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Abstract— Automatic analysis of the dynamic content in
fluorescence video-microscopy is crucial for understanding
molecular mechanisms involved in cell functions. In this pa-
per, we propose an original approach for analyzing particle
trafficking in these sequences. Instead of individually tracking
every particle, we estimate the particle flows between predefined
regions. This approach allows us to process image sequences
with a high number of particles and a low frame rate. We
investigate several ways to estimate the particle flow at the
cellular level and evaluate their performance in synthetic and
real image sequences.

I. INTRODUCTION

The molecular mechanisms that coordinate trans-

membrane protein trafficking at the cellular level are still

unclear. Fluorescence microscopy allows us to localize the

distribution of proteins of interest along time. The analysis

of the dynamic behavior of these proteins enables to better

understand the underlying mechanisms. A common and

established approach for extracting this type of information

consists in individually tracking particles in fluorescence

video-microscopy. The most widespread tracking concept

is the correspondence approach [1], [2] which consists

in detecting particles independently in each frame and

then associating the detected objects over time. The object

association is particularly difficult when the density of

particles is high, their appearance is similar and their

trajectories interact. Kalman filtering [3], particle filtering

techniques [4], graph-theory based methods [5] and multiple

hypothesis tracking [6] have been developed to improve

temporal matching. Practically, these approaches require a

high temporal sampling rate to successfully track particles

in fluorescence video-microscopy. Unfortunately, the photo-

toxicity of the acquisition process with this modality limits

the number of images that can be acquired. Consequently,

a high temporal sampling rate implies a short acquisition

time. Another line of work in computer vision considers

the object flows between predefined regions in the observed

scene to recover the individual object tracks along time

[7]. Unfortunately, this method cannot be directly applied

to fluorescence microscopy images because of the higher

number of objects to track and their possible appearances

and disappearances along time while only few occlusions

happen in natural scene videos.

The particle flow between cell compartments reveals the

relationships between the different cell domains, a generic

problem in the study of the cell communication (endocytosis,

recycling, motility, etc). Another possible application is the

determination of the number of objects interacting with a

region of interest over a given period allowing the evaluation

of the trigger effect. This approach can also be applied

to object flow estimation between non connected regions

following the so-called network tomography as described in

[8].

In this paper, we describe an original approach to extract

global information about trafficking by analyzing the particle

flow between connected regions. These regions are arbitrarily

defined to form a regular cell tessellation or correspond to

a specific cell segmentation such as cell compartments. The

flow will be inferred from the variation of the number of

particles in each region. In addition to the flow computed

between regions in the cell, the number of appearances

and disappearances is also estimated by introducing a vir-

tual region. The particle flow estimation proceeds in three

steps: i) the cell is partitioned into regions; ii) the particles

are detected in the image sequence; iii) the particle flow

is estimated at each time step from the particle number

variation in each region. Except some trivial cases, flow

estimation is an ill-posed problem. Therefore, we investigate

two different regularization schemes [9], [10] and compare

them to a simple correspondence approach. The particle

flow estimation provides less information than a tracking

framework as it only describes the global particle paths in

the cell compared to individual tracks. However, it offers an

efficient way to extract relevant information from the image

sequences while further keeping cells alive by reducing the

frame rate, which leads to observe biological processes over

a longer period of time.

The remainder of the paper is organized as follows. In Sec-

tion II, we describe our particle flow estimation approach. In

particular, we propose two regularizing methods to solve the

flow estimation that is an ill-posed problem. In Section III,

we compare the performance between flow estimation meth-

ods and tracking methods on synthetic and real fluorescence

image sequences. Section IV contains concluding remarks.
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Fig. 1. (a) Image partition example; (b) graph associated to the image
partition (a).

II. FLOW ESTIMATION

In this section, we introduce the partitioning of the cell

and define the associated graph. Then, we present the particle

flow estimation approach and we propose two regularizing

methods to solve this ill-posed problem.

A. Image partition

Let us consider a partition of the image domain Ω. An

oriented graph G(E, V ) with |E| edges and |V | vertices is

associated to the partition. The vertices correspond to the

regions of the partition and the edges to the boundaries

between the regions. A virtual region is added and connected

to all the other regions to handle the particles that appear

or disappear over time. The graph is oriented since only

positive flows between regions are considered. An example

of an image partition and the associated graph are shown in

Fig.1. In Fig.1(b), the virtual region is represented as a red

disk while the other regions appear as blue disks.

Several partition strategies are possible. A very simple

partition consists in dividing the image domain into a regular

grid of size n × m. In this case, the graph is defined with

|V | = nm + 1 vertices and |E| = 6nm − 2n − 2m
edges. If the particle trafficking is known to happen between

cell compartments, the segmentation of these compartments

supplies an adequate image partition.

B. Flow estimation

Matching particles is a hard task in fluorescence mi-

croscopy, especially when the number of particles is high,

appearances and disappearances are frequent and when the

frame rate is low. In contrast, we propose to infer the

particle flow between regions by evaluating the number of

particles in each region at each time step. Let us define

Y (t) = {yi(t), i ∈ [1, |V |]} the number of detected particles

in each region i ∈ [1, |V |] at each time step t. The following

conservation equation (Kirchhoff law) can be written:

∂Y

∂t
−MX = 0. (1)

This equation allows us to associate the particle flow X(t) =
{xj(t), j ∈ [1, |E|]} on each edge j ∈ [1, |E|] with the

temporal variation of the particle number in each region. In

this context, the divergence operator M corresponds to a

|V | × |E| matrix such that for each vertex i and edge j:

mij =







1 if edge j points to vertex i,
−1 if edge j originates from vertex i,
0 otherwise.

(2)

As the number of edges is generally higher than the number

of vertices, the matrix M has more columns than lines.

The estimation of the flow X(t) from the measures Z =
∂Y (t)/∂t is performed through the inversion of M or the

minimization of ‖Z −MX‖2. The number of particles that

appear or disappear is estimated by introducing the virtual

region i∗ and by computing the total variation of particles

between two time steps to be attached to that virtual region:

zi∗(t) = −





∑

i∈V \i∗

yi(t+ 1)−
∑

i∈V \i∗

yi(t)



 . (3)

As the graph is oriented, the flow on the edges is positive

and this constraint can be exploited to constrain the solution.

Then, we resort to a least-mean square algorithm with a

positivity constraint to estimate the flow if the number of

edges is inferior to the number of vertices. As the problem

is ill-posed in most cases, we need to regularize the problem.

First, we investigate a spectral cut method. More precisely,

we estimate the particle flow with the technique proposed by

Lawson and Hanson [9], the so-called NNLS algorithm.

The probability that a particle crosses the boundary be-

tween two regions is relatively low. Then, we can assume

that the flow estimates must be sparse, which leads to another

regularization method. As a consequence, we minimize the

following global function:

J(X,Z) =
1

2
‖Z −MX‖2 + κ|X|+

1

2
d2C(X), (4)

where dC is the distance to the space C of the positive

solutions and κ is a real positive parameter. To estimate

the flow, we adopt the PPXA algorithm [10] well suited

to non differentiable convex minimization problem. It uses

the proximal operators associated to the different energy

terms involving the proposed constraints (see Algorithm 1).

In particular, the operator associated to the square distance

function is given by [10]: 1

2
(x+ PC(x)), where PC(x) = x

if x > 0 and PC(x) = 0 otherwise.

III. EXPERIMENTAL RESULTS

In this section, we compare on synthetic and real data

the performance of the two object flow estimation methods

described in the previous section along with a nearest-

neighbor matching (NNM) algorithm.

A. Synthetic data

Using synthetic data, we aim at evaluating the influence

of the number of particles involved, the particle speed, the

appearance and disappearance rate, along with the number of

regions of the partition. In addition to the two particle flow

estimation methods described in Section II, we also consider
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Fig. 2. Performance evaluation of the NNLS, PPXA and NNM algorithm for four different scenarios. (a-d) Directed motion combined with a random
walk, (b-d) object appearances/disappearances, (c-d) object start/stop. The particle speed is equal to 3 pixels per frame in the first three scenarios while it
is equal to 10 pixels per frame in the last scenario.

Data: M,Z, ε ∈ [0, 1], γ > 0, κ > 0
Result: XN

U1,1 = 0, U2,1 = 0
for n ∈ [1, N ] do

P1,n = (I + γMTM)−1(U1,n + γMTZ)
P2,n = 1

2
(U2,n + PC(U2,n))

P3,n = max(U3,n − 1

κ
, 0) sign(U3,n)

Pn = P1,n + P2,n + P3,n

ε ≤ λn ≤ 2− ε
for i ∈ [1, 3] do

Ui,n+1 = Ui,n + λn (2Pn −Xn − Pi,n)
end

Xn+1 = Xn + λn (Pn −Xn)
end

Algorithm 1: PPXA minimization algorithm used to esti-

mate the particle flow with proximal operators associated

to the different constraints.

a simple Nearest-Neighbor Matching (NNM) algorithm. The

latter consists in pairing each particle at time t to the nearest

particle at time t + 1. The particles that cross a boundary

between two regions in the partition contribute to the flow.

The particle flow estimated for each method is compared

to the ground truth. For each simulation, the true positive

probability (sensibility) Pd is defined as the ratio between

the number of correct detections and the total number of

particles that cross a boundary between two regions over the

sequence. The probability of false alarm (specificity) Pfa is

defined as the ratio between the number of false alarms and

the number of boundary crosses.

Four different scenarios with 50 particles are simulated.

All the scenarios correspond to a directed motion combined

with a random walk. In the second scenario, the particle

appear and disappear with a probability equal to 0.1. In the

two last scenarios, on top of appearances and disappearances,

the particles can stop at a given location with a probability

equal to 0.8, and start over with a probability equal to 0.2. In

the three first scenarios, the particle speed is equal to 3 pixels

per frame while it is equal to 10 pixels per frame in the last

scenario. The number of regions in each simulation varies

in the range [4, 625]. For each setting, we report the average

result over 10 simulations for each of the three methods.

To supply a ground truth, we compute the crossing of the
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Fig. 3. Evaluation of the influence of the number of objects for a
directed motion combined with a random walk, with particle appear-
ances/disappearances and start/stop.

simulated trajectories with the boundaries of the regions.

The time computation for the NNM algorithm increases as

K2. The time computation for the NNLS and the PPXA

algorithms does not depend on the number K of particles

but on the number of edges in the graph.

As shown in Fig. 2, the NNM algorithm is almost in-

sensitive to the image partition, except for the Pfa value

that increases slowly with the number of regions. But the

Pd value decreases when vesicles can appear/disappear and

start/stop. This value also decreases a little when the speed

increases. Except in the first scenario, the PPXA algorithm

shows higher Pd values and lower Pfa values than the

NNM algorithm. The particle appearances/disappearances

and start/stop necessitate to consider a higher number of

regions to obtain satisfying results. The NNLS algorithm

shows a similar behaviour than the PPXA algorithm but the

Pd values (resp. Pfa values) are lower (resp. higher). This

demonstrates the importance of the sparsity constraint on the

particle flows.

The influence of the number of particles on the results is

evaluated and illustrated in Fig. 3 for the scenario shown in

Fig. 2 (c). These results demonstrate the higher Pd values and

lower Pfa values obtained with the PPXA algorithm when

compared to the NNM and NNLS algorithms whatever the
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Fig. 4. (a) Image #1 of the sequence; (b) edge numbers between the
regions.

Edge Real NNM NNM NNM PPXA PPXA PPXA
number flow every every every every every every

frames 2 frames 5 frames frames 2 frames 5 frames

1 13 16 15 13 16 16 14

2 0 4 4 5 6 7 5

3 5 15 15 9 8 6 8

4 3 1 3 2 4 5 4

5 23 24 26 13 22 20 14

6 9 10 13 6 10 10 4

7 14 19 14 8 16 16 11

8 12 10 14 5 14 12 9

9 2 4 4 2 5 5 4

10 3 7 7 3 10 13 2

11 0 2 2 2 3 1 3

12 1 3 5 3 5 5 2

MAE - 3.16 3.08 3.33 3 3.08 3.08

TABLE I

REAL AND ESTIMATED VESICLE FLOWS WITH THE NNM AND PPXA

ALGORITHMS WHEN CONSIDERING ALL THE FRAMES IN THE SEQUENCE,

EVERY TWO FRAMES AND EVERY FIVE FRAMES. THE MEAN ABSOLUTE

ERROR (MAE) IS REPORTED IN THE LAST ROW FOR THE TWO

ALGORITHMS AND THE THREE DIFFERENT SAMPLING RATES.

number of particles is.

B. Real TIRF image sequence

We compare the PPXA algorithm and the NNM algorithm

on a real image sequence (Fig. 4(a)) of 237 frames of size

337 × 400 acquired in TIRF microscopy and showing the

protein clip170 fluorescently labeled. This sequence is par-

ticularly challenging because of the high number of vesicles

with varying speed. Furthermore, many vesicle appearances

and disappearances happen as the acquired volume is thin in

TIRF microscopy. The ground truth is defined by visually

inspecting the image sequence. The results obtained with

the NNM and PPXA algorithms for different sampling rates

are reported in table I. We consider a simple partition of 5

regions (see Fig. 4(b)) to have a global idea about vesicle

trafficking over the sequence. As the PPXA algorithm needs

a high number of regions to obtain satisfying results, a

partition of 730 regions is used and the final results are

converted and reported in the partition with 5 regions. These

results indicate that the PPXA algorithm better estimates the

vesicle flows between the regions.

IV. CONCLUSION

We have proposed an original approach that determines

the flow of particles between regions issued from a partition

of the image domain. In contrast to usual approaches, we do

not track individual particles, we only need to locally count

particles on regions over time and minimize a global energy

function. We have specified three methods to determine the

particle flow. We have conducted comparative experiments

on synthetic and real fluorescence image sequences. We have

shown that adding a sparsity constraint on the number of

detected events allows us to reduce the number of false

alarms. Compared to usual tracking methods, our approach is

simpler and the results are very stable with respect to the only

two parameters. We have thus demonstrated the efficiency

and the contributions of this approach.
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