
HAL Id: hal-00934042
https://hal.inria.fr/hal-00934042

Submitted on 21 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliable Self-Deployment of Cloud Applications
Xavier Etchevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, Noël de

Palma

To cite this version:
Xavier Etchevers, Gwen Salaün, Fabienne Boyer, Thierry Coupaye, Noël de Palma. Reliable Self-
Deployment of Cloud Applications. SAC 2014 - 29th ACM Symposium on Applied Computing, Mar
2014, Gyeongju, South Korea. �hal-00934042�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49688655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00934042
https://hal.archives-ouvertes.fr

Reliable Self-Deployment of Cloud Applications

Xavier Etchevers
Orange Labs, France

xavier.etchevers@orange.com

Gwen Salaün
Grenoble INP, Inria, France
gwen.salaun@imag.fr

Fabienne Boyer
UJF-Grenoble 1, LIG, France
fabienne.boyer@imag.fr

Thierry Coupaye
Orange Labs, France

thierry.coupaye@orange.com

Noël De Palma
UJF-Grenoble 1, LIG, France

noel.depalma@imag.fr

ABSTRACT

Cloud applications consist of a set of interconnected software
elements distributed over several virtual machines, them-
selves hosted on remote physical servers. Most existing so-
lutions for deploying such applications require human in-
tervention to configure parts of the system, do not respect
functional dependencies among elements that must be re-
spected when starting them, and do not handle virtual ma-
chine failures that can occur when deploying an application.
This paper presents a self-deployment protocol that was de-
signed to automatically configure a set of software elements
to be deployed on different virtual machines. This proto-
col works in a decentralized way, i.e., there is no need for
a centralized server. It also starts the software elements in
a certain order, respecting important architectural invari-
ants. This protocol supports virtual machine and network
failures, and always succeeds in deploying an application
when faced with a finite number of failures. Designing such
highly parallel management protocols is difficult, therefore
formal modeling techniques and verification tools were used
for validation purposes. The protocol was implemented in
Java and was used to deploy industrial applications.

1. INTRODUCTION
Cloud computing emerged a few years ago as a new ap-

proach based on virtualization for an efficient delivery of
hardware resources and software applications over a net-
work (typically the Internet). One of the main reasons or-
ganizations adopt cloud computing is to reduce IT costs by
outsourcing hardware and software maintenance and sup-
port. Cloud computing is at the junction of several recent
computing paradigms such as grid computing, virtualiza-
tion, autonomic computing, peer-to-peer architectures, util-
ity computing, etc. It allows users to benefit from all these
technologies without requiring extensive expertise in each
of them. Autonomic computing is particularly convenient
for automating specific tasks such as on-demand resources
provisioning or facing peak-load capacity surge (a.k.a., elas-

.

ticity management). Automation reduces user involvement,
which speeds up the process and minimizes human errors.

In this paper, cloud applications are distributed applica-
tions composed of several virtual machines running a set
of interconnected execution units called software elements.
This type of cloud application can benefit from several ser-
vices provided in the cloud such as database storage, virtual
machine cloning, or memory ballooning. To deploy their
applications, cloud users need first to build virtual images
corresponding to the applicative software stacks (i.e., includ-
ing operating system, middleware, binaries and data), to
provision and instantiate them as virtual machines (VMs),
and to indicate the software elements to be run on them.
Then, they have to configure these software elements. This
involves setting up the configuration parameters that de-
pend on the runtime environment (e.g., IP address, port
number). Finally, cloud users have to start the software
elements. Both configuration and activation tasks are com-
plex and error-prone if handled manually due to functional
interdependencies between software elements. These depen-
dencies between the software elements of a given applica-
tion define the order which must be respected during the
configuration and activation process. This order avoids the
application reaching undesired inconsistent states where, for
instance, a started software element is connected and sends
requests to another element that is not started yet. There-
fore, there is a need for management protocols to automate
these deployment tasks. A few recent works, e.g., [17, 7,
13, 15], have focused on this issue. The contribution pre-
sented in this paper goes one step further than these works,
by designing a fault-tolerant deployment protocol capable of
supporting VM and network failures.

This paper introduces a novel self-deployment protocol
able to automatically deploy an application on a cloud. Be-
yond instantiating each VM, the protocol is also responsible
for starting each element in a precise order according to the
functional dependencies of the applicative architecture. This
start-up process works in a decentralized manner, without
requiring any centralized manager. Thus, each VM embeds
a local configuration agent, named configurator, which inter-
acts with other remote configurators (i.e., on other applica-
tive VMs) to (i) solve dependencies by exchanging configu-
ration information and (ii) determine when a software ele-
ment can be started, i.e., when all the elements it depends
on are started. This protocol is also able to detect VM and
network failures occurring during the configuration and ac-
tivation process. When such a failure occurs, the protocol
informs the remaining VMs of what has happened to make

the system restore a consistent state, and instantiates a new
instance of the failed VM. The proposed protocol supports
multiple failures and always succeeds in finally deploying
the application and starting the corresponding components
(assuming that the number of failures is finite).

Our management protocol involves a high degree of par-
allelism, which makes its design very complicated. Since
correctness of the protocol was of prime importance, it was
decided to specify the protocol using formal concurrent spec-
ification languages, namely the LNT value-passing process
algebra [6]. LNT is one of the input languages of the CADP
verification toolbox [16], which was used to verify that the
protocol satisfies certain key properties, e.g., “when a VM

fails, all the remaining VMs are notified of that failure” or
“each VM failure is followed by the creation of a new in-

stance of that VM”. At the implementation level, we have
proposed an XML-based formalism to describe the cloud
applications to be deployed, and we have developed a Java
tool chain, named Virtual Application Management Plat-
form (VAMP), which includes the reference implementation
of the self-deployment protocol [13]. For evaluation pur-
poses, this implementation has been used to deploy real-
world applications, e.g., multitier Web application architec-
tures or the Clif load-injection framework [10].

Our main contributions with respect to existing results on
this topic are the following:

• We propose and design an innovative, decentralized
protocol to automatically deploy cloud applications
consisting of interconnected software elements hosted
on several VMs.

• The deployment process is also able to detect and han-
dle VM and network failures, and always succeeds in
configuring the application at hand.

• We verified that the protocol respects some key prop-
erties using formal specification languages and model
checking techniques.

• We implemented the protocol in Java and applied it
to industrial applications for evaluation purposes.

The outline of this paper is as follows. Section 2 introduces
the protocol, with a specific focus on failure detection and
handling. Section 3 first presents the formal specification
and verification tasks, and then the implementation aspects.
In section 4, related works are discussed before concluding
in section 5.

2. SELF-DEPLOYMENT PROTOCOL
This section first introduces the model used to describe

the application to be deployed. Then it presents the protocol
participants, the protocol itself, and our solution to handle
VM and network failures.

2.1 Application Model
An application model represents an abstraction of the tar-

get application to be deployed. This model consists of two
levels: the runtime environment and the applicative archi-
tecture. At the runtime environment level, an application is
modeled using a set of VMs. Each VM is characterized by
its hardware characteristics (e.g., number of CPUs, size of

memory) and a virtual image to be instantiated (e.g., the as-
sociated software stack including an operating system, mid-
dleware, applicative binaries and data). These VMs do not
play any role per se, from a functional point of view, but
each of them hosts a set of applicative software elements,
where the functional part of the application resides. The de-
scription of the software elements involved in an application
is modeled using the applicative architecture level, which
is based on the Fractal component model [5]. Each soft-
ware element is abstracted as a component. A component
can either provide or require services. Services are modeled
using ports: an import port (shortened as import) repre-
sents a service required by a component, whereas an export

port (shortened as export) represents a service provided by
a component. An import on one component will be con-
nected to an export on another component. This type of
connection is called a binding. A component can import a
service exported by a component hosted on the same VM
(local binding) or hosted on another VM (remote binding).
An import can be optional or mandatory. A component has
three states: started, stopped, or failed. An import is satisfied

when it is bound to a matching export and the component
offering that export is started. A component can be started
when all its mandatory imports are satisfied. Therefore, a
component can be started even if its optional imports are
not satisfied. A component moves to the failed state when
its VM fails.

In the remainder of this paper, a three-tier Web applica-
tion will be used as a running example. Figure 1 gives the
application model, which consists of three VMs. The first
one (VM1) hosts a front-end HTTP server (Apache). The
second one (VM2) hosts a JEE application server (JOnAS).
The third one (VM3) corresponds to the database manage-
ment system (MySQL). These components are connected
through remote bindings (e.g., Apache bound to JOnAS)
on mandatory imports (m).

Figure 1: A Three-tier Web Application Model

2.2 Protocol Participants
The self-deployment protocol involves a deployment man-

ager and a set of VM configurators (shortened as configu-
rators). The deployment manager (DM) guides the appli-
cation’s configuration by instantiating VMs and creating a
new instance of a VM when a failure occurs. Each VM in
the distributed application is equipped with a configurator
responsible for connecting bindings and starting components
once the VM instance has been created by the deployment
manager. Communication between participants (DM and
VM configurators) is asynchronous, involving FIFO buffers.
Each VM is equipped with two buffers, an input buffer and
an output buffer. When a VM configurator needs to post a
message, it puts that message in its output buffer. When a
configurator wants to read a message, it takes the oldest one
in its input buffer. Messages can be transferred at any time
from an output buffer to its addressee’s input buffer. It is
worth noting that buffers are not explicitly bounded. They

are implicitly bounded by the communication system mem-
ory size, but the protocol does not involve looping tasks that
would make the system send infinite messages to buffers.

Figure 2: Participants

2.3 Component Start-up
Protocol execution is driven by the configurators embed-

ded on each VM. All configurators evolve in parallel, and
each of them carries out various tasks according to a precise
workflow, as summarized in Figure 3. In this figure, boxes
identified using natural numbers (❶, ❷, etc.) correspond
to specific actions (VM creation, component creation, etc.).
Diamonds stand for choices, and each choice is accompanied
by a list of box identifiers that can be reached from this
point.

The start-up process begins when the DM instantiates the
VMs (Figure 3). For each VM, it creates an image of this
VM (❶) and the VM starts to execute. Each VM is equipped
with a configurator, which starts when the DM instantiates
the VM. A configurator is responsible for binding ports as
described in the application model and starting components
in a specific order: a component can be started only if all
its mandatory imports are satisfied.

We will now explain how a newly instantiated VM binds
its ports and starts its components. At instantiation time,
the VM is aware of the binding information (for both local
and remote bindings). Therefore, each configurator has ex-
plicit knowledge of how its components are supposed to be
bound to local or remote components. First, local compo-
nents are created (❷). Local bindings are handled by the
configurator and do not require any interaction with other
VMs (❸). For remote bindings, the configurator must per-
form two tasks. When an export of one of its components
is involved in a binding, the configurator sends a message
with its export connection information (e.g., IP address,
port number) to the VM hosting the client component (❹).
When an import of one of its components is involved in a
binding, this VM will receive the connection details from the
server VM (❼) at some point and, upon reception of that
message, the configurator makes the binding effective (❽).

In terms of component start-up, a configurator can im-
mediately start a component without imports or with only
optional imports (❺). If a component involves mandatory
imports, that component can only be started when all its
mandatory imports are satisfied, i.e., when all its imports
are bound to started components. When a component is
started and that component is used by a remote compo-
nent, the configurator of the first component must inform
the configurator of the second component that the compo-
nent has been started. To do this, the first VM sends a
start message to the second VM (❻). Upon reception of
this message (❼), the configurator updates an internal data
structure storing the partner component states (export side)

for each component. Every time a start message is received,
the configurator checks if the corresponding component can
be started, i.e., if all its mandatory imports are satisfied
(❺). Note that the start-up process involves propagation
of start messages along bindings across several VMs. Local
bindings are handled directly by the configurator, and there
is no need to exchange messages with other VMs either for
binding or start-up purposes. The start-up process always
terminates successfully because binding cycles over manda-
tory imports are forbidden. Failure handling (❾ in Figure 3)
will be detailed in the next subsection.

Figure 3: VM Configurator Lifecycle

Figure 4 shows a Message Sequence Chart (MSC) illus-
trating the start-up of the Web application introduced in
Figure 1. First, all three VMs are instantiated by the DM.
The corresponding configurators are launched and are aware
of the whole application to be deployed (Figure 1). Then,
each configurator creates its own components (not illus-
trated in Figure 4) and sends binding messages as required
in the application model. For example, VM3 configurator
knows that VM2 needs to connect its JOnAS component
to the MySQL component, therefore the VM3 configurator
posts a binding message with the information needed to con-
nect to the database (e.g., IP address, port number, login
and password) to VM2. Upon reception of this binding mes-
sage, the configurator binds both components. Note that the
VM3 configurator can start the MySQL component quite
early in this scenario because this component does not re-
quire any service from other components (no imports). The
VM3 configurator indicates to VM2 that its MySQL compo-
nent has started. Upon reception of this start message, the
VM2 configurator starts its JOnAS component, and sends
a similar message to VM1. The VM1 configurator finally
starts the Apache component and the application becomes
fully operational.

2.4 Failures
The protocol presented in this paper is generic in the sense

that it only addresses failures that are not specific to the ap-
plication to be deployed. Such failures are therefore external
to the application and can affect both the execution envi-
ronment (i.e., the virtual and physical infrastructure) and
the management system itself. Contrary to internal failures,
which are specific to a given application, external failures
can be detected and corrected without any knowledge of the
application. This paper focuses on three kinds of failures
that concern the execution environment:

• failure of an applicative VM: this interrupts the nor-
mal execution of the virtual machine, which becomes
unusable;

Figure 4: Web Application Start-up Scenario

• failure of a configurator running on a VM: this type
of failure alters the configurator’s behavior, disrupting
all exchanges to and from the configurator;

• transitory network failure: this kind of failure inter-
rupts part of the network services for a finite period.
These failures can result in message loss or connection
closing, but are not definitive.

Self-repairing the rest of the bootstrapping configurators
involved in the deployment system (e.g., the deployment
manager) is beyond the scope of this paper. Each case of
failure introduced above always involves a VM, thus we will
use failure or VM failure indifferently in the remainder of
this paper. We also only consider permanent failures: if a
transitory failure is detected, it will be treated as a perma-
nent failure.

Failure detection. This detection relies on a heartbeat

mechanism. As soon as a configurator embedded on an ap-
plicative VM is activated, it launches a thread which period-
ically sends a synchronous beat to the deployment manager.
The continuous reception of these beats by the deployment
manager indicates that execution of the VM and network are
correct. The deployment manager is configured to accept a
maximum delay between two beats from a given configura-
tor. Each time it receives a heartbeat, the manager resets
the timer associated with that configurator and waits for
the next beat. If it does not receive the next beat before
the timer expires, it considers that the configurator/VM or
network has failed and initiates a repair phase.

Failure repair. When a failure occurs and is detected,
the DM creates a new instance of the failed VM, and indi-
cates the identity of the failed VM and the identity of the
newly created VM to the other VMs. When a new instance
of a VM is created as a result of a VM failure, the new VM
must receive acknowledgement messages from all the other
VMs indicating that they have been informed of its creation.
This part of the protocol is crucial to avoid erroneous be-
havior, e.g., the reception of messages by a VM from an
unknown emitter.

We will now focus on the other VMs, that is, those that
were instantiated before the VM failed and are still being de-
ployed (Figure 5, where 7 stands for ❼ in Figure 3). Upon

reception of a message indicating that a VM has failed and
another instance of that VM has been created, the configura-
tor first updates the list of known VM identifiers (❶). Then,
it purges its buffers (❷), removing all messages coming from
or destined for the failed VM, and updates its current state
(❸), moving started components to a stopped state if they
are connected to failed components and removing all bind-
ings to failed components. When these updates have been
completed, the configurator sends an acknowledgement mes-
sage to the new VM indicating that it is aware of its presence
in the application (❹). Finally, it re-sends the binding (❺)
and start-up (❻) information details for all remote compo-
nents (import side) connected to some of its components,
and hosted on a re-instantiated VM.

Figure 5: VM Configurator Lifecycle Handling VM

Failures

It is worth noting that several VM failures may occur, this
can be due to failures of different instances of a single VM or
failures of different VMs. A failure can also take place when
a VM is already handling a failure involving another VM
(cascading failures). If the number of VMs is finite and if
there is no cycle of bindings through mandatory imports, the
self-deployment protocol terminates successfully: all VMs
are instantiated and components will be started.

Example. In Figure 6, we show an example of a VM fail-
ure (VM2), occurring when all the VMs have been instanti-
ated and all the components started. When the DM detects
VM2’s failure, it first creates a new instance of VM2 (VM2’)
and alerts the other VMs. Upon reception of these messages,
both remaining VMs (VM1 and VM3) behave as shown in
Figure 5. Thus, the configurator for VM1 changes VM2’s
identifier, purges its two buffers, stops its Apache compo-
nent, and unbinds Apache from JOnAS. The VM1 configu-
rator also sends an acknowledgement message to VM2’ in-
dicating that it knows it and can receive messages from it.
Nothing else is required of VM1, and the VM1 configurator
returns to its normal behavior, i.e., ❼ (message reception),
as illustrated in Figure 3. In the case of VM3, the con-
figurator for VM3 changes VM2’s identifier, purges its two
buffers, and sends an acknowledgement message to VM2’.
The VM3 configurator also needs to re-send binding infor-
mation to VM2 and another message indicating that the
MySQL component is started. Last but not least, after in-
stantiation, when VM2’ has received ack messages from all
the other VMs, it behaves normally, as presented in Figure 3
and its JOnAS component can be started, as required in the
application model.

3. EVALUATION

Figure 6: Web Application Failure Scenario

In this section, we first present the formal specification
and verification of the protocol. Second, we introduce the
Java implementation of the protocol.

3.1 Verification
Specification. For validation purposes, we decided to

specify the self-deployment protocol with the LNT value-
passing process algebra [6]. We chose LNT because it is
adequately expressive to describe data types, functions, and
concurrent behaviors. In addition, LNT is one of the input
languages for the CADP toolbox [16], which provides a large
variety of verification techniques and tools to automatically
analyze LNT specifications.

The LNT specification for the self-deployment protocol
consists of at least 2,500 lines of code. A part of the spec-
ification depends on the input application model, and is
therefore automatically generated from a Python script we
implemented. For instance, an application model with 6
VMs results in a 3,500-line LNT specification. Data types
are used to describe the application model (VMs, compo-
nents, ports, bindings), messages, buffers, etc. Functions
apply to data expressions and are necessary for three kinds
of computation: (i) extracting information from the appli-
cation model, (ii) describing buffers and basic operations on
them, (iii) keeping track of the started components to know
when another component can be started (when all manda-
tory imports are satisfied). Processes are used to specify
VMs (configurator, input and output buffer), failure injec-
tion, and the whole system consisting of interacting VMs
possibly failing at some unpredictable point.

Properties. We identified 15 key properties for the pro-
tocol. These properties help to verify that architectural in-
variants are satisfied during protocol execution (prop. 1, 3
below), final objectives are fulfilled (prop. 2, 5, 7 below)
or ordering constraints respected (prop. 4, 6 below). Let
us give a few examples of such properties, with a particular
focus on VM failure occurrences (prop. 3, 4, 5, 6, 7). For
some of these properties, we also give their expression in the
MCL language [20] used in CADP to formalize temporal

properties:

1. There is no cycle of bindings in the component assem-
bly through mandatory imports.

2. All components are eventually started.

3. No component can be started before the components
it depends on through mandatory imports.

[

true* . {STARTCOMPO ?vm:String !"JOnAS"} .

(¬’{FAILURE !.*}’)* .

{STARTCOMPO ?vm2:String !"MySQL"}

] false

In the running example, the JOnAS component is con-
nected to the MySQL component through a manda-
tory import, therefore we will never find a sequence
where JOnAS is started before MySQL except in case
of a failure. This property is automatically generated
from the application model because it depends on the
component names and bindings in the model.

4. After a VM fails, all other VMs are informed of that
failure.

5. Each VM failure is followed by re-creation of that VM.

library actl.mcl end library

[true* . ’{FAILURE ?vm:String}’]

AU A A(true, not ’{FAILURE !vm}’,

’{CREATEVM !vm !.*}’, true)

This property is formalized making use of action CTL
patterns [11].

6. Two failures (same VM) are always separated by VM
creation.

7. A sequence exists resulting in protocol termination
with no failure.

<true* . (¬’{FAILURE ?vm:String}’)* . ’FINISH’> true

Termination is made explicit in the specification using
the special FINISH action.

Experiments. To verify this specification, we used a
database of 170 application models. For each input model,
we used CADP exploration tools to generate the Labeled
Transition System (LTS) corresponding to all possible ex-
ecutions of the protocol for this input. Then, we used the
CADP model checker (Evaluator) to verify that this LTS
satisfies the 15 properties of interest.

Table 1 summarizes the results obtained for our running
example, with an increasing number of possible failures (|F|).
We give the size of the LTS generated (before and after
strong reduction) using CADP by enumerating all the pos-
sible executions of the system, as well as the time to ob-
tain this LTS (generation and reduction) and verify all 15
properties. Experiments were carried out on a Xeon W3550
(3.07GHz, 12GB RAM) running Linux.

It is worth observing that increasing the number of failures
induces a gradual growth in the LTS size and computation
time. Since we use enumeration techniques, when there are,
e.g., four failures during the deployment process, it means

that all possible configurations are attempted (e.g., cascad-
ing failures of different VMs, successive failures of the same
VM, etc.) and all these executions appear in the correspond-
ing LTS. The other parameter increasing these numbers is
the number of VMs, which generates more parallelism in
the system, and the number of remote bindings in the ap-
plication model, which augments the number of messages
exchanged between VMs. We were able to analyze applica-
tions with up to 6 VMs and 10 remote bindings. However,
huge applications were not required to detect issues in the
protocol: most problems are usually found on small exam-
ples exposing corner cases.

LTS (states/transitions) Time (m:s)
|F| raw minimized Gen. Verif.

0 233/565 233/565 0:5 0:10
1 6,196/16,272 3,125/8,205 0:13 0:21
2 61,548/175,796 21,980/62,042 0:14 0:31
3 349,364/1,045,883 100,008/293,555 0:48 7:19
4 1,489,515/4,601,552 366,269/1,097,990 3:34 26:29
5 5,381,794/17,035,375 1,206,934/3,654,952 40:13 hours

Table 1: Experimental Results

Issues detected. The formal verification of the proto-
col using model checking techniques helped to refine certain
parts of the protocol and to detect subtle bugs. For in-
stance, one important architectural invariant states that a
started component cannot be connected to a stopped com-
ponent. However, we encountered cases where optional im-
ports violated this invariant, resulting in started components
connected to and therefore submitting requests to stopped
components. This problem was detected thanks to an ex-
tension of property 3 stating that “a component cannot be

started and connected to another component, if that compo-

nent has not been started beforehand”. This invariant can
only be preserved in the absence of failures: we cannot pre-
vent a started component from being connected to a failed
component.

3.2 Implementation
This section describes the principles and the assessment

of the Java implementation of the protocol1.

VAMP Principles. We developed a reference imple-
mentation of the reliable self-deployment protocol using the
Virtual Applications Management Platform (VAMP) sys-
tem [13]. VAMP is a generic solution dedicated to the self-
deployment of distributed applications in the cloud. In its
first version, VAMP relied on an unreliable deployment pro-
cess [14]. Thus, the goal of this implementation is to replace
the original deployment protocol by the reliable protocol
presented in Section 2 so as to enable VAMP to deploy an
application in the cloud, in finite time, even if a finite num-
ber of VM or network failures occurs2.

When receiving a deployment request from a user, VAMP
creates a new VM in which a deployment manager is in-

1Although the protocol adopts a decentralized design, its
capacity to deal with large scale architecture was previously
discussed in [14]. This paper only focuses on its reliability.
2Although the self-deployment protocol was implemented
within a system dedicated to cloud applications (namely
VAMP), it was also used within physical runtime environ-
ments providing on-demand machine allocation like grids.

stantiated. This DM is in charge of deploying the applica-
tion and therefore bootstraps the deployment by generat-
ing virtual images participating in the application and in-
stantiating them as VMs in one or several IaaS platforms.
The configurators are included in the virtual images at the
generation stage. Once an applicative VM has completely
booted, the corresponding configurator starts applying the
self-deployment protocol by instantiating, configuring, and
activating the local applicative software components.

All the participants in the deployment of a given ap-
plication (i.e., a DM and the configurators) communicate
through an asynchronous reliable distributed message ori-
ented middleware (MOM), the AAA bus [3]. This middle-
ware interconnects agents. An agent is a plain old Java
object (POJO) that runs in a Java Virtual Machine. Each
agent can send messages to other agents. When receiving
a message, an agent behaves according to an event-action
model. In the VAMP system, each management entity is an
agent of the AAA middleware. AAA provides some notice-
able properties. First, it is distributed within the agents,
thus avoiding any centralized mechanism that might suffer
from the bottleneck effect. Second, the reaction of an agent
to an event is atomic, i.e., it is entirely executed. This mech-
anism relies on the agent’s state persisting before and after
each reaction. Third, due to the combination of message
persistence and the asynchronous programming model pro-
vided by AAA, any agent is assured of the delivery of the
messages it sends, even when a finite number of transitory
failures occur. However, there is no guarantee of the time at
which the messages will be dealt with by the target agent.
Finally, AAA preserves message ordering, i.e., messages are
received in the same order as they were sent.

Assessment. The evaluation process aims to measure
the time to deploy a three-tier Web application (Fig. 1) while
randomly injecting a number of failures that could affect
any applicative VM. Each test was repeated 10 times. The
application deployment was considered completed when all
the software components were configured and started.

The underlying IaaS platform used to carry out these tests
is an OpenStack Essex running on Linux Ubuntu 12.04 LTS
64 bits. It is deployed on a cluster of IBM HS22 blades
(2 Intel Xeon E5504 3GHz quad-core, 32GB memory, 292
GB HDD) interconnected with a Gigabit ethernet network.
Each computer node runs a KVM hypervisor to instantiate
the virtual machines.

Figure 7: Time to Deploy a Three-tier Web Appli-

cation with VAMP while Injecting Failures

Figure 7 shows that the time to deploy the Web appli-
cation increases linearly in accordance with the number of

failures encountered. f(x) = 35,245x + 84,106 is the trend
line associated with the mean time measured to deploy an
application in the presence of x failures3. This equation
highlights the 58% gain in time to deployment introduced
by the reliable self-deployment protocol compared to its un-
reliable version. Effectively, replacement of a faulty VM by
the protocol only induces about 35 seconds’ delay compared
to the 84 seconds required to re-deploy a full instance of the
Web application.

4. RELATED WORK
We first focus on existing approaches relying on ADL-

based approaches for deploying software applications. [17,
7] propose languages and configuration protocols for dis-
tributed applications in the cloud. SmartFrog [17] is a frame-
work for creating configuration-driven systems. It has been
designed with the express purpose of making the design, de-
ployment and management of distributed component-based
systems simpler and more robust. [7] adopts a model driven
approach with extensions of the Essential Meta-Object Facil-

ity (EMOF) abstract syntax to describe a distributed appli-
cation, its requirements towards the underlying execution
platforms, and its architectural constraints (e.g., concern-
ing placement and collocation). Regarding the configuration
protocol, particularly the distributed bindings configuration
and the activation order of components, contrary to us, [7]
does not work in a decentralized fashion, and this harms the
scalability of applications that can be deployed.

[4] presents the design and implementation of an auto-
nomic management system, TUNe. The main principle is to
wrap legacy software pieces into components in order to ad-
ministrate a software infrastructure as a component archi-
tecture. The authors also introduce high-level formalisms
for the specification of deployment and management poli-
cies. This management interface is mainly based on UML
profiles for the description of deployment schemas and the
description of reconfiguration state diagrams. A tool for the
description of wrapper is also introduced to hide the details
of the underlying component model. ProActive [2] is a Java-
based middleware (programming model and environment)
for object and component oriented parallel, mobile and dis-
tributed computing. ProActive provides mechanisms in or-
der to further help in the deployment and runtime phases on
all possible kind of infrastructures, notably secure grid sys-
tems. ProActive is intended to be used for large scale grid
applications. However, it does not handle fault occurrence
and repair mechanisms.

[21] introduces Eucalyptus, an academic open source soft-
ware framework for cloud computing that implements a IaaS
solution, giving users the ability to run and control VM in-
stances deployed across a variety of physical resources. Eu-
calyptus is a convenient solution for automated provisioning
of virtualized hardware resources and for executing legacy
applications. On the other hand, this platform has not been
designed for monitoring and particularly deploying such ap-
plications. [9] presents AppScale, an open source extension
of the Google AppEngine (GAE) PaaS cloud technology.
These extensions facilitate distributed execution of GAE ap-
plications over virtualized cluster resources, including IaaS
cloud systems such as Amazon’s EC2 and Eucalyptus. App-
Scale implements a number of different components that fa-

3The linear correlation ratio of this trend is 0.9933.

cilitate deployment of GAE applications using local (non-
proprietary) resources. This solution has a specific focus on
the deployment of Web applications whose code conforms to
very specific APIs (e.g., no Java threads).

[13, 23, 1] present protocols that automate the config-
uration of distributed applications in cloud environments.
These protocols work in a decentralized way as well, but do
not support the possible occurrence of failures, nor the possi-
bility to repair the application being deployed when a failure
occurs. Another recent related work [15] presents a system
that manages application stack configuration. It provides
techniques to configure services across machines according
to their dependencies, to deploy components, and to man-
age the life cycle of installed resources. This work presents
some similarities with ours, but [15] does not focus on com-
position consistency, architectural invariants preservation,
or robustness of the reconfiguration protocol.

[18] describes a peer-to-peer architecture to automatically
deploy services on cloud infrastructures. The architecture
uses a component repository to manage the deployment of
these software components, enabling elasticity by using the
underlying cloud infrastructure provider. The main added
value of this framework is the incorporation of virtual re-
source allocation to the software deployment process. This
framework is one the closest solution to ours. Yet the
centralized architecture and the absence of fault-tolerance
mechanisms (as all approaches presented in this section) are
two important differences.

Last but not least fault tolerance and system reliability
has been the subject of many works and studies in the last
decades [26]. A system may fail first because of incorrect
specification, incorrect design, design flaws, poor testing, or
undetected fault. In such a case, a possible solution aims at
improving system design and development using static anal-
ysis or specific programming models [22]. Another reason
causing failures is the environment (e.g., network, human in-
tervention), aging component, operator errors, or hardware
failure. A classic approach intends to tolerate faults through
redundancy techniques, either active ones (applying redun-
dancy on processes) or passive ones (applying redundancy
on data), see e.g., [19, 24, 8, 25, 12]. Here we preferred
a lightweight approach for failure detection and recovery
mechanisms, which was simple to develop and sufficient for
ensuring fault-tolerance of our deployment solution.

5. CONCLUDING REMARKS
In this paper, we have presented a self-deployment pro-

tocol that aims to configure a set of software components
distributed over a set of virtual machines. This protocol
works in a fully automated way and in a decentralized fash-
ion. To the best of our knowledge, this protocol is the first
deployment protocol supporting VM failures, i.e., the proto-
col not only detects failures, but also creates a new instance
for each failed VM, and restores a stable state for all the
other VMs. The protocol always succeeds in starting all the
components hosted on the different VMs, even in case of
multiple failures. The protocol was formally specified and
validated using up-to-date verification tools. The protocol
was implemented in Java and applied to industrial applica-
tions for evaluation purposes.

A first perspective is to make use of co-simulation tech-
niques to ensure that the specification and implementation
conform to one another. Such techniques are not always

required: when a bug is found during the specification anal-
ysis, it is reported, and in many cases, this is a real bug, i.e.,
a bug existing in the implementation. Co-simulation tech-
niques would reduce the number of divergences between the
specification and the implementation, and this would avoid
reporting bugs that are in fact only specification errors. Sec-
ond, we plan to consider failures of the deployment manager
and propose a replication system to ensure reliability of this
part of the deployment system. Our last perspective is to
extend the protocol and widen the role of deployment man-
agers, allowing them to dynamically reconfigure cloud appli-
cations, e.g., by removing or replacing a deployed VM. As
a side effect, the configurator’s behavior would need to be
extended to incorporate those new features.

Acknowledgements. This work was supported by the
OpenCloudware project (2012-2015), which is funded by the
French Fonds national pour la Société Numérique (FSN),
and is supported by Pôles Minalogic, Systematic, and SCS.

6. REFERENCES
[1] R. Abid, G. Salaün, F. Bongiovanni, and N. De

Palma. Verification of a Dynamic Management
Protocol for Cloud Applications. In Proc. of ATVA’13,
volume 8172 of LNCS, pages 178–192. Springer, 2013.

[2] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,
M. Morel, and R. Quilici. Grid Computing: Software

Environments and Tools, chapter Programming,
Deploying, Composing, for the Grid. Springer, 2006.

[3] L. Bellissard, N. D. Palma, A. Freyssinet,
M. Herrmann, and S. Lacourte. An Agent Platform
for Reliable Asynchronous Distributed Programming.
In Proc. of SRDS’99, pages 294–295. IEEE Computer
Society, 1999.

[4] L. Broto, D. Hagimont, P. Stolf, N. D. Palma, and
S. Temate. Autonomic Management Policy
Specification in Tune. In Proc. of SAC’08, pages
1658–1663. ACM, 2008.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL Component Model
and its Support in Java. Softw., Pract. Exper.,
36(11-12):1257–1284, 2006.

[6] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte,
V. Powazny, F. Lang, W. Serwe, and G. Smeding.
Reference Manual of the LOTOS NT to LOTOS
Translator (Version 5.4). INRIA/VASY, 2011.

[7] C. Chapman, W. Emmerich, F. G. Márquez,
S. Clayman, and A. Galis. Software Architecture
Definition for On-demand Cloud Provisioning. In
Proc. of HPDC’10, pages 61–72. ACM Press, 2010.

[8] M. Chérèque, D. Powell, P. Reynier, J.-L. Richier, and
J. Voiron. Active Replication in Delta-4. In Proc. of

FTCS’92, pages 28–37. IEEE Computer Society, 1992.

[9] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa,
S. Soman, and R. Wolski. AppScale: Scalable and
Open AppEngine Application Development and
Deployment. In Proc. of CloudComp’09, volume 34 of
Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications

Engineering, pages 57–70. Springer, 2010.

[10] B. Dillenseger. CLIF, a Framework based on Fractal
for Flexible, Distributed Load Testing. Annales des

Télécommunications, 64(1-2):101–120, 2009.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in Property Specifications for Finite-State
Verification. In Proc. of ICSE’99, pages 411–420.
ACM, 1999.

[12] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-recovery Protocols in
Message-passing Systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[13] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma.
Self-Configuration of Distributed Applications in the
Cloud. In Proc. of CLOUD’11, pages 668–675. IEEE
Computer Society, 2011.

[14] X. Etchevers, T. Coupaye, F. Boyer, N. D. Palma, and
G. Salaün. Automated Configuration of Legacy
Applications in the Cloud. In Proc. of UCC’11, pages
170–177. IEEE Computer Society, 2011.

[15] J. Fischer, R. Majumdar, and S. Esmaeilsabzali.
Engage: A Deployment Management System. In Proc.

of PLDI’12, pages 263–274. ACM, 2012.

[16] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. In Proc. of

TACAS’11, volume 6605 of LNCS, pages 372–387.
Springer, 2011.

[17] P. Goldsack, J. Guijarro, S. Loughran, A. Coles,
A. Farrell, A. Lain, P. Murray, and P. Toft. The
SmartFrog Configuration Management Framework.
SIGOPS Oper. Syst. Rev., 43(1):16–25, 2009.

[18] J. Kirschnick, J. M. A. Calero, P. Goldsack, A. Farrell,
J. Guijarro, S. Loughran, N. Edwards, and
L. Wilcock. Towards an Architecture for Deploying
Elastic Services in the Cloud. Softw., Pract. Exper.,
42(4):395–408, 2012.

[19] L. Lamport. The Implementation of Reliable
Distributed Multiprocess Systems. Computer

Networks, 2:95–114, 1978.

[20] R. Mateescu and D. Thivolle. A Model Checking
Language for Concurrent Value-Passing Systems. In
Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-Source Cloud-Computing System. In
Proc. of CCGRID’09, pages 124–131. IEEE Computer
Society, 2009.

[22] G. K. Saha. Software Based Fault Tolerance: A
Survey. Ubiquity, 2006.

[23] G. Salaün, X. Etchevers, N. D. Palma, F. Boyer, and
T. Coupaye. Verification of a Self-configuration
Protocol for Distributed Applications in the Cloud. In
Proc. of SAC’12, pages 1278–1283. ACM Press, 2012.

[24] F. B. Schneider. Implementing Fault-tolerant Services
using the State Machine Approach: A Tutorial. ACM

Comput. Surv., 22(4):299–319, 1990.

[25] R. van Renesse and R. Guerraoui. Replication
Techniques for Availability. In Replication: Theory

and Practice, volume 5959 of LNCS, pages 19–40.
Springer, 2010.

[26] W. Zamojski and D. Caban. Introduction to the
Dependability Modeling of Computer Systems. In
Proc. of DepCoS-RELCOMEX’06, pages 100–109.
IEEE Computer Society, 2006.

