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Sensitivity Analysis: Deterministic Approach

Model: F :
F(X ,U) = 0 (1)

Scalar Response Function G:

G(X ,U) (2)

Sensitivity S is by definition the gradient of G with respect to U :

S = ∇G(X (U),U) (3)
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Computing Sensitivity : Variational Method

An adjoint variable P is introduced as the solution of :

[

∂F

∂X

]t

.P =

[

∂G

∂X

]

(4)

Then we get :

S =

[

∂G

∂U

]

−

[

∂F

∂U

]t

.P (5)
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Data Assimilation for Pollution Modeling

X is the state variable (velocity, surface elevation) governed by :
{

dX

dt
= F (X )

X (0) = U
(6)

The concentration of pollutant C , produced by sources S verifies:
{

dC

dt
= G (X ,C , S)

C (0) = V
(7)

U and V are unknonw. The VDA problem is to evaluate them from
observation Xobs and Cobs , in order to minimize the cost function J

defined by:

J(U,V ) =
1

2

∫ T

0
‖EX − Xobs‖

2dt +
1

2

∫ T

0
‖DC − Cobs‖

2dt (8)

For sake of simplicity regularization terms, of great practical
importance, are not displayed
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Data Assimilation for Pollution Modeling: Optimality

System

P and Q adjoint variables are introduced as the solution of the
system :







dP

dt
+

[

∂F

∂X

]t

.P +

[

∂G

∂X

]t

.Q = E t(EX − Xobs)

P(T ) = 0;

(9)

.;






dQ

dt
+

[

∂G

∂C

]t

.Q = Dt(DC − Cobs);

Q(T ) = 0,

(10)

Then the gradient of J with respect to U and V are given by :

∇JU = −P(0) (11)

∇JV = −Q(0) (12)
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Sensitivity with respect to Observations and Sources

If some response function S is introduced, how to evaluate the
sensitivity with respect to observations? For instance how to evaluate
the impact of an error of observation on a prediction?

What should be the ”model” F of the general sensitivity analysis?

Because only the Optimality System contains the observation, the
sensitivity analysis must be carried out on the O.S. considered as a
Generalized Model

Deriving the O.S. leads to carry out a Second Order Analysis.
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Computing the sensitivity with respect to sources : second

order adjoint.

We need to introduce four second order adjoint variables Γ, Λ, Φ and
Ψ as the solution of :



































dΓ

dt
+

[

∂F

∂X

]t

· Γ +

[

∂F

∂X

]t

· Λ +

[

∂2F

∂X 2
P

]t

· Φ

+

[

∂2G

∂X 2
Q

]t

· Φ+

[

∂2G

∂C∂X
Q

]t

·Ψ− E tEΦ = 0;

Γ(0) = 0;
Γ(T ) = 0,

(13)
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Computing the sensitivity with respect to sources 2



































dΛ

dt
+

[

∂F

∂C

]t

· Λ +

[

∂2G

∂C∂X
Q

]t

· Φ

+

[

∂2G

∂X 2
Q

]t

·Ψ− DtDΨ =
∂ϕ

∂C
;

Λ(0) = 0;
Λ(T ) = 0,

(14)

dΦ

dt
+

[

∂F

∂X

]t

· Φ = 0, (15)

dΨ

dt
+

[

∂G

∂C

]t

·Ψ = 0, (16)

Then it comes :

∇ϕ =

[

∂F

∂S

]t

· Λ +

[

∂2G

∂X 2
Q

]t

· Φ+

[

∂2G

∂C∂S
Q

]t

·Ψ+
∂ϕ

∂S
(17)
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Remarks

The sensitivity is obtained by solving the coupled system of four
equations

The System involves second order terms.

We found a non-standard problem : two equations have two

conditions an initial condition and a final condition, the other

two equations have no condition
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Solving the Non-Standard problem

The Non-Standard problem can be symbolically written :











dX

dt
= K (X ,Y ), t ∈ [0,T ];

dY

dt
= L(X ,Y ), t ∈ [0,T ]

(18)

with :
{

X (0) = 0;
X (T ) = 0

(19)

and no condition on Y .
NSP is transformed into a problem of optimal control by introducing
the control U and a cost-function JP(U) with :

{

X (0) = 0;
Y (0) = U.

(20)
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Solving the Non-Standard problem 2

A cost function JP(U) is defined by:

JP(U) =
1

2
‖X (T ,U)‖2 +

1

2
‖U‖2 (21)

If Z and W are defined as the solution of:

dW

dt
+

[

∂K

∂X

]t

·W +

[

∂L

∂X

]t

· Z = 0; (22)

dZ

dt
+

[

∂K

∂Y

]t

·W +

[

∂L

∂Y

]t

· Z = 0; (23)

Z (T ) = 0;W (T ) = X (T ), (24)

then we get
∇JP(U) = −Z (0) + U (25)
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Solving the Non-Standard problem 3

This problem involved third derivatives of the original model.
Recent developments on the NSP have been recently carrier out by V.
Shutyaev and F.-X. Le Dimet
The existence of a solution is demonstrated
Another method to solve NSP is proposed.
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A 1-D Example 1

Let us assume that the one dimensional velocity field u = u(x , t) evolves
according to the Burgers equation given by :















∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f , x ∈ Ω =]− 1, 1[, t ∈ [0,T ];

u = u0, t = 0,
u = u1, x ∈ {−1, 1},

(26)

Evolution of the pollutant’s concentration:















∂c

∂t
+ u

∂c

∂x
= η

∂2c

∂x2
+ s, x ∈]− 1, 1[, t ∈ [0,T ]

c = c0, t = 0;
c = c1, x ∈ {−1, 1}

(27)
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A 1-D Example: cost function

The cost function takes the form (with continuous observation in space
and time):

J(u0, c0) =
1

2

∫ T

0
‖u − uobs‖

2
Ωdt +

1

2

∫ T

0
‖c − cobs‖

2
Ωdt. (28)

where ‖f ‖2Ω =

∫

Ω
f (x)f (x)dx =

∫ 1

0
f (x)f (x)dx .
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A 1-D Example: adjoint model

The adjoint variables p and q are introduced as the solutions of :















∂p

∂t
+ u

∂p

∂x
+ ν

∂2p

∂x2
+ q

∂c

∂x
= u − uobs

p(t = T ) = 0
p = 0, x ∈ {−1, 1}

(29)















∂q

∂t
+
∂uq

∂x
+ η

∂2q

∂x2
= c − cobs

q(t = T ) = 0
q = 0, x ∈ {−1, 1}

(30)

And the gradient of the cost function is given by:

∇u0J = −p(0)
∇c0J = −q(0)
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Sensitivity of a response function

Let ϕ be a function a the concentration and the source functions, the
response function is given by:

ΦA(t, s) =

∫

ΩA

ϕ(c , s)dx (31)

where ΩA ⊂ Ω is the response region. Following the guidelines of the
derivation of the gradient, we introduces the adjoint variables Γ φ,ψ and Λ
as the solution of:
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Sensitivity of a response function



























∂Γ

∂t
+ u

∂Γ

∂x
+ ν

∂2Γ

∂x2
− Λ

∂c

∂x

−φ
∂p

∂x
+ q

∂ψ

∂x
− φ = 0

Γ = 0, t ∈ {0,T}
Γ = 0, x ∈ {−1, 1}

(32)















∂Λ

∂t
+
∂uΛ

∂x
+ η

∂2Λ

∂x2
+
∂qφ

∂x
− ψ = −

∂ϕ

∂c
Λ = 0, t ∈ {0,T}
Λ = 0, x ∈ {−1, 1}

(33)

Where the function 1ΩA
is:

1ΩA
(x) =

{

1, if x ∈ ΩA

0, if not.
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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The End
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