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Abstract—Modern cloud systems are geo-replicated to improve
application latency and availability. Transactional consistency is
essential for application developers; however, the corresponding
concurrency control and commitment protocols are costly in a
geo-replicated setting. To minimize this cost, we identify the
following essential scalability properties: (i) only replicas updated
by a transaction T make steps to execute T ; (ii) a read-only
transaction never waits for concurrent transactions and always
commits; (iii) a transaction may read object versions committed
after it started; and (iv) two transactions synchronize with each
other only if their writes conflict. We present Non-Monotonic
Snapshot Isolation (NMSI), the first strong consistency criterion
to allow implementations with all four properties. We also present
a practical implementation of NMSI called Jessy, which we
compare experimentally against a number of well-known criteria.
Our measurements show that the latency and throughput of
NMSI are comparable to the weakest criterion, read-committed,
and between two to fourteen times faster than well-known strong
consistencies.

I. INTRODUCTION

Cloud applications are characterized by large amounts of

data that is accessed from many distributed end-points. In

order to improve responsiveness and availability, cloud storage

systems replicate data across several sites (data centers) located

in different geographical locations. Therefore, a transaction

that accesses multiple data items might have to contact several

remote sites.

Many authors argue that geo-replicated systems should

provide only eventual consistency [1, 2], because of the CAP

impossibility result (in the presence of network faults, either

consistency or availability must be forfeited [3]), and because

of the high latency of strong consistency protocols in wide-

area networks. However, eventual consistency is too weak

for implementing some applications (e.g., banking), and is

confusing for developers.

Unfortunately, classical strong consistency protocols do

not scale well to high load in the wide area. Therefore,

several previous works aim at designing consistency criteria

that both provide meaningful guarantees to the application,

and scale well [4–11]. At one end of the spectrum, strict

serializability (SSER) ensures that transactions are atomic, and

thus offers the strongest concurrency semantics. On the other
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Fig. 1. Comparing the throughput and termination latency of update
transactions for different protocols

end, read-committed (RC) guarantees only that the application

accesses durable data. Under update serializability (US), read-

only transactions may disagree on the order in which non-

conflicting concurrent updates occur [4]. Snapshot isolation

(SI) improves responsiveness of updates at the cost of the

well-known write-skew anomaly [6]. The state of the art of

strongly-consistent criteria for geo-replication is the weaker

Parallel Snapshot Isolation (PSI), which allows transactions to

take non-monotonic snapshots [9].

Figure 1 is a preview of our experimental comparison later in

this paper. For a given protocol, each point plots the throughput

and latency for a given load, increasing the number of clients

(left to right), and varying the proportion (from 10% to 30%,

bottom to top) of update transactions.1 Note the well-identified

region of operation of each protocol, and how both latency

and throughput improve with weaker criteria. Note also that

in some regions PSI performance is poorer than US, and that

a gap exists between PSI and RC, the weakest criterion.

Our first contribution is to identify some crucial scalability

properties that explain these performance differences. For

1 The details of the experiments are in Section V.
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Notation Meaning
x, y Object

Ta, Tb Read-only transaction
Ti, for i ∈ N Update transaction

xi Version of x written by Ti

wi(xi) Transaction Ti writes x
ri(xj) Transaction Ti reads x, written by Tj

rs(Ti) / ws(Ti) Read-set / write-set of transaction Ti

h Transactional history (partially ordered)
oi <h o′j Operation oi of appears before o′j in h

xi �h xj Version order wi(xi) <h wj(xj) holds

TABLE I
NOTATIONS

instance, we show that PSI suffers because the set of versions

that a transaction may read is “frozen” once the transaction

starts, and it may not read more recent object versions; as a

result, (i) transactions are more likely to abort because they

read stale data; and (ii) even replicas of objects that are not

written by a transaction must do work for that transaction.

Our second contribution is the design of a consistency

criterion, named Non-Monotonic Snapshot Isolation (NMSI),

that both satisfies strong safety properties, and addresses the

scalability problems of PSI.

The third contribution is an implementation of NMSI, called

Jessy, using dependence vectors, a novel data type that enables

the efficient computation of consistent snapshots.

Our final contribution is an empirical evaluation of the

scalability of NMSI, along with a careful and fair comparison

against a number of classical criteria, including SER, US,

SI and PSI. Figure 1 and our other experiments show that

the performance of NMSI is better than the others, and is

comparable to the much weaker read-committed.

The outline of this paper is as follows. We identify some

bottlenecks of PSI and define our four scalability properties

in Section II. We introduce NMSI in Section III. Section IV

describes our protocol ensuring NMSI. Our empirical com-

parison is presented in Section V. We review related work in

Section VI, and conclude in Section VII.

II. SCALABILITY PROPERTIES

In this section, we first discuss informally some scalability

issues of PSI. We focus on PSI because it is the state-of-the-

art for geo-replicated systems, and as we saw in Figure 1, it

performs better than previous strong consistency criteria. Then,

we identify four crucial scalability properties.

Table I summarizes our notations; we refer to Saeida

Ardekani et al. [12] for a full formal treatment. Following

Bernstein et al. [13], we depict a history as a graph. For

instance, in the history h1 below, transaction Ta reads the

initial versions of objects x and y, whereas T1 and T2 update

x and y respectively.

h1 = ra(x0) r1(x0).w1(x1).c1

ra(y0).ca r2(y0).w2(y2).c2

A. Scalability Limits of PSI

In Snapshot isolation (SI), a transaction reads its own

consistent snapshot, and aborts only if its writes conflict with

a previously-committed concurrent transaction [6, 14]. As a

consequence, read-only transactions never conflict with update

transactions and always commit. Since most transactions are

read-only, this improves performance considerably; indeed, SI

is the default criterion of major database engines, such as

Oracle or Microsoft SQL Server.

Sovran et al. [9] note that SI requires snapshots to form

a monotonic sequence, necessitating global synchronization,

which does not scale well. This result was refined by Saeida

Ardekani et al. [15], who proved that monotonic snapshots

are not compatible with genuine partial replication (defined

shortly).

To address this performance issue, Sovran et al. [9] propose

the alternative Parallel Snapshot Isolation (PSI), which allows

the relative commit order of non-conflicting transactions to

vary between replicas. This leads to an anomaly called “long

forks” or non-monotonic snapshots. For instance, in history

h2 below, transaction Ta reads {x0, y2}, whereas Tb reads

{x1, y0}. Non-monotonic snapshots were already present under

US, as mentioned by Garcia-Molina and Wiederhold [4].

h2 = ra(x0) r1(x0).w1(x1).c1 rb(x1).cb

rb(y0) r2(y0).w2(y2).c2 ra(y2).ca

Although weaker than SI, PSI’s snapshots have what we

call base freshness [16]: a transaction Ti may read only those

object versions that committed before Ti started. As argued

below, base freshness constitutes a scalability bottleneck:

1. Stale Data Reads: Consider a transaction Ti that executes

in a site in North America. To access object x, which is not

replicated locally, it sends a request to a replica in Europe,

for a version that precedes the start of Ti. Due to the high

inter-continental latency, it is likely that the version will be

stale.

2. Increased Abort Rate: As a side-effect of reading stale

data, the abort rate of global transactions increases. For

example, consider that transaction Ti updates x concurrently

to a transaction Tj , which commits while Ti is still running.

The write of x by Ti is conflicting with Tj , and Ti must abort.

But, this happens even if the actual read of x by Ti occurs

after the commit time of transaction Tj .

3. Global Communication: We prove elsewhere [15, The-

orem 4] that base freshness requires replicas which do not

replicate data accessed by a transaction to execute steps on

behalf of that transaction. And indeed, in the original PSI

implementation, the transaction coordinator communicates with

all replicas in the system [9]. Although this can be done in the

background, off the critical path, this still consumes bandwidth

and processing power at all replicas.
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B. Scalability properties

Following the above analysis of PSI, and similar analysis

of other criteria, we identify four properties as essential to

scalability. In Section V, we assess empirically their relevance

for several representative workloads.

1. Wait-Free Queries: A read-only transaction does not wait

for concurrent transactions and always commits. This property

ensures that a read-only transaction is not slowed down by

synchronization, which is crucial for scalability, since most

workloads exhibit a high proportion of read-only transactions.

2. Genuine Partial Replication (GPR): Replication improves

both locality and availability. Full replication does not scale,

as every replica must perform all updates. Partial replication
addresses this problem, by replicating only a subset of the

data at each replica. Thus, if transactions would communicate

only over the minimal number of replicas, synchronization

and computation overhead would be reduced. However, in the

general case, the overlap of transactions cannot be predicted;

therefore, many partial replication protocols perform system-

wide global consensus [17, 18] or communication [9]. This

negates the advantages of partial replication; hence, we require

genuine partial replication [19], in which a transaction commu-

nicates only with the replicas that store some object accessed

in the transaction. With GPR, non-conflicting transactions do

not interfere with each other, and the intrinsic parallelism of a

workload can be exploited.

3. Minimal Commitment Synchronization: With a strong

consistency criteria, transactions are at the top of Herlihy’s

hierarchy [20]. On the other hand, synchronization should

be avoided unless absolutely necessary, because of its direct

cost, and because of the convoy effects and oscillations that it

causes [21]. To keep the consensus power of transactions, while

alleviating their costs, Minimal Commitment Synchronization

requires that, during commitment, transaction Ti waits for

transaction Tj only if Ti and Tj write-conflict.

4. Forward Freshness: Some criteria freeze the set of object

versions that a transaction may read as soon as the transaction

starts; a version that is committed afterwards cannot be used.

A criterion supports Forward Freshness if it allows reading an

object version that committed after the start of the transaction.

In case of global transactions (i.e., transactions that touch

several sites), this property is fundamental.

III. NON-MONOTONIC SNAPSHOT ISOLATION

NMSI addresses the problems of PSI while retaining its core

properties. In the following sections, we first define NMSI,

and then compare it to other consistency criteria. Like other

criteria, NMSI is defined by a conjunction of safety properties.

A. Definition of NMSI

Before defining NMSI, we first introduce a dependency

relation between transactions as follow:

Definition 1 (Dependency): Consider a history h and two

transactions Ti and Tj . We note Ti � Tj when transaction

Ti reads a version of x installed by Tj (i.e., ri(xj) is in h).
Transaction Ti depends on transaction Tj when the above

relation holds by transitivity, that is, Ti �∗ Tj . Transaction

Ti and Tj are independent if neither Ti �∗ Tj nor Tj �∗ Ti

holds.

In order to illustrate this definition, consider history h3 =
r1(x0).w1(x1).c1.ra(x1).ca.rb(y0).cb. In h3, transaction Ta

depends on T1. Notice that however, even if T1 precedes Tb

in real-time, Tb does not depend on T1 in h3.

We now define consistent snapshots with the dependency

relation. A transaction sees a consistent snapshot iff it observes

the effects of all transactions it depends on [22]. Formally,

Definition 2 (Consistent snapshot): A transaction Ti in a

history h observes a consistent snapshot iff, for every object x,
if Ti reads version xj , Tk writes version xk, and Ti depends

on Tk, then version xk is followed by version xj in the version

order induced by h (xk �h xj). We write h ∈ CONS when

all transactions in h observe a consistent snapshot.

To illustrate this definition, consider history h4 = r1(x0).
w1(x1).c1.r2(x1).r2(y0).w2(y2).c2.ra(y2).ra(x0).ca. In this

history, transaction Ta does not see a consistent snapshot:

Ta depends on T2, and T2 also depends on T1, but Ta does

not observe the effect of T1 (i.e., x1).

Like PSI, NMSI prevents transactions to read non-committed

data. In other words, it avoids cascading aborts:

Definition 3 (Avoiding Cascading aborts): A history h
avoids cascading aborts when for every read ri(xj) in h,
operation cj precedes ri(xj) in h. ACA denotes the set of

histories that avoid cascading aborts.

The last safety property of NMSI forbids independent write-

conflicting updates to commit:

Definition 4 (Write-Conflict Freedom): A history h is write-

conflict free, noted h ∈ WCF, iff independent committed

transactions never write to the same object.

The conjunction of the above properties define non-

monotonic snapshot isolation:

Definition 5 (NMSI): A history h is in NMSI iff h belongs

to ACA ∩ CONS ∩WCF.

B. Comparison to Other Criteria

Table II compares NMSI to other consistency criteria, along

the two axes of applicative anomalies and scalability properties.

a) Applicative Anomalies: Table II(a) compares NMSI to

other criteria based on the anomalies that an application might

observe. Write skew, the classical anomaly of SI, is observable

under NMSI. (Cahill et al. [23] show how an application can

easily avoid it). Real-time violation happens when a transaction

Ti observes the effect of some transaction Tj , but does not

observe the effect of all the transactions that precede Tj in

real-time. This issue occurs under serializability as well; this

argues that it is not considered a problem in practice. Under

NMSI, an application might observe non-monotonic snapshots.

This anomaly also occurs in US and PSI. Following Garcia-

Molina and Wiederhold [4], we believe that this is a small

price to pay for improved performance.

b) Scalability Properties: With Table II(b), we turn our

attention to the scalability properties of each criterion. To make

our comparison fair, we consider non-trivial implementations
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(a) Disallowed Anomalies
SSER SER US SI PSI NMSI RC

Dirty Reads x x x x x x x
Non-Repeat. Reads x x x x x x -

Read Skew x x x x x x -
Dirty Writes x x x x x x x
Lost Updates x x x x x x -
Write Skew x x x - - - -

Non-Monotonic Snap. x x - x - - -
Real-time Violation x - - x - - -

(b) Disallowed Scalability Properties
SSER SER US SI PSI NMSI RC

GPR x x - x x - -
Forw. Freshness Snap. - - - x x - -
Min. Commitment
Synchronization x x x - - - -

TABLE II
COMPARING CONSISTENCY CRITERIA (X:disallowed)

of the criteria: any implementation guarantees obstruction-free

updates and it accepts positively-fresh histories. Obstruction

freedom for update transactions states that if a transaction

does not conflict with any concurrent transaction, it eventually

commits.2 A history is positively fresh when every transaction

observes at least the most recent snapshot of the system

before it starts. Without these two progress properties, one can

implement for instance SI by always reading initial versions

of the objects, always committing read-only transactions, and

always aborting update transaction.

Because most workloads exhibit a high proportion of read-

only transactions, wait-free queries is a crucial property. Hence,

we assume it in Table II(b). Saeida Ardekani et al. [15,

Theorems 2 and 4] show that none of SSER, SER, SI and

PSI are implementable under GPR when queries are wait-free

and update transactions are obstruction free. Peluso et al. [11]

show that US can combine GPR and wait-free queries. In

Section IV, we show that NMSI also can conjointly satisfy

these two properties. As pointed out in Section II, both PSI and

SI enforce base freshness, thus disallowing forward freshness.

To avoid the write-skew anomaly, SSER, SER, and US need

to certify update transactions with respect to read-write and

write-write conflicts. Hence, they do not provide minimal

commitment synchronization.

IV. PROTOCOL

We now describe Jessy, a scalable transactional system that

implements NMSI and ensures the four scalability properties

defined in Section II. Because distributed locking policies do

not scale [24, 25], Jessy employs deferred update replication:

transactions are executed optimistically, then certified by a

termination protocol. Jessy uses a novel clock mechanism to

ensure that snapshots are both fresh and consistent, while

preserving wait-freedom of queries and genuineness. We

describe it in the next section. Due to space limitations, we

defer some proofs to our companion technical report [12].

2We recall that in SI, PSI and NMSI, conflicting transactions are those that
have write-write conflict, and in SSER, SER, and US, conflicting transactions
are those that have either write-write or read-write conflicts.

A. Building Consistent Snapshots

Constructing a shared snapshot object is a classical problem

of distributed system literature. Nevertheless, in the context that

interests us two difficulties arise: (i) multiple updates might be

related to the same transaction, and (ii) the construction should

be both genuine and wait-free. To achieve the above properties,

Jessy makes use of a novel data type called dependence vectors.
Each version of an object is assigned its own dependence

vector. The dependence vector of some version xi reflects all

the versions read by Ti, or read by the transactions on which

Ti depends, as well as the writes of Ti itself:

Definition 6 (Dependence Vector): A dependence vector is

a function V that maps every read (or write) operation o(x)
in a history h to a vector V (o(x)) ∈ N

|Objects| such that:

V (ri(x0)) = 0|Objects|

V (ri(xj)) = V (wj(xj))
V (wi(xi)) = max {V (ri(yj)) | yj ∈ rs(Ti)}

+ Σzi∈ws(Ti) 1z

where max V is the vector containing for each dimension z,
the maximal z component in the set V , and 1z is the vector

that equals 1 on dimension z, and 0 elsewhere.

To illustrate this definition, consider history h5 below. In

this history, transactions T1 and T2 update objects x and y
respectively, and transaction T3 reads x then updates y. The
dependence vector of w1(x1) equals 〈1, 0〉, and it equals 〈0, 1〉
for w2(y2). Since transaction T3 reads x1 then updates y after

reading version y2, the dependence vector of w3(y3) equals

〈1, 2〉.
h5 = r1(x0).w1(x1).c1

r2(y0).w2(y2).c2

r3(x1).r3(y2).w3(y3).c3

Consider a transaction Ti and two versions xj and yl read by

Ti. We shall say that xj and yl are compatible for Ti, written

compat(Ti, xj , yl), when both V (ri(xj))[x] ≥ V (ri(yl))[x]
and V (ri(yl))[y] ≥ V (ri(xj))[y] hold. Using the compati-

bility relation, we can prove that dependence vectors fully

characterize consistent snapshots:

Theorem 1: Consider a history h in WCF and a transaction

Ti in h. Transaction Ti sees a consistent snapshot in h iff every

pair of versions xj and yl read by Ti is compatible.

Despite that in the common case dependence vectors are

sparse, they might be large for certain workloads. For instance,

if transactions execute random accesses, the size of each vector

tends asymptotically to the number of objects in the system.

To address the above problem, Jessy employs a mechanism to

approximate dependencies safely, by coarsening the granularity,

grouping objects into disjoint partitions and serializing updates

in a group as if it was a single larger object. We cover this

mechanism in what follows.

Consider some partition P of Objects . For some object x,
note P(x) the partition x belongs to, and by extension, for

some S ⊆ Objects , note P(S) the set {P(x) | x ∈ S}. A
partition is proper for a history h when updates inside the

same partition are serialized in h, that is, for any two writes

166



wi(xi), wj(yj) with P(x) = P(y), either wi(xi) <h wj(yj)
or the converse holds.

Now, consider some history h, and for every object x replace

every operation oi(x) in h by oi(P(x)). We obtain a history

that we note hP . The following result linked the consistency

of h to the consistency of hP :

Proposition 1: Consider some history h. If P is a proper

partition of Objects for h and history hP belongs to CONS,

then h is in CONS.

Given two operations oi(xj) and ok(yl), let us introduce

relation oi(xj) ≤P
h ok(yl) when oi(xj) = ok(yl), or oi(xj) <h

ok(yl)∧P(x) = P(y) holds. Based on Proposition 1, we define

below a function that approximates dependencies safely:

Definition 7 (Partitioned Dependence Vector): A function

PV is a partitioned dependence vector when PV maps every

read (or write) operation o(x) in a history h to a vector

PV (o(x)) ∈ N
|P| such that:

PV (ri(x0)) = 0|P|

PV (ri(xj)) = max {PV (wl(yl)) | wl(yl) ≤P
h ri(xj)

∧ (∀k : xj �h xk ⇒ wl(yl) ≤P
h wk(xk)

)}
PV (wi(xi)) = max {PV (ri(yj)) | yj ∈ rs(Ti)} ∪

{PV (wk(zk)) : wk(zk) ≤P
h wi(xi)}

+ ΣX∈P(ws(Ti)) 1X

The first two rules of function PV are identical to the ones

that would give us function V on history hP . The second part

of the third rule serializes objects in the same partition

When Jessy uses partitioned dependence vectors and P is

a proper partition for h, Theorem 1 holds for the following

definition of compat(Ti, xj , yl):

Case P(x) �= P(y). This case is identical to the defi-

nition we gave for function V . In other words,

both PV (ri(xj))[P(x)] ≥ PV (ri(yl))[P(x)] and

PV (ri(yl))[P(y)] ≥ PV (ri(xj))[P(y)] must hold.

Case P(x) = P(y). This case deals with the fact that in-

side a partition writes are serialized. We have (i) if

PV (ri(xj))[P(y)] > PV (ri(yl))[P(y)] holds then yl =
max {yk | wk(yk) ≤P

h wj(xj)}, or symmetrically

(ii) if PV (ri(yl))[P(x)] > PV (ri(xj))[P(x)] holds then

xj = max {xk | wk(xk) ≤P
h wl(yl)}, or otherwise

(iii) the predicate equals true .

As discussed in [16], we notice here the existence of a trade-

off between the size of the vectors and the freshness of the

snapshots. For instance, if x and y belong to the same partition

and transaction Ti reads a version xj , Ti cannot read a version

yl that committed after a version xk posterior to xj .

B. Transaction Lifetime in Jessy

Jessy is a distributed system of processes which communicate

by message passing. Each process executing Jessy holds a data

store that we model with variable D. A data store contains a

finite set of tuples (x, v, i), where x is an object (data item), v
a value, and i a version. Jessy supports GPR, and consequently

two processes may store different objects. For an object x, we

shall note replicas(x ) the processes that store a copy of x, and

by extension, replicas(X ) the processes that store one of the

objects in X .

When a client (not modeled) executes a transaction Ti with

Jessy, Ti is handled by a coordinator, denoted coord(Ti). The
coordinator of a transaction can be any process in the system.

In what follows, replicas(Ti) denotes the replica set of Ti,

that is replicas(rs(Ti) ∪ ws(Ti)).

A transaction Ti can be in one of the following four states

at some process:

• Executing : Each non-termination operation oi(x) in Ti is

executed optimistically (i.e., without synchronization with

other replicas) at the transaction coordinator coord(Ti).
If oi(x) is a read, coord(Ti) returns the corresponding

value, fetched either from the local replica or a remote one.

If oi(x) is a write, coord(Ti) stores the corresponding

update value in a local buffer, enabling (i) subsequent

reads to observe the modification, and (ii) a subsequent

commit to send the write-set to remote replicas.

• Submitted : Once all the read and write operations of Ti

have executed, Ti terminates, and the coordinator submits

it to the termination protocol. The protocol applies a

certification test on Ti to enforce NMSI. This test ensures

that if two concurrent conflicting update transactions

terminate, one of them aborts.

• Committed /Aborted : When Ti enters the Committed
state at r ∈ replicas(Ti), its updates (if any) are applied

to the local data store. If Ti aborts, Ti enters the Aborted
state.

C. Execution Protocol

Algorithm 1 describes the execution protocol in pseu-

docode. Logically, it can be divided into two parts: action

remoteRead(), executed at some process, reads an object

replicated at that process in a consistent snapshot; and the

coordinator coord(Ti) performs actions execute() to execute

Ti and to buffer the updates in up(Ti).

The variables of the execution protocol are: db, the local

data store; submitted contains locally-submitted transactions;

and committed (respectively aborted ) stores committed (re-

spectively aborted) transactions. We use the shorthand decided
for committed ∪ aborted .

Upon a read request for x, coord(Ti) checks against up(Ti)
if x has been previously updated by the same transaction; if

so, it returns the corresponding value (line 13). Otherwise,

coord(Ti) sends a read request to the processes that replicate

x (lines 16 to 17). When a process receives a read request

for object x that it replicates, it returns a version of x which

complies with Theorem 1 (lines 5 to 7).

Upon a write request of Ti, the process buffers the update

value in up(Ti) (line 10). During commitment, the updates of

Ti will be sent to all replicas holding an object that is modified

by Ti .

When transaction Ti terminates, it is submitted to the

termination protocol (line 20). The execution protocol then

waits until Ti either commits or aborts, and returns the outcome.
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Algorithm 1 Execution Protocol of Jessy

1: Variables:
2: db, submitted , committed , aborted
3:
4: remoteRead(x, Ti)
5: pre: received 〈REQUEST, Ti, x〉 from q
6: ∃(x, v, j) ∈ db : ∀yl ∈ rs(Ti) : compat(Ti, xj , yl)
7: eff: send 〈REPLY, Ti, x, v〉 to q
8:
9: execute(WRITE, x, v, Ti)
10: eff: up(Ti)← up(Ti) ∪ {(x, v, i)}
11:
12: execute(READ, x, Ti)
13: eff: if ∃(x, v, i) ∈ up(Ti) then return v
14: else
15: send 〈REQUEST, Ti, x〉 to replicas(x)
16: wait until received 〈REPLY, Ti, x, v〉
17: return v
18:
19: execute(TERM, Ti)
20: eff: submitted ← submitted ∪ {Ti}
21: wait until Ti ∈ decided
22: if Ti ∈ committed then return COMMIT

23: return ABORT

24:

Algorithm 2 Termination Protocol of Jessy

1: Variables:
2: db, submitted , committed , aborted , Q
3:
4: submit(Ti)
5: pre: Ti ∈ submitted
6: ws(Ti) 
= ∅

7: eff: AM-Cast(Ti) to replicas(ws(Ti ))
8:
9: deliver(Ti)
10: pre: Ti = AM-Deliver()
11: eff: Q ← Q ◦ 〈Ti〉
12:
13: vote(Ti)
14: pre: Ti ∈ Q \ decided
15: ∀Tj ∈ Q, Tj <Q Ti ⇒ Tj ∈ decided
16: eff: v ← certify(Ti)
17: send 〈VOTE, Ti, v〉 to replicas(ws(Ti ))
18: ∪ {coord(Ti)}
19:
20: commit(Ti)
21: pre: outcome(Ti)
22: eff: foreach (x, v, i) in up(Ti) do
23: if x ∈ db then db ← db ∪ {(x, v, i)}
24: committed ← committed ∪ {Ti}
25:
26: abort(Ti)
27: pre: ¬outcome(Ti)
28: eff: aborted ← aborted ∪ {Ti}
29:

D. Termination Protocol

Algorithm 2 depicts the termination protocol of Jessy. It

accesses the same four variables db, submitted and committed ,
along with a FIFO queue named Q.

In order to satisfy GPR, the termination protocol uses a

genuine atomic multicast primitive [26, 27]. This requires that

either (i) we form non-intersecting groups of replicas, and an

eventual leader oracle is available in each group, or (ii) that

a system-wide reliable failure detector is available. The latter

setting allows Jessy to tolerate a disaster [28].

To terminate an update transaction Ti, coord(Ti) atomic-

multicasts it to every process that holds an object written by Ti.

Every such process p certifies Ti by calling function certify(Ti)
(line 16). This function returns true at process p, iff for every

transaction Tj committed prior to Ti at p, if Tj write-conflicts

with Ti, then Ti depends on Tj . Formally:

certify(Ti)
�
= ∀Tj ∈ committed :

ws(Ti) ∩ ws(Tj) �= ∅ ⇒ Ti �∗ Tj

Under partial replication, a process p might store only a

subset of the objects written by Ti, in which case p does

not have enough information to decide on the outcome of Ti.

Therefore, we introduce a voting phase where replicas of the

objects written by Ti send the result of their certification test

in a VOTE message to every process in replicas(ws(Ti)) ∪
{coord(Ti)} (lines 17 to 18).

A process can safely decide on the outcome of Ti when

it has received votes from a voting quorum for Ti. A voting

quorum Q for Ti is a set of replicas such that for every object

x ∈ ws(Ti), the set Q contains at least one of the processes

replicating x. Formally, a set of processes is a voting quorum

for Ti iff it belongs to vquorum(Ti), defined as follows:

vquorum(Ti)
�
= {Q ⊆ Π | ∀x ∈ ws(Ti) :

∃j ∈ Q ∩ replicas(x )}
A process p makes use of the following (three-values)

predicate outcome(Ti) to determine whether some transaction

Ti commits, or not:

outcome(Ti)
�
=

if ws(Ti) = ∅

then true
else if ∀Q ∈ vquorum(Ti), ∃q ∈ Q,

¬received 〈VOTE, T, �〉 from q
then ⊥

else if ∃Q ∈ vquorum(Ti), ∀q ∈ Q,
received 〈VOTE, T, true〉 from q

then true
else false

To commit transaction Ti, process p first applies Ti’s updates

to its local data store, then p adds Ti to variable committed
(lines 21 to 24). If instead Ti aborts, p adds Ti to aborted
(lines 27 to 28).

E. Sketch of Proof

This section shows that every history accepted by Jessy is in

NMSI. Then, it proves that Jessy satisfies the four scalability

properties we listed in Section II-B. Both explanations are given

in the broad outline, and a complete treatment is deferred to

our companion technical report [12].

1) Safety Properties: Since transactions in Jessy always

read committed versions of the shared objects, Jessy ensures

ACA. Theorem 1 states that transactions observe consistent

snapshots, hence CONS is also satisfied. It remains to show that

all the histories accepted by Jessy are write-conflict free (WCF).
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Assume by contradiction that two concurrent write conflicting

transactions Ti and Tj both commit. Note pi (resp. pj) the

coordinator of Ti (resp. Tj), and let x be the object on which

the conflict occurs (i.e., x ∈ ws(Ti) ∩ ws(Tj)). According to

the definition of function outcome, pi (resp. pj) has received

a yes vote from some process qi (resp. qj). Hence, Ti (resp.

Tj) is in variable Q at process qi (resp. qj) before it sends

its vote message. One can show that either once qi sends its

vote, Tj <Q Ti holds, or once qj sends its vote, Ti <Q Tj

holds. Assume the former case holds (the proof for the latter

is symmetrical). Because of line 15 in Algorithm 2, process

qi waits until Tj is decided before sending a vote for Ti. Due

to the properties of atomic multicast, and the fact that Q is

FIFO, Tj should be committed at qi. Thus, certify(Ti) returns

false at process qi; contradiction.

2) Scalability Properties: We observe that in the case

of a read-only transaction Jessy does not execute line 7 of

Algorithm 2, and that the function outcome always returns true.

Hence, such a transaction is wait-free. As previously mentioned,

a transaction is atomic multicast only to the replicas holding

an object written by the transaction. Hence, the system ensures

GPR. Forward freshness is reached by the compat() function,

and the fact that we can read the most recent committed version

of an object as long as it is consistent with previous reads.

Finally, a replica solely holding an object read by a transaction

does not participate to the commitment. Hence, Jessy attains

minimum commitment synchronization.

V. EMPIRICAL STUDY

A. Implementation

We implemented Jessy as a middleware based on Algo-

rithms 1 and 2. In our experiments, the database is an in-

memory concurrent hashmap, even though Jessy normally uses

BerkeleyDB. This is to minimize noise, and to focus on the

scalability and synchronization costs.

We also implemented a number of replication protocols

that are representative of different consistency criteria (SER,

SI, US and PSI). The protocols all support partial replication;

furthermore the US and SER implementations ensure GPR. The

following table summarizes the criteria and the corresponding

protocols:

Criterion Protocol Difference
SER P-Store [19] -
US GMU [11] AM-Cast instead of 2PC
SI Serrano [17] -
PSI Walter [9] AM-Cast instead of 2PC

Our implementations closely follow the published specifica-

tion of each protocol and are highly optimized. As they are

all based on deferred update, their structure is very similar,

and we were able to use the Jessy framework with relatively

small variations. All our implementations use genuine atomic

multicast [26, 27], even when the original used 2PC. The

common structure, the use of the same multicast, and careful

optimization ensure that the comparison is fair.
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The protocols all support wait-free queries, except for

SER, which trades it for GPR. Since the performance of

US represents an upper bound on the performance of SER

with wait-free queries, this decision allows us to isolate the

cost of not ensuring the property. We also implemented a

(weakly-consistent) deferred-update RC, to show the maximum

achievable performance. The implementation of all six proto-

cols (SER, SI, US, PSI, NMSI and RC) takes approximately

51 kLOC in Java.

B. Setup and Benchmark

Figure 2 sums-up our experimental settings. All experiments

are run on different sites of the French Grid’5000 experimental

testbed [29], as illustrated in Figure 2(a). We always use four

cores of machines with 2.2GHz to 2.6GHz processors, and a

maximum heap size of 4GB. For each server machine, two

additional client machines generate the workload. Thus, there

is no shared memory between clients and servers.

Every object is replicated across a multicast group of three

replicas. We assume that each group as a whole is correct,

i.e., it contains a majority of correct replicas. Every group

contains 105 objects, replicated at each replica in the group,

and each object has a payload size of 1KB. Every group is

replicated at a single site (no disaster tolerance). To study the

scalability effects of consistency criteria in geo-replication, all

our experiments are performed with global transactions. Clients

are simply distributed in a uniform way between the sites.
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We use the Yahoo! Cloud Serving Benchmark [30], modified

to generate transactional workloads. Figure 2(b) describes the

workloads used. For each workload, a client machine emulates

multiple client threads in parallel, each being executed in closed

loop. In all our experiments, a client machine executes at least

106 transactions. Figure 2(c) plots the CDF of the number of

sites involved in each transaction.

The code of all the protocols, benchmarks, and scripts we

used in the experiments are publicly available [31].

C. Experimental Results

We first study the impact of freshness and commitment

synchronization on the latency of update transactions. Figure 3

depicts our results for workload A. The experiment is performed

by varying the proportion of update/read-only transactions from

10%/90% (left) to 50%/50% (right). The load is limited so

that the CPU of each replica is never saturated. The zipfian

distribution is scrambled to scatter popular keys across different

sites.

1. Forward Freshness: The abort ratio of update transactions,

in the second graph of Figure 3, shows the effect of forward

freshness. As expected, NMSI and US have the smallest abort

rate, thanks to their fresher snapshots. The abort rate of US is

one or two percent better than NMSI. This is mainly because

NMSI is faster than US, and therefore it processes more

transactions. In contrast, PSI and SI both take snapshots at

the start of a transaction, resulting in an almost identical abort

ratio, higher than NMSI and US. SER has the highest abort

rate because in our implementation only the certification test

ensures that a transaction read a consistent snapshot.

2. Minimal Commitment Synchronization: The third graph

of Figure 3 studies the effect of commitment synchronization.

We measure here the ratio of termination latency over solo

termination latency, i.e., the time to terminate a transaction in

the experiment divided by the time to terminate a transaction

without contention. The ratio for RC equals 1, the optimum.

This means that increasing concurrency does not increase

the latency of update transactions. NMSI also has a small

commitment synchronization cost. It is slightly higher for PSI,

because PSI is non-genuine, and propagates when committing.

This, along with its higher abort ratio, results in a termination

latency increase of approximately 10ms. SI has the highest

termination latency, due to a high commitment convoy effect

(because it is non-genuine), and a high abort ratio. SER

low termination latency is explained by the fact that SER

synchronizes both read-only and update transactions, resulting

in lower thread contention than the criteria that support wait-

free queries.

We now turn our attention to the impact of wait-free queries

and genuine partial replication on performance. To this goal,

we measure the maximal throughput of each criterion when

the number of sites increases. Figure 4 depicts our results for

workload B with 90% read-only transactions, and 10% update

transactions.

3. Wait-Free Queries: According to Figure 4, wait-free

queries have a great performance impact. Recall that our
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implementation of SER favors GPR over this property. We can

observe that the maximal throughput of SER, in comparison

to other criteria, is at least two times lower. This assess how

crucial this property is in order to scale a transactional system.

4. Genuine Partial Replication: To see the effects of GPR

on system performance, we first compare PSI and NMSI. If

the system consists in a single site, their throughput is almost

identical. However, PSI does not scale as well as NMSI when

increasing the numbers of sites: NMSI scales as linearly as

RC; with five sites, its throughput is almost double of PSI.

Although SI outperforms US up to three groups, it falls behind

with four sites or more, and with five sites, its throughput

drops substantially due to non-genuineness. Under four groups

the effect is small, but with four or more sites, genuineness

pays off, and US outperforms SI. Since US does not minimize

commitment synchronization, its synchronization cost becomes

high at 5 sites, decreasing its throughput.

We close this empirical evaluation by a detailed comparison

of the scalability performance of NMSI in regard to other

criteria.

5. Overall Scalability: Figure 4 shows that performance of

NMSI are comparable to RC, and between two to fourteen

times faster than well-known strong consistency criteria. Our
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last experiment addresses the scalability of NMSI when the

number of sites is constant. To this goal, we use workload C and

four sites. Figure 1 plotted in Section I shows our results. The

load increases from left to right. We also vary the proportion

of update/read-only transactions, between 10%/90% to 30%/

70% (bottom to top). Since workload C has few reads, SER

and US do not suffer much from non-minimal commitment

synchronization. For a given criterion, termination latency

varies from a low end, for 10% of update transactions, to a high

end for 30% of update transactions. The throughput of NMSI

is similar to RC, with excellent termination latency, thanks

to the combination of GPR and forward freshness. Similarly,

these same properties help US to deliver better performance

than PSI with a lower termination latency, when the proportion

of update reaches 30%.

VI. RELATED WORK

Strict serializability (i.e., serialization satisfying linearizabil-

ity) is the strongest consistency criterion. Due to its large

synchronization overhead, it had not been used at large-scale

until its recent implementation by Google in Spanner [32].

Spanner is a globally distributed data store which relies on

synchronized clocks to ensure consistency. On the other hand,

Jessy considers a more general case where the system is

partially synchronous.

Serializability (SER) is the most well-known consistency

criterion for transactional systems. P-Store [19] is a genuine

partial replication algorithm (for WAN environments) that

ensures SER by leveraging genuine atomic multicast. Like

in Jessy, read operations are performed optimistically at some

replicas and update operations are applied at commit time.

However, unlike Jessy, it does not ensure wait-free queries,

thus it certifies read-only transactions as well.

Sciascia and Pedone [33] propose a deferred update replica-

tion protocol that supports wait-free queries and ensures SER.

This approach boosts performance of SER, closing the gap with

update serializability (US). However, the transaction abort ratio

is higher than with US because of a more involved certification

test. Besides, the system does not satisfy GPR. This last point

comes from the trade-off between wait-free queries and GPR

under SER, when updates are obstruction-free and histories

positively-fresh [12].

Recently, Peluso et al. [34] have proposed a GPR algorithm

that supports both SER and wait-free queries. This protocol

works in the failure-free case and sidesteps the impossibility

result by dropping obstruction-freedom for updates in certain

scenarios.

A few algorithms [17, 18] offer partial replication with SI

semantics. However, as a consequence of the impossibility

result mentioned in Section III, none of these algorithms is

genuine since no GPR system can ensure SI.

Update serializability was introduced by Garcia-Molina and

Wiederhold [4], then later extended for abort transactions by

Hansdah and Patnaik [5]. US provides the same guarantees

as SER for update transactions, i.e., update transactions

are serialized. In addition, wait-free queries can be easily

implemented under US because, like in SI, they do not interfere

with updates transactions. Leveraging this last property, Peluso

et al. [11] have proposed recently a fast algorithm guaranteeing

US for cloud systems.

Walter is a transactional key-value store designed by Sovran

et al. [9] that supports Parallel Snapshot Isolation (PSI). To

ensure PSI, Walter relies on a single master replication schema

per object and 2PC. After a transaction commits, it has to be

propagated in the background to all replicas before it becomes

visible.

COPS [10] is a geo-replicated storage system that offers a

strong form of causally consistent transactions. Unlike Jessy,

COPS does not allow transactions to execute multiple updates.

Recently, the authors have addressed this drawback [35].

However, none of the proposed solutions is strongly consistent.

VII. CONCLUSION

This paper introduces Non-Monotonic Snapshot Isolation

(NMSI). NMSI is the first strong consistency criterion gathering

the following four properties: Genuine Partial Replication,

Wait-Free Queries, Forward Freshness Snapshot, and Minimal

Commitment Synchronization. The conjunction of the above

properties ensures that NMSI completely leverages the intrinsic

parallelism of the workload and reduces the impact of concur-

rent transactions on each others. We also assess empirically

these benefits by comparing our NMSI implementation with the

implementation of several replication protocols representative

of well-known criteria. Our experiments show that NMSI is

close to RC (i.e, the weakest criterion) and up to two times

faster than PSI.
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