graphically represent this assumption by means

of an interaction graph (Fig. 1). An interaction graph has

components Ai as nodes; edges are obtained by recursively

removing redundant edges, starting from the complete graph.

The edge (Ai,Aj) is declared redundant iff either Σi∩Σj =
∅, or it is included in every Σk along an alternate path from

Ai to Aj in the (remaining) graph.

1 A2 A3A

Fig. 1. The interaction graph of A = A1×A2×A3 when Σ1∩Σ3 ⊆ Σ2.

Consider the derivation of ΠΣ1 [L(A)]. From Proposi-

tion 1, one has L(A) = L(A1) ×L L(A2) ×L L(A3). Then

ΠΣ1 [L(A)]
= ΠΣ1 [ L(A1) ×L L(A2) ×L L(A3) ]
= L(A1) ×L ΠΣ1 [ L(A2) ×L L(A3) ]
= L(A1) ×L ΠΣ1∩Σ2 [ L(A2) ×L L(A3) ]
= L(A1) ×L ΠΣ1∩Σ2 [ L(A2) ×L ΠΣ2∩Σ3 [L(A3)] ] (7)

The second equality uses Theorem 1 with Σ ′ = Σ1 ⊇
Σ1 ∩ (Σ2 ∪ Σ3), and the fact that ΠΣ1 [L(A1)] = L(A1).
For the third equality, observe that language L = L(A2)×L

L(A3) is defined on the alphabet Σ2 ∪ Σ3. So ΠΣ1(L) =
ΠΣ1 [ΠΣ2∪Σ3(L)] = ΠΣ1∩(Σ2∪Σ3)(L). This is where our

assumption comes into play to obtain Σ1 ∩ (Σ2 ∪ Σ3) =
Σ1 ∩ Σ2. For the fourth equality, one replaces first ΠΣ1∩Σ2

by ΠΣ1∩Σ2◦ΠΣ2 . The derivation of ΠΣ2 [L(A2)×LL(A3)] =
L(A2) ×L ΠΣ2∩Σ3 [L(A3)] is again a direct application

of Theorem 1, and reproduces the derivation of the third

equality.

Equation (7) reveals that the desired projection ΠΣ1 [L(A)]
can be obtained by a message passing procedure, following

the edges of the interaction graph. The message from A 3 to

A2 is ΠΣ2∩Σ3 [L(A3)]. It is combined with the knowledge

of A2 and the result is projected on Σ1 ∩Σ2 to produce the

message from A2 to A1. A symmetric message propagation

rule would yield ΠΣ3 [L(A)], and one can also prove that

ΠΣ2 [L(A)]
= ΠΣ1∩Σ2 [L(A1)] ×L L(A2) ×L ΠΣ2∩Σ3 [L(A3)] (8)

So the two incoming messages at A2 are sufficient to

compute ΠΣ2 [L(A)]. The interest of this message passing

strategy is triple: the procedure is fully distributed (no

coordinator is needed), it only involves local information, and

it has low complexity, in the sense that only two messages per

edge are necessary (one in each direction). While the product

generally increases the size of objects, one can expect the

projection to reduce it, and thus save in complexity (this

still has to be quantified more precisely, however).

A full theory allows one to extend this simple example to

systems which interaction graph is a tree (and beyond, with

more complications) [9].

C. Example
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Fig. 2. A network of 3 interacting weighted automata.

Consider the distributed system A = A1 × A2 × A3

where the three components Ai are WA depicted in Fig. 2

(assuming cI = cF = 0). A1 and A2 share actions {α, β},

and A2,A3 share action {γ}, which corresponds to the

ineraction graph in Fig. 1. One has L(A1) = 1 ·β +2 ·aα+
2 ·βbα+3 ·aαbα+ ..., L(A2) = 0 ·ββγ∗+1 ·βγγ∗+ ... and

L(A3) =
∑

n≥0 n · (dγ)n. Observe that the minimal words

in these language are β, ββγ∗ and ε, respecively, and that

they are not compatible.

Let us follow (7) to compute ΠΣ3 [L(A)]. The message

sent by A1 to A2 is Π{α,β}[L(A1)] = 1 · β +
∑

n≥1(1 +
n) · (ε + β)αn, which will kill all solutions with two β in

L(A2): at most one β can be performed in A1. Specifically,

composed with L(A2) this message yields 2 · βγγ∗ + 5 ·
αα(c + γ)γ∗, which is also ΠΣ2 [L(A1) ×L L(A2)], i.e. the

vision from A2 of what A1 and A2 can perform together to

reach their goals. Projected on γ, this yields 2 · γγ ∗ + 5 · ε,

the message from A2 to A3. Observe that the 5 · γγ∗ part is

discarded by the optimization step. Finally, composing this

message with L(A3) yields the desired ΠΣ3 [L(A)] = 5 · ε+∑
n≥0(7 + 5n) · (dγ)n+1. This reveals (Proposition 2) that

the best plans or words in L(A) have cost 5, and require A3

to do... nothing!

Following exactly (7) and (8) yields the other projections

ΠΣ1 [L(A)] = 5 ·aαbα+7 ·β and ΠΣ2 [L(A)] =
∑

n≥0[(5+
5n) ·α2c + (7 + 5n) ·βγ + (10 + 5n) ·α2γ]γn. The minimal

word in each Πi[L(A)] is unique, and all of them have

cost 5, which yields the triple (aαbα, α2c, ε) as an optimal

(factored) plan of cost 5. These three words are of course

compatible. Notice that component A1 has to go twice

through its local goal to help A2 and A3 reach their own

goal.



IV. IMPLEMENTATION INTO WEIGHTED AUTOMATA

CALCULUS

A. Recoding primitive operations

Languages of WA are generally infinite objects, so they

can not be handled as such in practice. Fortunately, one

starts computations with the regular languages L(A i), and

the two primitive operations product ×L and projection Π.

both preserve the regularity. Therefore one possibility to

perform the distributed computations of section III is to

replace every regular language by its finite representation as a

WA. Specifically, one can choose to represent every regular

language by its minimal deterministic weighted automaton

(MDWA), provided it exists. The minimality is interesting

to reduce the complexity of products and projections, and

minimality is well defined for deterministic WA. Dealing

with deterministic automata reduces as well the complexity

of basic operations. But it has another important advantage

for optimal planning applications: there is only one path

representing a given word of the language, therefore all sub-

optimal (and thus useless) paths for this word are removed

in the determinization step.

Consider two minimal deterministic WA A and A′. The

product of their languages L(A)×LL(A′) can be represented

by Min(A×A ′). One already has L(A×A ′) = L(A) ×L

L(A′) by Proposition 1, and A×A′ is deterministic. There-

fore only a minimization step (Min) is necessary, and there

exist polynomial minimization algorithms for deterministic

WA (not described here for a matter of space):One proceeds

with a generic weight pushing procedure, followed by a

standard minimization step [17].

Difficulties appear with the projection. Let A be a de-

terministic WA on alphabet Σ, its projection on Σ ′ ⊆ Σ
is obtained as for non-weighted automata, by first perform-

ing an epsilon-reduction, then determinizing the result. The

epsilon-reduction collapses all transitions labeled by Σ” =
Σ\Σ′. Specifically, one obtains A′ = (S, I ′, F ′, Σ′, c′I , c

′
F , c′)

where the new transition function c ′ satisfies

c′(s, σ′, s′) =
⊕

π : s−(π) = s, s+(π) = s′

σ(π) ∈ σ′Σ”∗

c(π) (9)

The initial and final cost functions are modified in a similar

manner; again we refer the reader to [17] for details.

a,1

c,0

c,0

b,1

a,0

b,0

Fig. 3. A weighted automaton A that can not be determinized.

The true difficulty lies in the determinization step : not all

weighted automata can be determinized. A counter-example

is provided in Fig. 3. The point is that in a deterministic

WA, a unique path (and therefore a unique and minimal

weight) is associated to any accepted sequence of Σ∗. In

A, the accepted sequences are c{a, b}∗, and one either

pays for the a or for the b, according to the path selected

for the first c. The weight of an accepted sequence w is

thus min(|w|a, |w|b). Intuitively, a deterministic automaton

recognizing this language must count the a and the b in order

to determine the weight of a word. And so it can not be finite.

A sufficient conditionfor determinizability is the so-called

twin property:

Definition 1: In A, two states s, s′ ∈ S are twins iff, either

!u ∈ Σ∗ such that s, s′ ∈ δ(I, u), i.e. they can not be reached

by the same label sequence from the initial states, or ∀u ∈
Σ∗ : s ∈ δ(s, u), s′ ∈ δ(s′, u), one has

⊕

π, σ(π) = u
s−(π) = s+(π) = s

c(π) =
⊕

π′, σ(π′) = u
s−(π′) = s+(π′) = s′

c(π′)

A has the twin property iff all pairs of states are twins.

In other words, when states s, s′ can be reached by the

same label sequence, if it is possible to loop around s and

around s′ with the same label sequence u, then these loops

must have identical weights.

The twin property can be tested in polynomial time [16].

It is clearly preserved by product, but unfortunately not by

projection. See the counter-example above (Fig. 3) where

one of the (c, 0) would be a (d, 0). Then A would have the

twin property. But after projection on {a, b} the property is

obviously lost. Therefore, in order to perform computations

on WA, we have to assume that the twin property is preserved

by all projections. Otherwise there is no guarantee that the

determinization procedure would terminate. Notice however

that, strictly speaking, this is not an obstacle to computations

since the latter can be performed with any compact represen-

tative of a given WL. In an extended version of this work,

we show how to get rid of the twin property by a partial

determinization.

The determinization procedure of a WA A elaborates on

the classical subset construction for the determinization of

standard automata, which may have an exponential complex-

ity. For u ∈ Σ∗ and s ∈ S, let us define

C(u, s) =
⊕

π : σ(π) = u,
s−(π) ∈ I, s+(π) = s

cI(s−(π)) ⊗ c(π), (10)

and C(u) =
⊕

s∈S C(u, s). So C(u, s) is the minimal

weight among paths that start in I , terminate in s and

produce the label sequence u. States of Det(A) take the

form q = (A, λ) where A ⊆ S is a subset of states, and

λ : A → R+\{0̄}. The initial state of Det(A) is q0 = (I, λ0)
with λ0(s) = C(ε, s)4C(ε) = C(ε, s)−C(ε). Given u ∈ Σ∗

accepted by A, the unique state q = (A, λ) reached by u in

Det(A) is such that : A = δ(I, u), as usual, and one has

λ(s) = C(u, s) 4 C(u) = C(u, s) − C(u). So λ(s) is the

(positive) residual over the best cost to produce u when one

wants also to terminate in s. There is an obvious recursion

determining the new state q ′ = (A′, λ′) obtained by firing

σ ∈ Σ at state q. The reader is referred to [16], [17] for



the complete details of the algorithm, and for a termination

proof when the twin property is satisfied.

B. Example

Let us reconsider the example in Fig. 2. Fig. 4 illustrates

the propagation of messages from A1 to A3, that was

described in terms of language computations in section III-C.

Observe that the message from A2 to A3 (3rd automaton)

now has a termination cost of 5 at the initial state. This

corresponds to the path α2c, that yields the empty string

ε after projection on label γ. The rightmost automaton

corresponds to ΠΣ3 [L(A)]. Its optimal path to a terminal

state is the empty string and has cost 5, the cost of an optimal

global plan.

!!$

 A3 A1

!!#

5

A2

!!$
d,5

!!#

"!$ #!"

"!"

 A1

!!#

c,1

!!"

!!"

#!""!$

A2A1

d,5

A A21

5

"!$

$%&%%%%%%%%%%%%%%%%%%%%%%'
"!#

$%%%%&%%%%'
"!#

$%%%%&%%%%'
"!#

$%%%%&%%%%'
"!#

$%%%%&%%%%'
! !

$%&%%%%%%%%%%%%%%%%%%%%%%'

Fig. 4. Propagation of messages from A1 to A3.

Performing (7) and (8) in terms of WA computations

completes the derivation of the MDWA representing the

projected languages ΠΣi [L(A)] (Fig. 5). The optimal path in

each of them appears in bold lines. These paths are unique,

are associated to the same optimal cost of 5 (Proposition 2),

and yield the triple (aαbα, ααc, ε) as best factored plan.

"!$

A
c d

A

a,1

!!$

#!"
5

6
"!"

b,0

A

"!$

a,b

1

d,5

d,5

!!#

"!$

!!( !!)

!!(
c,1

#!"

"!#!
$%%%%%%%%%%&%%%'

"!#!!!
$%%%%%%%%%%&%%%' !!$%%%%%&%%%'

Fig. 5. The 3 MDWA representing the projected languages ΠΣi [L(A)].

V. CONCLUSION

We have described a distributed optimal planning proce-

dure, based on a message passing strategy and on weighted

automata calculus. To our knowledge, this is the first ap-

proach combining distributed planning to distributed op-

timization. The standpoint adopted here is unusual with

respect to the planning literature, in the sense that one does

not look for a single solution, but for all (optimal) solutions.

This is made possible by several ingredients: working at

the scale of small components makes computations tractable,

looking for plans as tuples of local plans introduces a partial

order semantics that implicitly reduces the trajectory space,

and finally representing the trajectory space as a product of

local trajectory spaces is generally more compact.

The limitations we have mentioned, namely the potential

exponential complexity of determinization, and the possi-

bility that determinization could not be possible at all, can

easily be overcome. First of all because there is no necessity

to perform computations with the minimal deterministic

WA representing a weighted language : Any compact rep-

resentative of this language can be used. Secondly, when

determinization is not possible, one can perform a partial

determinization (that will be described in an extended version

of this work). Another controversial aspect may be that we

aim at all solutions, which may be impractical in some

cases. Again, classical approximations (handling subsets of

the most promising plans for example) can be designed.

We are currently working on these aspects, on a detailed

complexity analysis and on the validation of this approach

on classical benchmarks.
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